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Abstract

and thermostabilities for use in hydrolytic cocktails.

Background: The importance of the accessory enzymes such as a-L-arabinofuranosidases (AFases) in synergistic
interactions within cellulolytic mixtures has introduced a paradigm shift in the search for hydrolytic enzymes.
The aim of this study was to characterize novel AFase genes encoding enzymes with differing temperature optima

Results: Three fosmids, pFos-H4, E3 and D3 were selected from the cloned metagenome of high temperature compost,
expressed in Escherichia coli and subsequently purified to homogeneity from cell lysate. All the AFases were clustered
within the GH51 AFase family and shared a homo-hexameric structure. Both AFase-E3 and H4 showed optimal activity at
60 °C while AFase-D3 had unique properties as it showed optimal activity at 25 °C as well as the ability to maintain
substantial activity at temperatures as high as 90 °C. However, AFase-E3 was the most thermostable amongst the three
AFases showing full activity even at 70 °C. The maximum activity was observed at a pH profile between pH 4.0-6.0 for

all three AFases with optimal activity for AFase H4, D3 and E3 at pH 5.0, 4.5 and 4.0, respectively. All the AFases showed
Ky range between 031 mM and 043 mM, K., range between 1315~ ' and 2195~ ' and the specific activity for AFase-H4,
AFases-E3 and was 143, 228 and 175 U/mg, respectively. AFases-E3 and D3 displayed activities against pNP-f3-L-
arabinopyranoside and pNP-B3-L-mannopyranoside respectively, and both hydrolysed pNP-B-D-glucopyranoside.

Conclusion: All three AFases displayed different biochemical characteristics despite all showing conserved overall
structural similarity with typical domains of AFases belonging to GH51 family. The hydrolysis of cellobiose by a
GH51 family AFase is demonstrated for the first time in this study.
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Background

Hemicellulose is a highly branched hetero polymer which
represents approximately one third of the total dry weight
of plant biomass [1]. Heteroxylan forms the backbone of
hemicellulose with xylopyranosyl residues linked by f-1,
4-glycosidic bonds which are mainly substituted with ara-
binose or glucuronic acid at their 2-O and/or 3-O positions
[2, 3]. L-arabinosyl residues are mainly associated with ara-
binan, arabinoxylan, gum Arabic and arabinogalactan [4].
These residues participate in the crosslinking within the
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plant cell wall structure and thus strongly inhibit the deg-
radation of xylan to simple xylose sugar units by
xylan-degrading enzymes [5]. It is estimated that 40 million
tons of xylan-rich agro-industrial biomass is generated glo-
bally on an annual basis. The potential of xylan-rich bio-
mass feedstock has triggered an increasing interest in
bioprospecting efforts for enzymes to degrade them to
monomeric sugars which can be converted or used as part
of raw materials in the production of value added products
such as bioplastics, biodiesel and bioethanol [6].

The composition of enzyme cocktails largely depends
on the type of biomass to be hydrolysed, the complexity
of the bonds and carbohydrate structures [3]. Enzyme
cocktails for biomass degradation typically include
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endoglucanases (EC 3.2.1.4), cellobiohydrolases (EC
3.2.1.91), P-glucosidases (EC 3.2.1.21) and a variety of
hemicellulases. The core hemicellulases include
endo-p-xylanases (EC 3.2.1.8), [-1,4-D-xylosidases (EC
3.2.1.37) and a-L-arabinofuranosidases (EC 3.2.1.55).
These hemicellulases synergistically hydrolyse hemicellu-
lose where a-L-arabinofuranosidase is involved in the
hydrolysis of a-1,2 and «-1,3 glycosidic bonds that link
a-arabinofuranoyl side moieties while endo-B-xylanases
and B-1,4-D-xylosidases act on the -1,4-bonds that link
D-xylosyl residues [7].

Extreme environments such as hot springs, deep sea
hydrothermal vents and organic composts are reservoirs
of unique microbial diversity, providing the potential for
isolating novel enzymes with desirable industrial proper-
ties [8]. The adaptation of microbial communities to
these environmental conditions explains their high gen-
omic and metabolic flexibility, and they often encode en-
zymes with properties suitable for many industrial
applications [9]. Frequently, enzymes from these envi-
ronments have been shown to be robust catalysts able to
withstand high temperatures which are used to promote
opening of the structure of lignocellulosic material. This
not only leads to better enzyme penetration and there-
fore cell wall degradation but reduces or eliminates the
need for cooling of the material prior to enzymatic
pre-treatment [8]. This has the potential of increasing
reaction rates by several orders of magnitude resulting
in reduced enzyme loading and time required for
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efficient hydrolysis and saccharification, thus reducing
the cost of the overall production process [8, 10, 11].
Using function-based metagenomic screening ap-
proaches, novel sequences from both cultivable and un-
cultivable microorganisms can be exploited without
prior sequence information [6]. This screening approach
thus provides access to previously unknown genes and
their novel enzymes with unique structural and kinetic
properties [12, 13]. Ohlhoff et al. [14] constructed a fos-
mid metagenomic library from high temperature com-
post which was subsequently screened for several classes
of lignocellulases [15]. In this study, three AFases were
chosen from these initial screens and were characterized
with the aim of bioprospecting for unique biochemical
properties that could be of use in industrial applications.

