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Cost of resistance to trematodes 
in freshwater snail populations with low clonal 
diversity
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Abstract 

Background:  The persistence of high genetic variability in natural populations garners considerable interest among 
ecologists and evolutionary biologists. One proposed hypothesis for the maintenance of high levels of genetic diver‑
sity relies on frequency-dependent selection imposed by parasites on host populations (Red Queen hypothesis). A 
complementary hypothesis suggests that a trade-off between fitness costs associated with tolerance to stress factors 
and fitness costs associated with resistance to parasites is responsible for the maintenance of host genetic diversity.

Results:  The present study investigated whether host resistance to parasites is traded off with tolerance to environ‑
mental stress factors (high/low temperatures, high salinity), by comparing populations of the freshwater snail Mela-
noides tuberculata with low vs. high clonal diversity. Since polyclonal populations were found to be more parasitized 
than populations with low clonal diversity, we expected them to be tolerant to environmental stress factors. We found 
that clonal diversity explained most of the variation in snail survival under high temperature, thereby suggesting that 
tolerance to high temperatures of clonally diverse populations is higher than that of populations with low clonal 
diversity.

Conclusions:  Our results suggest that resistance to parasites may come at a cost of reduced tolerance to certain 
environmental stress factors.
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Background
An organism will invest in defense mechanisms against 
pathogens and parasites, depending in part on the bal-
ance between the advantages of not becoming infected 
and the costs of maintaining these defenses. As these 
mechanisms are partly heritable, they can be costly to 
maintain and express (e.g. constitutive and inducible 
resistance in plants), but the extent of their use and the 
actual costs they incur in natural populations is unknown 
[1]. It has been suggested that this balance, or trade-off 
between the advantages of being resistant and the costs 
of defense, is partly responsible for maintaining genetic 

diversity in natural host populations [2–6]. Particularly 
in animal host-parasite systems, evidence of these costs 
and their underlying causes are scarce [7, 8]. For exam-
ple, Webster and Woolhouse [9] found that resistance 
and susceptibility to infection are heritable in the Biom-
phalaria glabrata–Schistosoma mansoni snail-trematode 
system. They further showed that susceptible snails were 
more fertile (number of offspring produced) than resist-
ant-selected or unselected control snail lines.

Although the cost of resistance has been tested exten-
sively in the laboratory using laboratory-maintained 
lines of hosts and parasites (e.g. [10, 11]), it has rarely 
been tested using animals from natural populations 
[12, 13]. Furthermore, it is not always the case that sus-
ceptible hosts can cope with environmental stress fac-
tors better than resistant hosts [14]. Here we used the 
freshwater snail Melanoides tuberculata (Muller) to 
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investigate whether host resistance to parasites is traded-
off with tolerance to environmental stress factors (high/
low temperatures, high salinity). The rationale for the 
present study is an earlier study in which we found that 
parasite-mediated selection promoted clonal diversity 
in M. tuberculata populations [15]. Furthermore, com-
puter simulations and empirical studies have shown that 
parasites can select for the accumulation of clonal diver-
sity for resistance [16, 17]. We therefore sampled snails 
from populations with varying degrees of clonal diver-
sity, as our aim was to compare the stress tolerance of 
snails originating from natural populations with low vs. 
high clonal diversity. Given that polyclonal populations 
were more parasitized than populations with low clonal 
diversity, we expected them to tolerate environmental 
stress conditions better than populations with low clonal 
diversity.

Methods
Host‑parasite system
The cerithioidean gastropod Melanoides tuberculata 
is native to North Africa and the Middle East [18, 19], 
but has invaded North and South America, East Africa, 
Southern Asia and Australia [20]. It is a warm-temperate 
to tropical freshwater dweller, typically found in shallow 
slow-running water, especially on soft mud and sand sub-
strata [21, 22]. Female M. tuberculata usually reproduce 
parthenogenetically (obligate apomixis) [23–25], but also 
via sporadic sexual reproduction in the presence of males 
[26]. In Israel, the frequency of fertile males can reach up 
to 66% [21, 27–30]. Furthermore, sex plays a crucial role 
in the ability of M. tuberculata to invade new ecosystems, 
because it amplifies the effect of multiple introductions of 
the snail by generating novel trait combinations [31, 32].

