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Abstract
Background  Most prostate cancers(PCa) rely on serum prostate-specific antigen (PSA) testing for biopsy 
confirmation, but the accuracy needs to be further improved. We need to continue to develop PCa prediction model 
with high clinical application value.

Methods  Benign prostatic hyperplasia (BPH) and prostate cancer data were obtained from the Chinese National 
Clinical Medical Science Data Center for retrospective analysis. The model was constructed using the XGBoost 
algorithm, and patients’ age, body mass index (BMI), PSA-related parameters and serum biochemical parameters 
were used as model variables. Using decision analysis curve (DCA) to evaluate the clinical utility of the models. The 
shapley additive explanation (SHAP) framework was used to analyze the importance ranking and risk threshold of the 
variables.

Results  A total of 1915 patients were included in this study, including 823 (43.0%) were BPH patients and 1092 
(57.0%) were PCa patients. The XGBoost model provided better performance (AUC 0.82) compared with f/tPSA 
(AUC 0.75),tPSA (AUC 0.68) and fPSA (AUC 0.61), respectively. Based on SHAP values, f/tPSA was the most important 
variable, and the top five most important biochemical parameter variables were inorganic phosphorus (P), potassium 
(K), creatine kinase MB isoenzyme (CKMB), low-density lipoprotein cholesterol (LDL-C), and creatinine (Cre). PCa 
risk thresholds for these risk markers were f/tPSA (0.13), P (1.29 mmol/L), K (4.29 mmol/L), CKMB ( 11.6U/L), LDL-C 
(3.05mmol/L) and Cre (74.5-99.1umol/L).

Conclusion  The present model has advantages of wide-spread availability and high net benefit, especially for 
underdeveloped countries and regions. Furthermore, these risk thresholds can assist in the diagnosis and screening of 
prostate cancer in clinical practice.
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Introduction
Prostate Cancer (PCa) is a common tumor of the uri-
nary system and one of the major malignant tumors 
threatening men’s health in the world [1]. For instance, 
the incidence of prostate cancer in China is showing a 
continuous increase and therefore is gradually affect-
ing men’s health [2]. In order to provide prostate cancer 
patients with a better prognosis and further improve 
their quality of life, early screening and accurate diagno-
sis of prostate cancer have become the focus of current 
study.

Prostate-specific antigen (PSA) is the most common 
tumor marker used for prostate cancer screening [3]. 
After PSA screening, a positive biopsy of the prostate 
is required to confirm the diagnosis of prostate can-
cer. However, PSA may be elevated in patients with 
benign prostatic hyperplasia (BPH), prostatitis, or other 
non-prostate cancer. The use of PSA as the sole tool for 
prostate biopsy decisions has led to a high number of 
overdiagnosis of inert prostate cancer. To improve the 
accuracy of screening systems, various methods have 
been introduced in predicting prostate cancer, such 
as measurement of PSA derivatives, PSA kinetics and 
mpMRI [4, 5]. However, these new techniques have lim-
ited performance in improving the diagnosis of prostate 
cancer. Therefore, the search for new markers for pros-
tate cancer risk assessment continues.

Machine learning (ML) techniques have been widely 
used in clinical medicine, especially in building predic-
tive models, and various machine learning techniques 
have been used to enhance prostate cancer prediction, 
showing stronger performance than traditional predic-
tive models [6, 7]. However, they are often criticized due 
to their lack of interpretability and “black box” nature. 
The lack of intuitive model interpretation is considered a 
major limitation to the practical adoption of ML models 
by clinicians. In order to improve the interpretability of 
complex ML models, the SHapley Additive exPlanations 
(SHAP) framework has been proposed, which represents 
a unified approach to interpreting the predictions of 
complex ML models [8]. SHAP value is a way to describe 
the “weight” or “importance” that a model applies to 
a particular feature when predicting a particular data 
point, with a positive or negative value indicating the 
direction of influence.

In this study, we constructed a XGBoost model using 
machine learning method to distinguish PCa and BPH 
patients. In addition to patient demographics and tradi-
tional PSA-related indicators, widely available pre-biopsy 
serum biochemical information was used as input for 
model construction. The SHAP framework was used to 
visually interpret the relationship between each variable 
and prostate cancer and to obtain the corresponding risk 
thresholds.