Methods

Bacterial strains and plasmids used in this study

Bacterial strains and plasmids used in this study are
listed in Table 1 and primers are listed in Table 2.
Restriction endonucleases and T4 DNA ligase were pur-
chased from Fermentas (ThermoFisher Scientific) and
used following the manufacturer’s instructions. Unless
otherwise stated, all E. coli strains were maintained in
Luria broth (LB) or agar (LA) (Sigma Aldrich, South
Africa) and cultivated at 37 °C with shaking at 160 rpm.
E. coli strains transformed with pJET1.2 and pET2la
plasmids were cultured in medium supplemented with
100 pg/mL ampicillin. E. coli strains transformed with

Table 1 Bacterial strains, plasmid vectors and their recombinant versions used in this study

Strain Genotype® Reference
E. coli Epi300 F-mcrA D(mrr-hsdRMS-mcrBC) f80dlacZDM15 DlacX74recA1 endAl araD139 Invitrogen, USA
(ara, leu) 7697 galK1-rspLnupGtrfr
Genehog F-mcrA A(mrr-hsdRMS-mcrBQ) ,80dlacZAM15 AlacX74recAT araD139 A(ara, leu) Epicentre Biotechnology, USA
7697 galUgalKrpsL (StrR(endA1 nupGfhuAIS2r
BL21 (DE3) F-ompThsdSB(rB-mB-)gal dcm gal A(DE3) Invitrogen, USA
pCC1Fos™ pCC1Fos™L-Arabinose inducible promoter Copy Control; Cam®, F factor ori, Invitrogen, USA
oriV high copy ori, Acos site for A packaging, Bacteriophage T7 RNA polymerase promoter
pFos-H4 pCCITFOS containing 17.5 kb of cloned metagenomic DNA as an insert with AFase activity, Cam® IMBM
pFos-E3 pCC1FOS containing 20.7 kb of cloned metagenomic DNA as an insert with AFase activity, CamF® Dr C. Ohlhoff, IMBM, UWC, SA
pFos-D3 pCCTFOS containing 10. 7 kb of cloned metagenomic DNA as an insert with AFase activity, Cam" Dr C. Ohlhoff, IMBM, UWC, SA
pJET 1.2/blunt  Suicide cloning vector (eco47IR), blunt DNA ends for ligation with insert, T7 promoter, Amp" Fermentas, USA
pJET-H4 1467 bp AFase-H4 gene amplicon blunt-end ligated into pJet1.2 This study
pJET-E3 1547 bp AFase-E3 gene amplicon blunt-end ligated into plet1.2 This study
pJET-D3 1482 bp AFase-D3 gene amplicon blunt-end ligated into plet1.2 This study
pET21a(+) Expression vector with a C- terminal His-tag, AmpR, T7 promoter and terminator, MCS. Novagen, USA
pET21a-H4 1467 bp Ndel-Xhol fragment from pJET-H4 cloned in pET21a. This study
pET21a-E3 1547 bp Ndel- Hindlll fragment from pJET-H4 cloned in pET21a. This study
pET21a-D3 1482 bp Ndel-Xhol fragment from pJET-H4 cloned in pET21a. This study

2 Plasmid encoding Ampicillin and Chloramphenicol resistance is indicated as Amp® and CamF, respectively. Ori is used as an abbreviation for origin of replication
and MCS is the acronym for multiple cloning site. The Hexa-histidine tag is abbreviated to His-tag that was used to purify the AFase proteins of this study through
nickel-ion affinity liquid chromatography
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Table 2 Primers used in this study
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Primer 5" to 3' sequence®

Reference

T7 Promoter forward

pCC1Fos reverse

TAATACGACTCACTATAGGG
CTCGTATGTTGTGTGGAATTGTGAGC

Epicentre® Biotechnologies

Epicentre® Biotechnology

MUKAN-1 FP-1 CTGGTCCACCTACAACAAAGG Epicentre® Biotechnologies
MUKAN-1 RP-1 AGAGATTTTGAGACAGGATCCG Epicentre® Biotechnologies
M13 Forward CCCAGTCACGACGTTGTAAAACG Ingaba Biotec

M13 Reverse AGCGGATAACAATTTCACACAGG Ingaba Biotec

H4-pET-Fwd GTTCATATGAATCACATCAAGATTGATTTAGAT This Study

H4-pET-Rev CGCTCGAGTAAGTCAAAGCTGAGC This Study

E3-pET-Fwd ATCATATGGACGGAGGCGCATGCG This Study

E3-pET-Rev CAAGCTTGGACGGTCGGCGG This Study

D3-pET-Fwd GATCATATGAACAATGTCGTCATCAATGTGG This Study

D3-pET-Rev CTTCTCGAGACCTAATCTTAGAATGCCGAC This Study

“The restriction endonuclease sites incorporated into the PCR primers include Xhol, Ndel and Hindlll indicated as bold nucleotides

pCC1Fos™ were cultured in medium supplemented with
15 pg/mL chloramphenicol while a double selection with
15 pg/mL chloramphenicol and 50 pg/mL kanamycin was
applied for the transposon treated fosmid constructs.

Fosmid selection

AFase positive clones identified during primary screening
in [15] were first subjected to thermostability assays to
identify those with desirable properties. Briefly, E. coli har-
bouring recombinant fosmids were inoculated into micro-
titer plates with LB containing 0.01% (w/v) L-arabinose
and 15 pug/mL chloramphenicol and incubated for 16 h. A
200 pL. aliquot of the overnight cultures was lysed with
10 uL Bugbuster™ protein extraction reagent (Novagen,
USA) and the extracts incubated at 25, 40, 50, 60, 70, 80 or
90 °C for 60 min. Fosmid cell-free extracts incubated on ice
served as controls. After incubation, the thermally treated
extracts were placed on ice for 30 min before centrifuga-
tion at 13000 x g for 5min at 4°C to remove cell debris.
Aliquots of 100 uL were then transferred into a flat bottom
96 well microtiter plate (Sterilin®) and pNP-arabinofura-
nose in 100 mM NaPO, (pH 7.0) was added to the extracts
at a final concentration of 2 mM. The microtiter plate was
incubated at 37 °C for 60 min and AFase activity was mea-
sured using a spectrophotometer at 410 nm (SPECTROstar
Nano; BMG Labtech). All assays were performed in tripli-
cate. From these assays, pFos-H4, pFos-E3, and pFos-D3,
were identified as expressing the most thermostable AFase
activities and selected for further study.