Melanoides tuberculata is the first intermediate host 
for several trematodes that have important public health 
and agricultural implications (e.g. eye fluke; [33–37]). The 
parasite usually develops parthenogenetically within the 
snail, sterilizes it, and cercariae liberated from infected 
snails encyst on the gills of fish. The larval worms become 
adults after being consumed by waterfowl or wad-
ers, wherein they reproduce sexually and their eggs are 
released with the definitive host’s feces [38]. These eggs 
hatch into free-swimming miracidia that penetrate snail 
tissue, thus completing the parasite’s life cycle.

Sampling and data collection
During the summer of 2011, we collected 120 adult 
snails each from six M. tuberculata sites (populations) 
and transported them alive to the laboratory. The collec-
tion sites included streams, ponds and springs along the 
Mediterranean Coast, in the Jordan and Beit-She’an Val-
leys, and in the Judean and Negev Deserts. Three of these 

sites are known to harbor relatively few clonal lineages 
(Ein Kaftor, Majrase and Nofarim) and three are known 
to be polyclonal (Sapir, Timna and Zafzefa), based on 
the analysis of nine allozyme loci during the same period 
[15]. Natural infection prevalence in the polyclonal sites 
ranged from 0 to 57.1%, whereas the sites with low clonal 
diversity were not parasitized [15]. We also collected 
annual daily temperature data, based on measurements 
of the Israeli meteorological service stations proximate to 
the sampling sites.

Experimental design
To examine possible trade-offs among environmen-
tal stress tolerance, resistance to parasite infection, and 
clonal diversity, we exposed snails from populations 
with varying degrees of clonal diversity to three envi-
ronmental stress factors: high (40  °C) and low (5  °C) 
temperatures, as these are the maximum and minimum 
temperatures near the sampling sites during summer 
and winter, respectively; and high salinity (30 parts per 
thousand, or ppt), resembling salinity levels ten times 
greater than those in the sampling site with the highest 
salinity (Zafzefa). Thirty adult snails from each popula-
tion were used per treatment. Prior to the experiment 
all snails were measured and sexed based on the color 
of their gonads [39]. Additionally, each snail was indi-
vidually exposed to direct light and screened for infec-
tion by trematodes. We excluded the Zafzefa population 
from subsequent analysis as a result of finding a large 
proportion of infected snails, which prevented us from 
determining their cause of death. Uninfected females 
were transferred each to a separate 100 mL jar, whereas 
infected females and males were discarded. In total 600 
snails were used (five populations ×  [three stress treat-
ments + controls] × 30 snails per treatment). The salinity 
treatments and control groups were kept at 25 °C. Snails 
were fed with Spirulina algae powder (1 g in 1 mL) every 
other day, and water was replaced once a week, high-
salinity ventilated water to salinity treatments and ven-
tilated water to all other treatments and control groups. 
Snail mortality was monitored on a daily basis and upon 
death, the snail’s gonad and digestive gland were exam-
ined under a light microscope to confirm that the cause 
of death was unrelated to parasitic infection. The experi-
ment was carried out for 153 days, and the jars in each 
treatment were randomly shuffled on a weekly basis to 
avoid position effects.

Clonal diversity analysis
Population diversity was estimated using the Shannon–
Wiener and Kosman indices. The index calculations pre-
sented herein are based on snails sampled during the 
same period from the same natural populations. The 
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Shannon–Wiener entropy is based on relative frequen-
cies of different genotypes [40], but the extent of similar-
ity between those genotypes is not taken into account. 
The Kosman assignment-based diversity, KWρ, is a more 
complicated index [41, 42]. It does take into account the 
contribution of dissimilarity ρ among individuals to the 
diversity within a population and copes with an individ-
ual genotype as a fixed combination of possibly associ-
ated alleles. The latter is extremely important for studies 
of populations with probable clonal reproduction.

