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Abstract

Background: Fungal laccase has profound applications in different fields of biotechnology due to its broad specificity
and high redox potential. Any successful application of the enzyme requires large scale production. As laccase production
is highly dependent on medium components and cultural conditions, optimization of the same is essential for efficient
product production.

Results: Production of laccase by fungal strain Marasmiellus palmivorus LA1 under solid state fermentation was optimized
by the Taguchi design of experiments (DOE) methodology. An orthogonal array (L8) was designed using Qualitek-4
software to study the interactions and relative influence of the seven selected factors by one factor at a time approach.
The optimum condition formulated was temperature (28 °C), pH (5), galactose (0.8%w/v), cupric sulphate (3 mM),
inoculum concentration (number of mycelial agar pieces) (6Nos.) and substrate length (0.05 m). Overall yield increase
of 17.6 fold was obtained after optimization. Statistical optimization leads to the elimination of an insignificant medium
component ammonium dihydrogen phosphate from the process and contributes to a 1.06 fold increase in enzyme
production. A final production of 667.4 ± 13 IU/mL laccase activity paves way for the application of this strain for
industrial applications.

Conclusion: Study optimized lignin degrading laccases from Marasmiellus palmivorus LA1. This laccases can thus be
used for further applications in different scales of production after analyzing the properties of the enzyme. Study also
confirmed the use of taguchi method for optimizations of product production.
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Background
Laccases (EC 1.10.3.2; benzenediol: oxygen oxidoreduc-
tases) are a major group of ligninolytic enzymes which
are present in all the eukaryotic kingdoms described in
the five kingdom classification by R.H Whittaker in 1969
[1–5]. Laccases non-specifically catalyse one-electron
oxidation of four equivalent substrates concomitant with
the four-electron reduction of molecular oxygen to
water with the help of a copper containing catalytic
apparatus [6, 7]. Physiologically, laccase fulfil diverse
roles from plant lignin polymerisation [8] to fungal
morphogenesis [9]. Being less substrate specific, energy-

saving, and biodegradable, laccases were suitable in the
development of highly effective, sustainable, and eco-
friendly enterprises [10] in the areas of biofuel production
[11], chemical transformation of xenobiotics [12], dye
decolourisation [13], as biofuel cells [14], effluent treat-
ment [15], pulp bleaching [16], as biosensors [17] and in
general food quality improvement [18, 19]. Any applica-
tion of laccase requires large scale production of the
enzyme preferably in a cost effective manner.
Even though other enzyme production systems prefer

submerged fermentation, enzyme production from fungi,
especially filamentous fungi is better adapted to Solid
state fermentation (SSF) as only SSF offers an adherence
surface to filamentous fungi [20]. In SSF, growth and
enzyme production occur in inert or natural solid
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material under near or complete absence of free flowing
liquid. SSF have advantages like high volumetric prod-
uctivity [21], effective utilization of agro industrial
wastes as substrates that even mimic the natural living
surface of fungi and economy [22] due to its static
nature. SSF utilizes materials like orange peel [23],
banana waste [24], barley bran [25] and pine apple leaves
[26] for useful enzyme production, which otherwise pose
solid waste disposal problems. This reutilization is
appreciated in the context of sustainable development.
However, robust control of parameters (both media
composition and cultural conditions) in SSF is difficult
particularly on an industrial scale, which explains the
failure of adapting successful lab scale production sys-
tems to an industrial level in the past [27]. This can be
overcome by the thorough optimization of the different
factors that influence production. Classical single factor
method of optimization is an inadequate choice as it is
time consuming [28] and will not yield any outcome
regarding the relative influence of any of the involving
factors. Statistical methods which also accounts for vari-
ations in the production process would be appropriate
for optimization. Taguchi method of design of experi-
ment is an approach for optimization of parameters,
where the production quality stands intact even in an
altered environment [29].
The Taguchi method of Design of Experiments (DOE)