Transposon mutagenesis for identification of AFase
encoding open reading frames

Transposon mutagenesis was performed using the
HyperMu™ < KAN-1 > Insertion Kit (Epicentre® Biotech-
nologies, USA) according to the manufacturer’s instruc-
tions. Thereafter, the transposon-treated fosmid library

together with respective control fosmids lacking the AFase
insert were transformed into electrocompetent E. coli
Epi300 cells and cultured on LA containing 15 pg/mL
chloramphenicol and 50pg/mL  kanamycin. Single
colonies growing on double selection plates were
sub-cultured onto LA medium supplemented with chlor-
amphenicol and kanamycin and cultured for 16 h at 37 °C.
Subsequently, the mutated fosmid library and the respect-
ive controls were inoculated into individual wells of
96-well microtitre plates (Sterilin®) containing LB supple-
mented with kanamycin and chloramphenicol. The micro-
titre plates were duplicated using a 96-pin QPix2
automated colony picker (Genetix) and were incubated as
described above. Thereafter, the cells were lysed to release
soluble cell-free extract using BugBuster™ protein extrac-
tion reagent (Novagen). Enzyme activities of the mutants
and their respective untreated AFase controls were de-
tected by the addition of 1 mM pNP-arabinofuranose in
50 mM NaPOy buffer (pH 7.0) to each well of the microti-
ter plate containing the cell-free extracts and incubated at
37 °C until the development of a yellow colour indicating
the release of pNP from the synthetic substrate.
Transposon-treated fosmid clones that did not develop
the distinct yellow colour or were observed to produce
significantly reduced levels of yellow colour relative to that
of the untreated fosmid controls were identified and
chosen for further characterization.

Sequencing of mutated fosmids was conducted by the
University of Stellenbosch’s Central Analytical Facility
(CAF). The sequences were manually edited using
Chromas version 2.01 (Technelysium DNA sequencing
software, Australia) and DNAMAN version 4.13 (Lyn-
non Corp., San Ramon, CA, USA). Sequence identity
and similarity searches of DNA sequences were per-
formed using the basic local alignment search tool
(BLAST) programs as provided by the National Centre
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for Biotechnology Information (NCBI) [16, 17]. Putative
ORFs were identified within the consensus sequence
using GeneMark for prokaryotes (https://tinyurl.com/
ya78gkes) and Interproscan [18] was used to identify
conserved protein domains. The gene sequences for the
three AFases were submitted to the GenBank database
with accession numbers (QBG80847-QBG80849).

Expression and purification of AFases

The AFase genes, AFase-H4, AFase-E3 and AFase-D3
were amplified from the purified fosmid DNA with each
primer bearing a specific restriction site for cloning into
pET vectors (Table 1). The polymerase chain reactions
(PCRs) were performed using Phusion DNA polymerase
(ThermoFisher Scientific™) with AFase-H4 and AFase-
D3 genes amplified from the fosmid DNA using the fol-
lowing conditions; initial denaturation at 98 °C for 30s
followed by 35 cycles of 10s at 98°C for denaturation,
30s at 70°C for annealing, 45s at 72 °C for elongation
and the final elongation at 72 °C for 10 min. Similar con-
ditions were employed for amplifying the AFase-E3 gene
except for annealing and elongation times which were
reduced to 15s and 30, respectively. The resulting PCR
products were purified using the gel extraction kit from
Machery Nagel. These were cloned into the pJET1.2/
blunt cloning vector to «create the recombinant
constructs pJET1.2-AFase-H4, pJET1.2-AFase-D3 and
pJET1.2-AFase-E3. The cloned inserts were sequenced
to confirm that PCR errors were not introduced. The
cloned genes were subsequently excised from the recom-
binant pJET-AFase constructs and cloned into the
pET21a (+) vector digested with the restriction enzymes
engineered into the primer sequences (Table 2). Follow-
ing plasmid miniprep, the DNA sequence of constructs
observed to contain the correct sized inserts was deter-
mined to ensure that the putative AFase genes had been
cloned in-frame with the promoter and C-terminal histi-
dine tag. The recombinant constructs, pET2la-H4,
pET21a-E3 and pET2la-D3 were transformed into
chemical competent E. coli-BL21 (DE3) (Table 1) cells
for protein expression.

Two millilitres from overnight starter cultures of E.
coli harbouring the respective pET21 constructs were in-
oculated in 500 mL Erlenmeyer flasks containing 50 mL
LB with appropriate antibiotics and incubated to an
ODgoonm Of approximately 0.6—0.8. Protein expression
was induced by treating two experimental cultures with
0.5 and 1mM isopropyl p-D-1-thiogalactopyranoside
(IPTG, Fermentas) respectively. The third culture served
as an uninduced control. Following incubation for three
hours all the cultures were centrifuged at 4000 x g for
20 min at 4°C. The pellets were resuspended in 10 mL
of 1 x binding buffer (250 mM NaCl, 20 mM Tris-HCl,
5mM imidazole, pH7.9) and then disrupted by
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sonication (Bandelin Sono plus Ultrasonic Homogenizer,
Germany) on ice with 6 pulses of 20s. Following sonic-
ation, the lysates were centrifuged at 6000 x g for 20 min
at 4°C to remove cell debris. Proteins were purified by
nickel affinity chromatography using the His-Bind® resin
and buffer kit (Novagen, USA) following the manufac-
turer’s instructions and dialysed against 200 volumes 20
mM sodium phosphate; 50 mM sodium chloride buffer
(pH 7.0) using a 10 kDa MW cut-off membrane (Thermo
Fischer Scientific, USA) for 16 h at 4°C. The concentra-
tions of purified AFases were determined by the method
of Bradford [19] using the Bio-Rad protein assay kit with
bovine serum albumin as a standard. Protein purity was
assessed by sodium dodecyl sulphate-polyacrylamide gel
electrophoresis (SDS-PAGE) under denaturing condi-
tions as described by Laemmli [20].