The degree of dissimilarity among individuals (ρ) con-
tributes considerably to the diversity within a population. 
Therefore, selection of a proper dissimilarity measure 
is one of the decisive issues in analyzing structure and 
diversity of populations. Because allozymes are codomi-
nant markers, they allow for determining different alleles 
at each locus, so that the number of those alleles does not 
exceed the ploidy of an organism. However, in general 
there is no easy way of reconstructing a precise combi-
nation of alleles for heterozygotes of polyploids. In addi-
tion, we do not have information about the ploidy level 
of each snail involved in the experiment. Therefore, tak-
ing a more conservative approach, we assumed that two 

individuals are equally distant or undistinguishable at a 
given locus if they are represented by different or identi-
cal combinations of alleles, respectively. Thus, the simple 
mismatch index, m, is the most suitable measure of dis-
similarity between multilocus allozyme profiles of indi-
viduals, and diversity within populations was estimated 
using the assignment-based diversity, KWm, with regard 
to the simple mismatch dissimilarity m (ρ = m). For each 
pair of individuals, if an allele combination at a given 
locus was missing for one of the individuals, this particu-
lar locus was discarded from calculating the simple mis-
match dissimilarity for the corresponding pair.

Diversity estimates were obtained using the VAT soft-
ware [43]. Using the unweighted pair group method with 
arithmetic means (UPGMA), dendrograms for structural 
relationships between individuals within each population 
were derived based on the simple mismatch dissimilarity 
(Fig. 1), using the SAHN module of the NTSYSpc pack-
age, v. 2.2 (Exeter Software).

Statistical analysis
All statistical tests were carried out using GraphPad 
Prism version 6.01 for Windows (GraphPad Software, 
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Fig. 1  Dendrograms of the populations, showing their clonal diversity (KW Kosman index, NG number of genotypes, SW Shannon–Wiener index): a 
Majrase, KW = 0.100, NG = 3, SW = 0.41. b Timna, KW = 0.222, NG = 8, SW = 0.67. c Zafzefa, KW = 0.542, NG = 15, SW = 1.12. d Sapir, KW = 0.564, 
NG = 14, SW = 1.10. Ein Kaftor (KW = 0, NG = 2, SW = 0.30) and Nofarim (KW = 0.008, NG = 2, SW = 0.06) did not allow production of relevant 
dendrograms, as the simple mismatch dissimilarity among individuals was extremely low, as expected from populations with low clonal diversity
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http://www.graphpad.com) and Oasis—online applica-
tion for survival analysis [44]. Kaplan–Meier survival 
analysis was used to compare among life spans of stress-
treated populations, using the log-rank and Gehan–Bres-
low–Wilcoxon tests. The Gehan–Breslow–Wilcoxon test 
gives more weight to deaths at early time points, whereas 
the log-rank test gives equal weight to all time points. 
We applied both tests to ensure we do not overlook a sig-
nificant difference between populations with early deaths 
and populations with more moderate death rates. Bon-
ferroni correction for multiple comparisons was applied 
when generating the P value. We used linear regression 
to determine the relationship between mean survival 
(dependent variable) and clonal diversities (Shannon–
Wiener and Kosman indices), number of genotypes and 
average maximum/minimum temperatures in summer/
winter as independent variables.

Results
We found no differences in the survival of the control 
groups among four out of five populations (Table  1, 
Fig. 2d). Only the survival of control snails from Majrase 
was lower than that of all other control groups. Snails 
from the five populations differed in their tolerance 
to high and low temperatures, as well as to high salin-
ity levels (Table  1, Fig.  2a–c). Furthermore, the rank-
ing of tolerance among treatments was not consistent. 
For example, snails from Sapir and Timna lakes toler-
ated high temperatures better than snails from Ein Kaf-
tor pond and Majrase stream, which in turn tolerated 

high temperatures better than snails from Nofarim pool 
(Table  1, Fig.  2a). Snails from Nofarim were also more 
sensitive to high salinity levels in comparison with their 
control group, whereas all other populations were unaf-
fected by this treatment in comparison with their respec-
tive control groups (Fig.  2c, d). Snails from Majrase 
tolerated low temperatures better than snails from Sapir, 
Ein Kaftor and Timna, which in turn tolerated low tem-
peratures better than snails from Nofarim (Table  1, 
Fig. 2b). 