was developed by Genechi Taguchi who was involved in
modifying the Japanese telephone system [30]. The main
aim of this method is to determine the optimal process
characteristic that is weakly sensitive to noise factors
[31]. The taguchi method operates systematically with
fewer trials, thus reducing the time, cost and effort, but
offer more quantitative information [32]. The method
can work even if the parameters are discrete and qualita-
tive. It functions by reducing the sensitivity of the system
[33] through thorough parameter designing. For the
purpose, taguchi employs a fractional factorial design in
the form of an orthogonal array. This array includes rep-
resentatives from all possible combinations of selected
experimental parameters, which are apt to increase the
efficiency and precision and simultaneously reducing
any experimental errors [34]. Analysis of individual
factor contribution along with their interactive effects
eventually leads to the identification of finest factors
which was further optimized through Analysis of
variance (ANOVA). All these advantages contribute to
its greater application in other fields of science espe-
cially biotechnology.
A newly isolated strain LA1 from rarely explored

species palmivorus, is the laccase producing fungus that
is selected in the present study. The strain was found to
be utilizing pineapple leaves, an inexpensive, unused
agro-residue, as substrate for laccase production. The

initial laccase activity expressed by Marasmiellus
palmivorus LA1 was as good as or even higher than
that of the initial activities of some of the other reported
fungi [35–38]. The present study applies taguchi method
for the optimization of extracellular laccase enzyme pro-
duction in SSF from the fungi Marasmiellus palmivorus
LA1. The experimental design comprises of seven differ-
ent factors that proceeds at two levels with L8 (27) array
layout for laccase production. This is the first attempt
reported for the optimization of laccase production from
any Marasmiellus palmivorus, which is generally viewed
only in the context of palm pathogens.

Results and discussion
Determination of factors
Selection of the appropriate culture factors is the
prime key for the success of any optimization process.
Here the factors and levels selected were based on
the preliminary studies of one factor at a time
(OFAT) on laccase production by Marasmiellus
palmivorus LA1. The selected factors do have an in-
fluential role in laccase production as it increases the
laccase production from 38.53 to 627.7 IU/mL, which
is 16.2 fold during OFAT. Previous studies on differ-
ent fungal laccases also emphasise the requirement of
temperature, pH [39], galactose [40], cupric sulphate
[41], inoculum concentration [34], and substrate
length [42] for increased laccase production. However,
in OFAT only the individual factor contributions are
taken into consideration, which may vary during
factor interactions in an industrial scale scenario.

Designing of the matrix experiment
Taguchi method of DOE is an effective statistical plan
for studying the optimization of laccase production
involving several factors. It is reliable for parameter
identification with the added advantage of sparing the
cost. Implementation of taguchi through Qualitek-4
(QT4) windows version can be through any of the L-4
arrays with three factors at two levels to L-81 arrays with
40 factors at three levels. In the present study, the L-8
array was designed using Qualitek-4 applied in order to
study seven different factors. In this orthogonal array,
the control factors and the identified noise factors were
varied in such a way to find out a combination where
variations in noise no longer affect the overall production
[43]. These were called the robust designs and the analysis
is called the signal to noise ratio analysis. The signal to
noise ratio is linked with quadratic loss function, which in
turn assumes significant losses can happen within the
specification limit [44]. Such losses within limits are
expected and can easily be met. “Bigger is better” quality
characteristic provides a single index for the measurable
results from multiple criteria.
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Experimentation of the designed matrix
All the 8 trials were carried out under SSF. On experiment-
ing the matrix combination, trial 5, which comprises of
temperature - 28 °C, pH - 3, ammonium dihydrogen
phosphate -0.05% (w/v), galactose - 0.8% (w/v), cupric
sulphate – 3 mM, inoculum concentration (number
of mycelial agar pieces) - 4 Nos. and substrate length -
0.05 m yielded maximum production with 659 ± 12 IU/mL,
while least production is for the trial 1. Trial 1 includes
temperature - 26 °C, pH - 3, ammonium dihydrogen phos-
phate - 0.03% (w/v), galactose - 0.8% (w/v), cupric
sulphate – 1 mM, inoculum concentration (number of
mycelial agar pieces) - 4 Nos. and substrate length -
0.03 m (Table 1).