Biochemical characterization

Thermal stability assays with purified AFases were per-
formed by incubating them for 90 min or 24 h at various
temperatures (25, 40, 50, 60, 70, 80 and 90 °C). For the
AFases incubated for 24 h, samples were removed at 2 h
intervals until 12h and at 24h. AFase activities were
measured as described for cell-free thermal stability as-
says in preliminary screening described above with the
respective control reactions incubated on ice.

The optimum temperature of the purified AFases
(0.5 pug per assay) was assessed by measuring the activity
of each AFase against 2 mM pNP-arabinofuranosyl at 6,
20.5, 25, 40, 50, 60, 70, 80 and 90 °C after 2 min of incu-
bation with the substrate at the indicated temperatures.
The temperature at which the highest activity was re-
corded was selected as the optimum temperature for
each AFase tested. The optimal pH of the AFases was
evaluated at 40°C in 50 mM citrate and/or phosphate
buffers with pH varying from 2 to 8 and the buffers
without AFase added were used in control reactions.
The pH of the buffer containing the highest AFase activ-
ity was selected as the optimal pH for each AFase tested.

Substrate specificity and enzyme kinetics

For substrate specificity the following substrates were
assayed: pNP-B-D-cellobioside, pNP-a-D-mannopyrano-
side, pNP-B-D-fucopyranoside, pNP-p-D-glucuronide,
PNP-a-D-glucopyranoside, p-NP- p-D-glucopyranoside
PNP-a-L-arabinopyranoside and pNP-f-L-arabinopyrano-
side from Sigma-Aldrich (SA) and pNP-a-L-arabinofura-
noside, pNP-B-D-xylopyranoside, p-methylumbelliferyl-p-
D-xylopyranoside and pNP-B-D-mannopyranoside from
Carbosynth Ltd. All the substrates were prepared follow-
ing their respective manufacturer’s instructions. The en-
zymatic assays were performed in a total reaction volume
of 250 uL containing 2 mM substrate in 50 mM citrate
buffer (pH7.0) with 0.5pg enzyme for 2min. The
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reactions were stopped by raising the pH with the addition
of 750 pL of 0.4 M Na,COs, A 250 pL reaction volume was
aliquoted into a single well of a 96-well microtiter plate
(Sterilin®). The enzyme activities were measured spectro-
photometrically at 410 nm and the standard curve was
generated using 1-10mM pNP under assay conditions.
One unit (U) of the enzyme is defined as the amount of en-
zyme that can liberate 1 pmol of pNP per minute. All as-
says were performed in triplicate with the addition of the
appropriate controls. Complex substrates were hydrolyzed
for four hours at each enzyme’s apparent temperature
optimum and pH. Reducing sugars resulting from the hy-
drolysis of complex o-L-arabinose polysaccharide sub-
strates: arabinoxylan, arabinan and linear arabinan
(Megazyme, 0.5% w/v) were measured using the dinitrosa-
licylic acid (DNS) assay as described by Miller [21]. Briefly,
150 pL. of DNS solution was added to 50 pL reactions and
boiled for 5 min before being rapidly cooled on ice. The
volume was made up to 1000 uL. with dH,O and the ab-
sorbance determined at 510 nm (OD510; SPECTROstar
Nano; BMG Labtech). The reducing sugars were deter-
mined using a L-arabinose standard curve generated under
the same reaction conditions. Kinetic parameters (K, V0.
and k,;) were evaluated by measuring the enzyme activity
in the presence of varying pNP-arabinofuranosyl concen-
trations after 1 min. The Michealis-Menten plot was gener-
ated using GraphPad Prism 4 (GraphPad Software).

Structural analysis of AFases

Prediction of the quaternary structures was performed
by fast protein liquid chromatography (AKTA FPLC,
Amersham Biosciences) using a Superdex G200 column
run at 0.5 ml/min with running buffer (50 mM NaCl, 20
mM Na,PO, (pH 7.0)). The proteins were resuspended
in running buffer and loaded onto the column according
to the manufactures instructions. Proteins used as mo-
lecular weight markers were [-amylase (200 kDa), alco-
hol dehydrogenase (150kDa), albumin (66kDa) and
carbonic anhydrase (29 kDa) which were also resus-
pended in the same running buffer. These were used to
plot the log of their MW against retention time to gen-
erate a standard curve. Protein molecular weights were
approximated based on the retention time using the
standard curve generated.

Results

Functional screening and selection of AFase encoding
fosmids

In a previous study by Ohlhoff et al. [14], a metagenomic
library consisting of more than 150,000 fosmid clones with
an average insert size of 31 kb was constructed. A total of
46,000 clones were screened for a-L-arabinofuranosidase
(AFase) activity and 13 putative AFase positive clones
were identified [15]. Here we performed preliminary
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thermostability screening by incubating cell-free extracts
at a range of temperatures for 60 min. Cell-free extract
from pFos-D3 AFase retained close to 100% activity when
incubated at 25 and 40 °C. The enzyme activity decreased
by approximately 40 and 90% when incubated at 50 and
60 °C, respectively, while at 70°C and higher, negligible
AFase activity was detected. AFase pFos-H4 retained
100% activity following incubation at 25, 40, 50 and 60 °C.
The relative residual activity decreased sharply following
incubation at temperatures greater than 60 °C. In contrast
to pFos-D3, the AFase activity encoded by cell-free extract
from pFos-H4 and pFos-E3 displayed an increase in rela-
tive activity following incubation at temperatures greater
than 30 °C, with the highest activity observed between 60
and 70 °C respectively. At these temperatures, the recom-
binant AFase-E3 maintained full activity, relative to the
untreated control, and was the most thermostable of the
three enzymes. Based on these preliminary thermostability
profiles, the crude protein extracts of pFos-D3, pFos-H4
and pFos-E3 clones were identified as thermolabile, mod-
erately thermostable and thermostable respectively, and
were selected for further characterization.