Clonal diversity (Shannon–Wiener index and number 
of genotypes) of the populations explained 81–88% of the 
variation in snail survival under high temperature condi-
tions (Table 2, Fig. 3a, b), whereas the average maximum 
temperature in each site during the summer could not 
explain this variation (Table  2, Fig.  3c). Similar results 
for high temperature conditions, albeit marginally sig-
nificant, were obtained using the Kosman index (74% of 
the variation explained, P = 0.062). Moreover, under low 
temperature conditions, clonal diversity (Shannon–Wie-
ner index and number of genotypes) could not explain 
the variation in snail survival (Table 2, Fig. 3d, e; Kosman 
index: only 1.6% of the variation explained, P =  0.841), 
and neither could average minimum temperature in each 
site during the winter (Table 2, Fig. 3f ). The latter regres-
sions were not performed on the high salinity survival 
data, because there was no difference in the tolerance to 
high salinity among the populations, except for Majrase 
(Table 1, Fig. 2c). Additionally, in all populations except 
Nofarim, the survival of control snails did not differ from 

Table 1  Comparison of Kaplan–Meier survival curves for each pair of M. tuberculata populations, in all treatments includ-
ing controls

We carried out the log-rank (Mantel-Cox) and Gehan–Breslow–Wilcoxon tests. Significant log-rank P values are marked in italic and significant Gehan–Breslow–
Wilcoxon P values are marked with an asterisk

Population 1 Population 2 High temperature Low temperature High salinity level Control

Majrase Ein Kaftor 0.1748 0.0009 0.0004 < 1e−04

Majrase Nofarim 0.0014 < 1e−04 0.0032 < 1e−04

Majrase Sapir 0.0014 0.0011 < 1e−04 < 1e−04

Majrase Timna 0.0064 0.001 < 1e−04 < 1e−04

Ein Kaftor Nofarim 0.0041 0.0015* 0.5272 0.1649

Ein Kaftor Sapir < 1e−04 0.5767 0.7197 0.9689

Ein Kaftor Timna < 1e−04 0.9046 0.2714 0.16

Nofarim Sapir < 1e−04 0.0002* 0.3259 0.1697

Nofarim Timna < 1e−04 0.0027* 0.0909 0.9904

Sapir Timna 0.8041 0.6424 0.4429 0.1658

Majrase Majrase control < 1e−04 0.019* 0.9809

Ein Kaftor Ein Kaftor control < 1e−04 < 1e−04 0.4248

Nofarim Nofarim control < 1e−04 < 1e−04 0.0112

Sapir Sapir control < 1e−04 < 1e−04 0.6581

Timna Timna control < 1e−04 < 1e−04 0.2945

http://www.graphpad.com
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the survival of snails exposed to the respective high salin-
ity treatment (Table 1).

Discussion
The objective of this study was to compare the stress 
tolerance of snails originating from natural populations 
with varying degrees of clonal diversity, to determine if 
there is a cost for being resistant to parasites, in the form 
of reduced tolerance to environmental stress conditions. 
We previously found that parasite-mediated selection 
can promote clonal diversity in M. tuberculata popula-
tions [15]. Here we performed a stress-manipulating 

experiment to assess if snails from populations with low 
clonal diversity, which were found to be less parasitized 
in our earlier survey, are more sensitive to environmental 
stress conditions than snails from polyclonal populations, 
which were found to be more parasitized. Put differently, 
polyclonal populations were on average less resistant to 
parasites than populations with low clonal diversity. We 
expected polyclonal populations to tolerate environmen-
tal stress conditions better than populations with low 
clonal diversity.

Our results demonstrate that tolerance to environ-
mental stress varied considerably across M. tuberculata 

Fig. 2  Kaplan-Meier survival curves for five M. tuberculata populations under four conditions: a high temperature, b low temperature, c high salinity 
level, d control

Table 2  Regression analysis showing the variation of mean snail survival under high and low temperatures as a function 
of  clonal diversity (Shannon–Wiener index and  number of  genotypes), and  average maximum/minimum temperatures 
during summer/winter, respectively

Italic typeface indicates a significant effect

Independent variable Dependent variable Condition Df F P R R2

Shannon–Wiener index Mean survival High temp 4 21.87 0.0185 0.9378 0.8794

Number of genotypes Mean survival High temp 4 12.99 0.0366 0.9013 0.8124

Average max temp during summer Mean survival High temp 4 7.186 0.0750 0.8399 0.7055

Shannon–Wiener index Mean survival Low temp 4 0.2054 0.6812 0.2532 0.0641

Number of genotypes Mean survival Low temp 4 0.0028 0.9610 0.03 0.0009

Average min temp during winter Mean survival Low temp 4 2.318 0.2253 − 0.6602 0.4359