Data analysis
The average of obtained enzyme production, in which each
factor is at given level, is described in Table 2. Difference
between the average values, L2-L1 indicated the relative in-
fluence of the particular factor. Greater the difference in
values, better the influence on production. The positive
value indicates an increase in production as it moves from
level 1 to level 2, while the negative value indicates produc-
tion decrease during the course from L1 to L2. Thus
among the selected factors, cupric sulphate increases the
laccase production at level 2, followed by substrate length,
inoculum concentration, pH, temperature, ammonium
dihydrogen phosphate and galactose. Ammonium
dihydrogen phosphate has very less or no effect on
laccase production with very similar values at level 1
(54.741) and level 2 (54.746). Galactose on the other
hand is showing a slight better production at level 1.

Individual factor interaction
Interaction analysis provides insight into the interaction
of a factor with other factors considered during the
experiment. The severity index (SI) represents the influence
of two individual factors at different levels of interaction.
Col. in Table 3 show the position to which interacting
factors are allotted. Overall influences of the selected fac-
tors on laccase production were depicted graphically

(Fig. 1a-g). A perpendicular line represents full (100%)
interaction while parallel line means no interaction
between the given factors. On analysing the severity
index, its noteworthy that ammonium dihydrogen
phosphate, the least laccase production influencer in-
teracts maximally with inoculum concentration to
give higher severity index (89.72%, Col.5), while the
high enzyme production influencing cupric sulphate
shows modest interaction with inoculum concentra-
tion with low SI (0.19%, Col.3).

Individual factor contribution and ANOVA
Analysis of variance test was carried out to determine
the significance of individual factors on total laccase
production (Table 4). Test results showed that cupric
sulphate has a significant impact (73.18%) on laccase
production followed by substrate length (23.8%). The
other factors cumulatively contribute about 4.98%
only to laccase production. From the F-ratio of all
selected parameters, it was noticed that ammonium
dihydrogen orthophosphate has null effect on produc-
tion thus its effect was pooled. Pooling also helps to
avoid saturation of the designed system. All other
factors and their interactions considered in the
current design were statistically significant at 90%
confidence interval indicating that their variability can
be explained in terms of significant effects. Contribu-
tion of each factor on laccase enzyme production was
represented in Fig. 2.

Optimum level determination and validation of the
optimum
The taguchi method provided optimum culture condi-
tions for each of the influencing factor. The optimum
conditions estimated and their contribution are shown
in Table 5. Cupric sulphate and substrate length were
the major factors affecting laccase production from
Marasmiellus palmivorus LA1 under solid state fermen-
tation. Signal to noise ratio expected was 56.769
(Table 5), from which the expected production was
calculated using the formula, square root (1/Mean
Square Deviation (MSD)). MSD represents all the

Table 1 Experimental trial results of all the eight trials conducted

Trials Laccase activity (IU/mL ± Standard deviation)

1 455.2 ± 1

2 639.9 ± 24

3 542 ± 17

4 557 ± 1

5 659 ± 12

6 458 ± 68

7 606.4 ± 8

8 505.8 ± 29

Table 2 Main effects of all the selected factors

Sl. No: Factors Level 1 Level 2 L2 - L1

1 Temperature (°C) 54.718 54.769 .05

2 pH 54.662 54.825 .163

3 NH4H2PO4 (%)
a 54.741 54.746 .005

4 Galactose (%) 54.967 54.52 -.447

5 Cupric sulphate (mM) 53.721 55.766 2.045

6 Inoculum concentration 54.626 54.861 .234

7 Substrate length (m) 54.185 55.302 1.116
aPercentage against buffer
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variation around the given target and can be calculated
from S/N, where S/N = - Log (MSD). The expected lac-
case production at optimum conditions was found to be
689.366 IU/mL.

Variation reduction plot
Variation reduction plot is a graphical representation
of the current and improved production status within
upper and lower control limits (UCL or LCL) (Fig. 3).
Nominal value is 553.062 IU/mL while LCL and UCL
being 317.737 and 789.397 IU/mL respectively.
Reduced variation is represented by the steep peak in
graph. From the graph it’s deducted that the im-
proved condition could cause a savings of 37.3%. This
savings owes to the elimination of non necessitated
media component.

Validation of the optimum
Tests were performed with the optimized factors with
the recommended level. This resulted in the production
of 667.4 ± 13 IU/mL of enzyme which is comparable to
the predicted (689.366 IU/mL). Thus the taguchi method
is validated for extracellular laccase production.