Sequence and phylogenetic analysis of AFase-encoding ORFs
Transposon mutagenesis was employed to identify the
ORFs encoding the a-L-arabinofuranosidase activities.
Fosmids with loss of, or decreased activity, compared to
the non-mutated constructs, indicative of gene disrup-
tion, were selected for sequence analysis. Overlapping
sequences were generated from 4 to 6 mutants for each
fosmid (pFos-H4, pFos-E3 and pFos-D3) to assemble
putative AFase encoding regions of 2693, 2406 and 2505
bp for each fosmid, respectively.

The putative ORF (489 amino acids; 55kDa) from
pFos-H4 shared 100% amino acid identity with a se-
quence derived from a Brazilian compost metagenome
(QGUR01000024.1) which, although reported on earlier
[22], was only recently added to the NCBI database
(June 2018). One of the pFos-H4 end sequences also
matched 100% at nucleotide level to the metagenomic
contig this gene was located on, suggesting that
AFase-H4 originates from a closely related bacterium.
The next closest hit was to an AFase from Truepera
radiovictrix DSM 17093 at 61% identity. Conserved cata-
lytic and C-terminal domains were identified within the
predicted AFase amino acid sequence, and no evidence
of a signal peptide was detected. This could indicate that
a “non-classical protein secretion” mechanism may be
involved in exporting the AFase-H4 protein [23]. The
catalytic domain overlaps the AFase C-terminal domain
and is positioned from P41-A346 and E261-V482, re-
spectively. A putative cellulase-like domain is located
within the catalytic domain from V161-W240. The
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catalytic domain has sequence identity to that of Glyco-
side Hydrolase (GH) family 51 (GH51).

For pFos-E3, the predicted ORF consists of 510 amino
acids (58kDa) and the sequence shared 99% identity
over the full length of the protein to a putative AFase
from Paenibacillaceae bacterium JTherm, also isolated
from a compost heap in Vacaville, CA, USA [24]. Nu-
cleotide sequence from both ends of pFos-E3 also
matched 100% at the nucleotide level to this genome, in-
dicating that AFase-E3 likely originates from an identical
or very closely related bacterium. This organism has
been proposed to be the first member of a new genus
Candidatus Reconcilibacillus cellulovorans responsible
for the initial breakdown of cellulosic material in a com-
post heap allowing other community members to prolif-
erate and hydrolyse the material further [24].

The 494 amino acid (56 kDa) sequence of pFos-D3
shared 77% identity (87% similarity) with a Paenibacillus
taihuensis ORF. Although not yet published, this organ-
ism’s genome was sequenced as part of the third phase of
the Joint Genome Institutes’ Genomic Encyclopedia of
Type Strains program which covers genomes from soil
and those that are plant associated. It could be argued that
these are mesophilic environments and may be the reason
AFase-D3 displays mesophilic characteristics.

All the key amino acids in the catalytic site of AFases
have previously been identified [25] and these were per-
fectly conserved in both AFase-H4 and AFase-E3 (F23,
E25, R65, N70, W95, N170, E171, H239, Y241, E289,
W293, and Q340; AFase-H4 numbering). In AFase-D3
however, Asn70 is replaced by a cysteine residue. This
residue is thought to be important to substrate binding
as a hydrogen bonding partner to Glu25. Glu25 may not
be directly involved in catalysis but is thought to be cru-
cial in coordinating the hydrogen bonding network at
the non-reducing end of the substrate and in this way
enable substrate binding [26]. Despite this substitution
the enzyme is still functional and this may be part of the
reason why a broad apparent temperature optimum is
observed as explained in the discussion.

Phylogenetic analysis of the three AFase sequences
showed that they all clustered together with representative
AFase sequences of the GH51 family which contains several
thermostable proteins (Fig. 1). The sequences of the more
thermostable AFase-H4 and AFase-E3 are more related as
compared to the less thermostable AFase-D3 (Fig. 1). Both
AFase-E3 and AFase-D3 show similarity to AFases from
Bacillus subtilis, a group that contains both mesophilic and
thermophilic variants of this protein [27, 28].

Biochemical characterization of the recombinant proteins
The three selected AFase ORFs were cloned and
expressed in E. coli and purified to near homogeneity as
judged by SDS-PAGE analysis using nickel-ion affinity
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chromatography (results not shown). All three proteins
showed molecular masses close to their in silico pre-
dicted sizes of 55 kDa, 56 kDa and 58 kDa for AFase-H4,
-D3 and -E3 respectively. The quaternary structures of
the native AFase-H4, AFase-E3 and AFase-D3 proteins
were determined by gel filtration. The respective reten-
tion times of the three AFases, relative to that of mo-
lecular weight standards suggested that all three proteins
are homo-hexamers or a trimer of dimers.