Page 6 of 8Dagan et al. BMC Ecol  (2017) 17:40 

populations. More precisely, about 80 and 70% of the 
pairs of populations in the high and low temperature 
treatments, respectively, were significantly distinguish-
able (Table 1). Such differential tolerance is usually attrib-
uted to heritable genetic variation, non-genetic maternal 
effects or developmental plasticity that contribute to 
phenotypic variation. Given that sexual and asexual M. 
tuberculata can coexist in natural populations [26], dis-
entangling between genetic and non-genetic variation 
requires genotyping the snails to determine whether they 
were produced through outcrossing or parthenogeneti-
cally [45]. However, in this study three of the six popu-
lations are known to harbor very few distinct clones, i.e. 

low clonal diversity [15], and even in these three popula-
tions, either two out of three or all three pairwise com-
parisons were statistically significant. Therefore, it is 
reasonable to assume that the observed variation in tol-
erance to stress factors has a genetic basis. Given that 
clonal (genetic) variation in this system is driven at least 
in part by parasitism [15], we conjecture that resist-
ance to parasitic infections may have contributed to the 
observed variation in tolerance, insofar that populations 
with low clonal diversity were less tolerant to environ-
mental stress.

Heat stress can generate lethal reaction in all organ-
isms and it is sufficient to cause cellular damage. Heat 

Fig. 3  Variation of mean snail survival under high temperature as a function of a clonal diversity (Shannon–Wiener index), b number of genotypes, 
c average maximum temperature during summer (°C). Variation of mean snail survival under low temperature as a function of d clonal diversity 
(Shannon–Wiener index), e number of genotypes, f average minimum temperature during winter (°C). Error bars are s.e.m
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stress triggers a heat-shock response, i.e. the enhanced 
expression of a group of molecular chaperones, collec-
tively called heat-shock proteins (HSPs). Because HSPs 
prevent the aggregation of heat-damaged proteins and 
facilitate their renaturation following a heat shock, they 
are likely to play an important role in thermotolerance 
[46, 47]. A study of marine snails (genus Tegula) from 
different thermal habitats indicated that there are differ-
ences in heat shock responses between snail species that 
reflect the separate evolutionary histories of these species 
[48]. These differences may play an important role in set-
ting their thermal tolerance limits and, thereby, their bio-
geographic distribution patterns. Our results in the high 
temperature stress experiment, where we found both var-
iation among populations in the reaction to heat stress 
and a significant correlation with clonal diversity, suggest 
that high temperature tolerance may be an important 
trait for M. tuberculata adapting to changing environ-
ments and coevolving with parasites.

We did not find differences in the tolerance to high 
salinity among the populations, except for Majrase, 
which differed from all other populations (Table  1, 
Fig.  2c). Moreover, in all populations except for Nofa-
rim, the survival of control snails did not differ from the 
survival of snails exposed to the respective high salinity 
treatment (Table 1). This may suggest that salinity toler-
ance per se might not be a good discriminator among 
populations. Alternatively, it may be that the salinity level 
we chose—30 ppt—was too low, because close to 80% of 
the snails in the other four populations survived through-
out the experiment. Several studies have shown similar 
results, i.e. M. tuberculata could tolerate high salinities 
(> 30 ppt) [49–52], albeit a recent study of salinity toler-
ance in M. tuberculata found that salinity levels similar to 
those used in our experiment had substantial effects on 
snail mortality [53]. Jacobsen and Forbes [54] found that 
a gradient of salinity up to 15 ppt can influence life-his-
tory traits and feeding rates in the gastropod Potamopyr-
gus antipodarum. Furthermore, approximately fourfold 
lower salinity levels (8 ppt) were sufficient to reduce the 
survival of Melanopsis spp., the most common freshwa-
ter snail genus in Israel [14]. Therefore, future studies 
should expand the range of salinity levels being tested, in 
order to identify possible differences in salinity tolerance 
among M. tuberculata populations with different genetic 
backgrounds.

Conclusions
The main finding of this study is the existence of variation 
in environmental stress tolerance among populations 
with different levels of genetic diversity, insofar that clon-
ally diverse populations can tolerate certain environmen-
tal stress factors better than populations with low clonal 

diversity. Specifically, there appears to be a cost associ-
ated with resistance to parasites in M. tuberculata, in the 
form of reduced thermotolerance, which may contrib-
ute to explain variation in genetic diversity in these host 
populations.
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