Fungal laccase production under solid state fermenta-
tion is influenced by various environmental (temperature)
and cultural (pH, media components, substrate size,
inoculum) conditions [45]. Involvement of many factors
leads to optimization to improve the laccase enzyme
production. Other than classical approaches, taguchi
method of DOE offers a statistical design to create robust-
ness in the process with low lost by considering only the
main effects. The method also accounts multiple inter-
action possibilities between the parameters which is
significant in industrial applications. Unlike the past
decade, many works were currently relying on taguchi
methods for culture parameter optimization [46], process
optimization [47, 48], medium optimization [49, 50] and
overall yield of enzyme production [51]. In this
optimization process the most influencing factors affecting
laccase production were found to be cupric sulphate,
followed by substrate length and inoculum concentration.
Increased production in the presence of copper can be
attributed as the defensive response of fungi towards the
induced metallic stress [52]. Similar increase in
laccase production was observed in Marasmius
quercophilus in addition of copper [53]. Copper can
induce the production of laccase isozymes which

Table 3 Predicted interactions of the given factors depicted via severity index

Sl. No: Interacting factor pairs (Order based on SI) Columns SI (%) Col. Opt.

1 NH4H2PO4 (%) x Inoculum concen. 3 × 6 89.72 5 [1,2]

2 Temperature (°C) x Inoculum concen. 1 × 6 82.66 7 [1,2]

3 Temperature (°C) x Galactose (%) 1 × 4 82.06 5 [2,1]

4 Temperature (°C) x NH4H2PO4 (%) 1 × 3 76.01 2 [2,1]

5 NH4H2PO4 (%) x Galactose (%) 3 × 4 71.42 7 [2,1]

6 pH x Inoculum concen. 2 × 6 65.61 4 [2,2]

7 pH x Substrate length (m) 2 × 7 64.67 5 [1,2]

8 pH x Cupric sulphate (mM) 2 × 5 35.32 7 [1,2]

9 Substrate length (m) x Galactose (%) 2 × 4 34.38 6 [2,1]

10 NH4H2PO4 (%) x Substrate length (m) 3 × 7 28.57 4 [2,2]

11 pH x NH4H2PO4 (%) 2 × 3 23.98 1 [2,1]

12 Galactose (%) x Inoculum concen. 4 × 6 23.92 2 [1,2]

13 Temperature (°C) x Cupric sulphate (mM) 1 × 5 17.93 4 [2,2]

14 Temperature (°C) x Substrate length (m) 1 × 7 17.33 6 [1,2]

15 NH4H2PO4 (%) x Cupric sulphate (mM) 3 × 5 10.27 6 [1,2]

16 Cupric sulphate (mM) x Substrate length (m) 5 × 7 5.15 2 [2,2]

17 Inoculum concen. x Substrate length 6 × 7 3.8 1 [2,2]

18 Temperature (°C) x pH 1 × 2 2.08 3 [2,2]

19 Galactose (%) x Cupric sulphate (mM) 4 × 5 2.06 1 [1,2]

20 Galactose (%) x Substrate length (m) 4 × 7 .28 3 [1,2]

21 Cupric sulphate (mM) x Inoculum concen. 5 × 6 .19 3 [2,2]

Columns: Column locations to which the interacting factors are assigned, SI%: Interaction severity index, Col: Column that should be reserved if this particular
interaction is to be studied, Opt.: indicates factor levels desirable for the optimum condition
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leads to increased production [54]. Influence of the
pine apple leaf length in production is by offering
more surface area and lignin for the basidiomycete,
Marasmiellus palmivorus LA1 growth and laccase
production [55]. Inoculum size does play an

important role in establishing the culture in Erlen-
meyer flasks, which explains its influential role. The
insignificance of ammonium dihydrogen phosphate in
the medium was stated through the statistical study,
which leads to the elimination of the same from

Fig. 1 Influence of the selected factors on laccase production by Marasmiellus palmivorus LA1. a Temperature (°C), b pH, c Ammonium
dihydrogen phosphate (%), d Galactose (%w/v), e Cupric sulphate (mM), f Inoculum concentration (number of mycelial agar pieces), and g
Substrate length (m). In all the graphs X-axis denotes the different levels (1 and 2) of the concerned factor and Y-axis average effect of the
concerned factors