AFase-H4 and AFase-E3 had an apparent temperature
optimum of 60 °C while for AFase-D3 the apparent opti-
mal temperature was 25 °C (Fig. 2). Thermal stability ana-
lysis showed that AFase-H4 maintained 100% residual
activity even after a prolonged incubation time of 12h at
50°C. The residual activity started to decrease when the
protein was incubated at 60°C. AFase-D3 maintained
100% residual activity after incubation for 1h at 40°C,
whereas AFases H4 and E3 displayed classic temperature
dependence profiles. Interestingly, AFase-D3 maintained
approximately 50% activity even at 80-90°C. AFase-E3
maintained 100% residual activity even after incubation
for 24'h at 70°C, the most thermostable of the three en-
zymes identified (Additional file 1: Figure S1). All three
AFases showed best activity in the pH range 4.0-6.0
(Fig. 3).

Due to the various domains identified for these enzymes
based on sequence analysis, the substrate specificities of
these AFases were assessed on various pNP-linked sub-
strates. All three AFases showed strong activity towards
pNP-a-L-arabinofuranoside, with AFase-E3 displaying the
highest activity at about 130 U/mg, followed by AFase-D3
(~ 90 U/mg) and AFase-H4 (~ 50 U/mg) (Additional file 2:
Figure S2). AFase-H4 also showed substantial activity on
pNP-B-D-cellobiose (~ 10 U/mg) while relatively low but
detectable activities were displayed by all AFases when
assayed on other pNP-linked substrates. However, none of
the AFases were able to hydrolyse pNP-[3-D-xylopyrano-
side substrate. The hydrolytic preferences of these en-
zymes were also examined on more complex substrates
including arabinoxylan, arabinan, and linear arabinan
(Fig. 4). These polysaccharide substrates were chosen to
represent differing internal bonds between arabinose sub-
units or sidechains. All three AFases displayed different ef-
fectiveness for hydrolysing arabinofuranosyl bonds within
these three substrates. AFase-E3 showed highest activity
on these substrates (arabinan and linear arabinan) when
compared to AFase-D3 while AFase-H4 was incapable of
hydrolyzing any of these substrates and none of the
AFases released reducing sugars from arabinoxylan.

All three enzymes displayed Michaelis-Menten kin-
etics when assayed on pNP-a-L-arabinofuranoside
(Additional file 3: Figure S3). AFase-H4 and AFase-E3 dis-
played slightly lower K,; values when compared to
AFase-D3 indicating that AFase-D3 has a slightly lower
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affinity for this substrate compared to the other two en-
zymes. AFase-E3 showed the highest specific activity and
the highest turnover number of the three enzymes (Table 3).

Discussion
Here we present three novel AFases, identified from a
compost metagenomic library. Although all three

sequences have close relatives on the GenBank database,
owing to the recent addition of metagenomic and bac-
terial genome sequence, none of these closely related en-
zymes have been characterized previously. The presence
of nearly identical AFase-H4 and AFase-E3 sequences in
compost heaps that are biogeographically separated
speaks to them being selected for and particularly
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successful in compost environments. All bioinformatic
and biochemical characterization data presented sup-
ports the classification of these three enzymes as belong-
ing to the GH51 family [EC 3.2.1.55]. The AFases shared
a homo-hexameric structure or possibly consist of a
dimer of trimers. Although hexameric structures for
AFase proteins have been reported, specifically for the
GH51 family of AFases, tetramers and octamers have
also been reported from this family. Homo-tetrameric
structures have been reported for enzymes from a Strep-
tomyces species, Geobacillus caldoxylolyticus TK4 and
Anoxybacillus kestanbolensis AC26Sari [29-31].
AFase-H4 and AFase-E3 displayed optimal activity at
60 °C while AFase-D3 displayed a mesophilic thermal pro-
file with an optimum activity at 25 °C yet retaining up to
50% activity at temperatures as high as 80-90°C. The

thermostability profiles of AFase-H4 and AFase-E3 were
both similar to that of functionally characterized AFases
from Streptomyces sp. S9 [29], Paenibacillus sp. TH51 [7]
and G. caldoxylolyticus TK4 [30]. AFase-E3 shares se-
quence similarity with B. subtilis derived AFase and this
species is known to encode both mesophilic and thermo-
philic AFases. The presence of AFases with both mesophi-
lic and thermophilic properties in compost could be
explained by the stages involved during the composting
process. In the early stages of composting mesophilic mi-
croorganisms dominate and their metabolic activities
cause an increase in temperature. This stimulates the
growth and activity of thermophilic microorganisms
which is subsequently followed by a cooling stage also re-
ferred to as the maturation stage [32, 33]. Since the AFases
described here are derived from compost that reaches only

110
.. 100 ,kk N
Z E¥: W -
= 90 4
= v v Seo
T 80 ! !
g 7 Iy
& 60 o,
7]
= 50
o ‘ / ]
¥ a0 Iy
- [}
g 30 / / p
E 20 / / |

10
é »
0 B -a—-—0
2 25 3 35 4 45 5 55 6 65 7 75 8
pH
Fig. 3 pH optima of AFase H4 (e), E3 (¢) and D3 (m) determined in phosphate (dashed line) and citrate buffers (dotted line) between pH 2.5 and
6.0 and pH 6.0 to 8.0, respectively. Data represents the mean + standard error (n = 3)
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70 °C, this may put an upper limit on the thermal stability
and apparent temperature optimum of enzymes we could
have identified in this study.