Table 4 Analysis of variance (ANOVA)

Sl.No: Factors DOF Sums of squares Variance F-Ratio Pure Sum Percent

1 Temperature (°C) 1 0.006 0.006 173.585 0.006 0.060

2 pH 1 0.053 0.053 1,325.232 0.053 0.464

3 NH4H2PO4 (%) 1 0 POOLED 0 0

4 Galactose (%) 1 0.401 0.401 10,006.075 0.401 3.510

5 Cupric sulphate (mM) 1 8.366 8.366 208,581.269 8.366 73.181

6 Inoculum concentration 1 0.108 0.108 2,694.782 0.108 0.945

7 Substrate length (m) 1 2.496 2.496 62,237.074 2.496 21.835

Other/Error 1 0 0 0.005

Total 7 11.433 100.00%
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medium, thus reducing the cost without compromis-
ing the production quality and quantity. The strain
provides a satisfactory yield of laccase (Table 6) lead-
ing to the application of the enzyme directly or in
immobilized form in industrial settings.

Conclusion
Optimization of laccase production under solid state
fermentation by Marasmiellus palmivorus LA1 stain was
done via taguchi method of DOE using Qualitek-4. The
study aided in the understanding of individual factor
contribution and interaction among factors. Elimination
of unwanted factors significantly reduce the loss during
the process, which otherwise needed to be met. Valid-
ation of optimized parameters provides an optimum set
of conditions that are insensitive to noise factors which
can be used in large scale bioprocess.

Methods
Microorganism
For the present study, the culture of fungi Marasmiellus
palmivorus LA1 isolated from Palakkad district of
Kerala, India was used for the production of extra cellular
laccases. The strain was grown and then maintained on
Potato dextrose agar (PDA) at 4 °C.

Solid state fermentation for enzyme production
Pineapple leaves of varying length were used as the
substrate [26], onto which Marasmiellus palmivorus
LA1 mycelial agar pieces (0.005 m × 0.005 m sized) were
inoculated in 250 mL Erlenmeyer flask. The moisture
content was adjusted to 10% with 0.1 M sodium citrate
buffer of pH 5. The system was incubated for 5 days
under static condition in appropriate temperatures.

Product extraction
Extracellular enzyme was extracted using 40 mL of
0.1 M sodium citrate buffer of pH 5. After incubation
period, the mycelial-free supernatant was collected by
gentle shaking followed by centrifugation at 9000 g for
10 min and used for further laccase activity assays.

Enzyme assay
The laccase assay was performed spectrophotometric-
ally (Shimadzu 1601) at 420 nm using 2,2′-azino-bis
(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) as
substrate [56]. One unit (IU/mL) of laccase activity
was defined as the amount of enzyme required for
the conversion of one micromole of substrate per minute
under assay conditions.

Fig. 2 Contribution of each factors on extracellular enzyme production.
Cupric sulphate contributes maximum, covering a large area in the
figure while ammonium dihydrogen phosphate fails to contribute any

Table 5 Optimum culture condition predicted and their
contributions on the selected levels

Sl. No: Factors Level description Level Contribution

1 Temperature (°C) 28 2 0.025

2 pH 5 2 0.081

3 Galactose (%) 0.8 1 0.223

4 Cupric sulphate (mM) 3 2 1.023

5 Inoculum concentration 6 2 0.117

6 Substrate length (m) 0.05 2 0.558

Total contribution from all factors 2.025

Current grand average of performance 54.743

Expected result at optimum condition 56.769

Fig. 3 Variation reduction plot based on current and new, improved
conditions. Normal performance distribution profiles for laccase activity
with higher improved frequency
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Taguchi method for optimization
In the present study, the taguchi method of optimization
moves in five stages: factors determination, matrix
designing, experimentation of matrix, data analysis and
optimum level validation. All these stages proceed in a
stepwise manner to finally yield a valid output.

Determination of factors
Using the one factor at a time (OFAT) method for
optimization seven different factors that were found to
be crucial for laccase enzyme production in Marasmiellus
palmivorus LA1 were listed out. Then these factors were
used for further optimization using taguchi method. The
significant influencing factors are temperature, pH,
ammonium dihydrogen phosphate (NH4H2PO4), galactose,
cupric sulphate, inoculum concentration (number of myce-
lial agar pieces) and substrate length.

Designing of the matrix experiment
QUALITEK-4 software (Nutek Inc., MI, USA) was
employed for the purpose [57]. Using an L8 (27) or-
thogonal array the seven major factors were studied
in two levels (Table 7). “Bigger is better” was the

quality characteristic preferred in the experimental
studies. Signal to noise ratio analysis was used for re-
sult analysis.

Experimentation of the designed matrix
Based on the two levels mentioned (Table 7) 8 differ-
ent trial sets of solid state fermentation were con-
ducted with Marasmiellus palmivorus LA1 (Table 8).
All the trials were performed in 250 mL Erlenmeyer
flasks having pine apple leaves of length 0.03 or
0.05 m (depending on the assigned levels) wetted with
pH 3 or 5 sodium citrate buffer (0.1 M). Ammonium
dihydrogen phosphate (0.03% or 0.05% (w/v)) and
galactose (0.8% or 1.2% (w/v)) were dissolved in the
buffer and supplemented. Filter sterilized cupric
sulphate was added after autoclaving of the flasks at
121 °C, 1.03 bar pressure for 20 min. Variation in the
inoculum concentration was created by using different
number of agar pieces (4 or 6). 26 °C or 28 °C
temperature was maintained throughout the period of
5-day incubation. Enzyme extraction was performed

Table 6 Comparison of laccase yields of other fungi with the fungus of interest, grown under solid state fermentation

Sl. No: Organism Substrate Enzyme activity (IU/mL) Reference

1 Pleurotus ostreatus Banana pseudostem 3 [58]

2 Pleurotus sajor-caju. Banana pseudostem 3.6 [58]

3 Coprinellus disseminatus SW-1 NTCC 1165 Wheat bran 25.5 [59]

4 Aspergillus heteromorphus Rice straw 6.6 [60]

5 Aspergillus heteromorphus Sugarcane baggase 2.9 [60]

6 Schizophyllum commune IBL-06 Banana stalks 345 [61]

7 Ganoderma lucidum Pineapple leaf 472.31 ± 41.2 [26]

8 Coculture of Pleurotus flabellatus and Pleurotus eous Coffee pulp 8.8 [62]

9 Schyzophyllum commune Corn stover 130.80 [63]

10 Pleurotus ostreatus IBL-04 Wheat straw 517 ± 1.05 [64]

11 Phanerochaete chrysosporium Wheat straw 263.03 [65]

12 Trametes versicolor IBL-04 Corn cobs 869.65 [66]

13 Marasmiellus palmivorus LA1 Pine apple leaf 667.4 ± 13 Present study

Table 7 Selected culture factors and their assigned levels

Sl.No: Factors Level 1 Level 2

1 Temperature (°C) 26 28

2 pH 3 5

3 NH4H2PO4 (%) 0.03 0.05

4 Galactose (%) 0.8 1.2

5 Cupric sulphate (mM) 1 3

6 Inoculum concentration 4 6

7 Substrate length (m) 0.03 0.05

Table 8 L-8 orthogonal array design

Trials Columns

1 2 3 4 5 6 7

Trial 1 1 1 1 1 1 1 1

Trial 2 1 1 1 2 2 2 2

Trial 3 1 2 2 1 1 2 2

Trial 4 1 2 2 2 2 1 1

Trial 5 2 1 2 1 2 1 2

Trial 6 2 1 2 2 1 2 1

Trial 7 2 2 1 1 2 2 1

Trial 8 2 2 1 2 1 1 2
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as previously described. All the trials were performed
in triplicates.

Data analysis
Analysis of the obtained results was done using
Qualitek-4 software to infer the interactions between dif-
ferent factors and to give idea about the influence of
each individual factor on enzyme production.

Optimum level determination and validation of the
optimum
By analysing the interactions, the software predicts an
optimum condition for maximum enzyme production.
The software recommended optimum condition was
validated by conducting solid state fermentation and
assay testing in triplicates under the optimum condition.
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