The mesophilic/thermophilic characteristic displayed by
AFase-D3 has only been reported for AFases that belong
to the GH43 family previously isolated from Paenibacillus
species [34] with no characterized GH51 family enzyme
displaying this thermal profile. Broad temperature optima
have been observed for several different enzymes isolated
from a range of organisms including plants [35-38]. Of
particular interest are enzymes (phophoribosyl anthra-
nilate isomerase, indoleglycerol phosphate synthase and
l-isoaspartyl (D-aspatyl) O-methyltransferase) from T.
maritima that show highest catalytic efficiency at 25 °C as
opposed to the organism’s optimum growth temperature
[39-41]. T. maritima has a wide growth temperature
range up to its optimum of 90 °C. Although a thermally
robust GH51 family AFase which could maintain full ac-
tivity even at temperatures as high as 90°C has been

isolated from 7. maritima MSB8, there was no evidence
of a thermophilic/mesophilic property for this enzyme
[42]. While the thermal behavior of AFase-H4 and
AFase-E3 correspond to enzymes which have a large AH,,
for the E,.t/Einact transition according to the equilibrium
model for dependence of enzyme activity on temperature,
AFase-D3 likely has a small AH,, resulting in the broad
temperature optimum [43]. A small AH,, may be the re-
sult of the substrate used to assay for the apparent
temperature optimum as the E,./Ej,. transition appears
to be linked to the active site conformation. It could be
that the pNP-arabinofuranosyl substrate locks the active
site, and by extension other parts of the protein, in a stable
conformation. Taken together, this leaves open the possi-
bility that AFase-D3 is a thermophilic enzyme. The
Thermotogae phylum contains microorganisms with
temperature ranges that span both thermophilic to meso-
philic temperatures and they are interesting models for
studying evolutionary changes [39, 44]. This flexibility has

Table 3 Enzyme kinetic comparison of AFases characterised in this study and thermostable AFases obtained from literature

AFase Micro-organism Ky in mM (Std. error) — Sp. act. in U/mg (Std. error) ke () kea/Kyy (M7's™)  Reference
AFase-H4 Unknown 0.31 (£0.03) 143.1 (£3.7) 131 42%10° This study
AFase-E3 Unknown 0.33 (x£0.04) 2286 (£9.7) 219 66x10° This study
AFase-D3 Unknown 0.38 (+0.05) 166.6 (+6.9) 155 41%x10° This study
abf5159 Streptomyces sp. S9 145 221 203 14%10° [29]
AbfATK4 Geobacillus caldoxylolyticus TK4 0.17 588 568 33x10° [30]
AbfAC26Sari  Anoxybacillus kestanbolensis 0.14 1019 968 7% 10° [31]
Tm-Afase Thermotoga maritima 042 235 22 52x10% [42]
AFase Caldocellulosiruptor sacchrolyticus — 1.29 295 285 22%10° [60]
abfB Auriobasidium pullulans 6.27 78.1 96.3 15%10* [62]
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been ascribed to lateral gene transfer where most of the
acquired genes in this phylum are involved in carbohy-
drate metabolism [44]. These gene acquisitions afford the
bacteria in this phylum a selective advantage to transit be-
tween the mesophilic and thermophilic environments and
of metabolizing across a broad spectrum of temperatures
[45, 46]. It would be of interest to isolate the host of the
AFase-D3 to assess whether the thermostability profile ob-
served for this protein extends to the entire organism as
an adaptation mechanism as described for T. maritima
and other Thermotogae lineages.

Studies conducted to discriminate between mesophilic
and thermophilic proteins have shown that there are no
significant differences in these protein orthologues as they
often share a similar structure, sequence identity and the
same catalytic mechanisms [45]. There appears to be no
uniform property that confers increased protein thermo-
stability across the proteome, but rather could be a result
of minor differences in sequence and structure due to
point mutations, increased numbers of salt bridges and
the presence of specific amino acid residues on the protein
surface such as fewer thermolabile amino acid residues
observed in thermophilic proteins [46]. This seems to be
evident in this study as cysteine residues which are often
associated with increased protein thermostability were
identified in the protein sequence of AFase-E3, which
showed the highest thermostability among the AFases de-
scribed in this study. Cysteine residues are known to form
disulphide bridges with alternate cysteine residues within
the catalytic domain and to increase thermostability by 10
to 20°C [29, 47]. The contribution of cysteine residues to
the thermostability has been previously shown through
substitution of cysteine residues with alanine, resulting in
a decreased thermostability of AFases from G. caldoxyloly-
ticus, Geobacillus stearothermophilus, Thermobacillus
xylanilyticus and B. subtilis [30, 48]. Further evidence of
the contribution of subtle changes in the amino acid se-
quence to thermostability of the proteins has been shown
through comparison of amino acid composition of
thermophilic and mesophilic protein homologues. The
diguanylate cyclase and glutamate dehydrogenase en-
zymes from the hyperthermal 7. maritima had a smaller
hydrophobic accessible surface and a greater charged sur-
face area when compared to their mesophilic homologues
from Pseudomonas aeruginosa and Clostridium symbio-
sum, respectively [44]. This conformation results in stron-
ger hydrophobic interactions in the interior of the protein
and increased ion pairing on the surface conferring greater
thermostability to these thermophilic proteins compared
to their respective mesophilic counterpart [45].

The three AFases described here had optimum activity
within a slightly acidic pH range of 4.0-5.0. A pH optimum
in this range is typical for AFases belonging to the GH51
family as previously shown for AFases from Paenibacillus
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sp., Aureobasidium pullulans, Aspergillus oryzae and Strep-
tomyces coelicolor [7, 49]. Industrial processes often operate
at high temperatures and slightly acidic pH which make the
AFases identified in this study suitable for application pro-
cesses conducted under these conditions [50].

All three AFases displayed the greatest hydrolytic activity
towards pNP-a-L-arabinofuranoside compared to the activ-
ity on the other pNP-glycosides. Of the 145 GH families re-
ported to date only families GH2, 3, 43, 51, 54 and 62 are
known to encode a-L-arabinofuranosidase activity with
family GH51 having the largest number of
a-L-arabinofuranosidases [6, 51]. Lower activity was ob-
served on the other pNP-glycosides except for AFase-H4
which showed substantial activity on pNP-f-D-cellobioside.
The activity on pNP-p-D-cellobioside shown by AFase-H4
is the first report for a GH51 family AFase. None of the
AFases could hydrolyse the pNP-B-D-xylopyranoside sub-
strate. The enzymatic hydrolysis of pNP-B-D-xylopyrano-
side is a characteristic of the GH43 family of AFases, which
are known for their dual activity, possessing both
B-xylosidase and the conventional a-L-arabinofuranosidase
activity [52]. Only two GH51 AFases have been shown to
hydrolyse this bond and these were isolated from G. caldoxy-
lolyticus TK4 [30] and Paenibacillus sp. TH51 [7]. AFase-D3
had very low activity on pNP-B-D-glucopyranoside and
pNP-a-L-mannopyranose. No other GH51 AFase has
been reported to have the capability of hydrolyzing these
synthetic substrates and together with its exceptionally
wide thermostability profile, it makes it a unique enzyme.

All three AFases showed different levels of activity for
hydrolysis of the arabinofuranosyl bonds within the nat-
ural substrates tested. AFase-E3 indicated a higher affin-
ity for these substrates when compared to AFase-H4 and
AFase-D3. The hydrolysis of arabinan has been a com-
mon functional characteristic for GH51 AFases [53] but,
AFase-H4 showed no hydrolysis of arabinan. Similarly,
the AFases from Streptomyces sp. and Penicillium pur-
purogenum were unable to hydrolyse this substrate [54,
55]. AFase-E3 and AFase-D3 had a lower activity on lin-
earized arabinan and it is known that GH51 AFases
weakly hydrolyze the «-1,5-L arabinofuranosyl bonds,
whereas this is a capability of the GH43 family AFases
[52, 53]. A similar linear arabinan hydrolysis profile has
been reported previously [54] suggesting that the AFases
described here are typically exo-acting enzymes contrary
to GH43 AFases which readily hydrolyze the o-1,5-L
arabinofuranosyl bonds [34, 52]. None of the AFases
were able to release reducing sugars from arabinoxylan.
This activity is characteristic of some GH51 AFases, but
not all [29-31, 47, 56]. Substrate specificity towards ara-
binoxylan has been attributed to specific residues in the
catalytic domain in the Thermotoga species and Thermo-
bacillus species of AFases [47, 57]. A tryptophan located
at approximately the 96-100th position in the catalytic
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domain [47, 57] is a key xylan-binding residue. However
only AFase-E3 has two of these residues required for an
electrostatic active site to liberate L-arabinose from the
xylan backbone. Figure 3.20 shows no liberation of
L-arabinose from the xylan backbone and this could be
due to the absence of the residues required for an ad-
equate electrostatic surface within the active site [26].
The inability to liberate the L-arabinose from the xylan
backbone has also been correlated to the ratio of the
a-1,3-L and a-1,2-L- arabinofuranosyl bonds that differs
within different arabinoxylan-containing materials. There
are particular arabinoxylans that are highly saturated with
either a-1,3-L or the a-1,2-L bonds [58]. Therefore, it is
plausible that the arabinoxylan used in this experiment is
saturated with more of a-1,2-L bonds. This conclusion is
consistent owing to the AFases showing an affinity for the
p-nitrophenyl-a-L-arabinofuranoside bond which resem-
bles the a-1,3-L arabinofuranosyl bonds [58, 59].

Multifunctional enzymes with two or more activities are
highly desirable for the hydrolysis of complex polymers and
offer the possibility of reduced complexity of enzyme cock-
tails and better synergies [7]. However, as evidenced in this
study, the shortfall is that these additional activities are al-
ways minor and are not displayed when GH51 AFases are
employed to hydrolyse heteroxylan or xylo-oligosaccharides
in more complex and natural substrates [7]. The relatively
good cellobioside activity of AFase-H4, together with its
moderate thermostability, could make this enzyme a good
starting point for engineering of a dual functional enzyme
for use in thermophilic ethanologenesis processes.

Although we have highlighted the unique features and
differences that exist between these and previously de-
scribed enzymes, overall, the kinetic data for these three
AFases demonstrate that they are not exceptional in this
regard and have characteristics that are in the same range
to that of previously characterized AFases [30, 31, 60].
Thus, even though these AFases are phylogenetically dis-
tinct, their biochemical characteristics are similar to those
that have been described previously. This recurring theme
in enzymology, once again reiterates the power of selective
pressure to ensure that the enzymes’ activity falls within a
limited range [61]. However, the hydrolysis of bonds other
than the o-1,5-L-arabinofuranosyl linkage makes the
AFases identified in this study novel and they could be
used as a starting point for engineering to optimise their
suitability for various industrial applications.

Conclusions

Here we describe three GH51-related a-arabinofuranosidases
that are novel at the amino acid level, substrate specificity
and thermostability profile (AFase-D3) with the potential
to be engineered to be used in industrial processes. Their
discovery once again demonstrates the power of
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functional metagenomics and evolutionary pressure to ex-
plore novel sequence space.
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Additional file 1: Figure S1. Thermostability profiles for the purified
AFase H4 (A), E3 (B) and D3 (C) at 25 (), 40 (A), 50 (#), 60 (m), 70 (X)
and 80 °C (e). Data represents the average of three replicates + standard
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Additional file 2: Figure S2. Substrate range of AFases measured on
pNP linked glycosides. A) H4, B) E3 and C) D3. Data represents the
average of three replicates + standard error (n = 3). (DOCX 46 kb)

Additional file 3: Figure S3. Michaelis-Menten plots of AFase-D3, —E3 and
-H4. The kinetics of each enzyme was determined at their respective pH and
temperature optima with increasing amounts of pNP-a-L-arabinofuranoside
(mM). (n = 3) + standard error. (DOCX 72 kb)
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