Materials and methods
Materials
The Chinese National Clinical Medicine Science Data 
Center (https://www.ncmi.cn), one of the data centers 
of the National Population Health Science Data Sharing 
Platform, is jointly undertaken by Peking Union Medi-
cal College Hospital and Chinese PLA General Hospi-
tal (301 Hospital). The data for this study were obtained 
from the Prostate Tumor Warning Dataset of the Chinese 
PLA General Hospital (301 Hospital). After excluding 
cases with missing data points, a total of 1,915 Chinese 
male cases were included in this study, and all patients 
underwent prostate biopsy, including 23 predictor vari-
ables and 1 diagnostic outcome. In this study, the 23 
predictor variables recorded for each patient included 
age, body mass index (BMI), serum albumin (ALB), alka-
line phosphatase (ALP), creatine kinase MB isoenzyme 
(CKMB), free PSA (fPSA), total PSA (tPSA), free-to-total 
PSA ratio (f/tPSA), sodium (Na), calcium (Ca), chloride 
(Cl), inorganic phosphorus (P), free calcium (fCa), lactate 
dehydrogenase (LDH), creatine kinase (CK), creatinine 
(Cre), uric acid (UA), triglycerides (TG), high-density 
lipoprotein cholesterol (HDL-C), low-density lipoprotein 
cholesterol (LDL-C), apolipoprotein A1 (Apo-A1), apoli-
poprotein B (Apo-B), and potassium (K).

Methods
The XGBoost [9] used in this study is a powerful model, 
a variant of the Gradient Boost Machine (GBM). The 
patient data were randomly divided into training and test 
sets in the ratio of 7:3. The training set was used to build 
models and the test set was used for model validation 
and evaluation. Accuracy, sensitivity, specificity and area 
under the receiver operating characteristic curve (AUC) 
were calculated to evaluate the model performance. 
The 95% confidence interval (CI) and comparisons of 
AUCs were determined using the method of DeLong et 
al. [10]. Decision curve analyses (DCA) [11] were used 
to compare the net benefit of different models. The 
SHAP framework was constructed for the established 
XGBoost model, and the SHAP values were used to rank 
the importance of the predictor variables. Based on the 
SHAP values, the relationship between the variables and 
the risk of PCa were analyzed, and if the SHAP value > 0, 
it indicated that the variable elevated the predictive 
value, i.e., had a facilitative effect on the outcome, which 
in this study indicated an increased risk of PCa. Descrip-
tive analyses and DCA were done in SPSS (version 25.0, 
IBM, USA) and R (version 4.0.4). Machine learning were 
performed using open-source libraries (Scikit-learn and 
SHAP) available in Python 3.7.

https://www.ncmi.cn
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Results
In this dataset, patients with incomplete data points were 
excluded and we identified 1915 patients for analysis. Of 
the total patient cohort, 823 patients (43.0%) had BPH 
and 1092 patients (57.0%) had PCa. Once divided into 
training and testing, this resulted in 1340 data points 
in the training set and 575 data points for the final test. 
The baseline characteristics of the patients were listed in 
Table 1.

To determine the validity of the model, we calculated 
the evaluation metrics using f/tPSA, tPSA, and fPSA 
as the sole determinants of classification, respectively 
(Table  2). When using AUC as a measure of predictive 
model performance, XGBoost had an AUC of 0.82, and 

the model outperformed the other models with a single 
variable. The AUC of XGBoost was significantly com-
pared with that of f/tPSA, tPSA and fPSA models (each 
P < 0.001). We performed DCA using predictive risk in 
the validation cohort to evaluate the potential clinical 
benefits of each model. It was observed that the XGBoost 
model had higher net benefit than f/tPSA, tPSA and fPSA 
models across the threshold probabilities above 10% 
(Fig. 1).

The importance of the variables in the XGBoost model 
for predicting PCa based on SHAP values were cal-
culated (Fig.  2). It was clear that f/tPSA was the most 
important variable in the model, followed by tPSA. The 
top five biochemical parameter variables with the highest 
contribution to the model were P, K, CKMB, LDL-C, and 
Cre. We generated SHAP dependence plots for f/tPSA 
and the five most important biochemical parameter vari-
ables. The SHAP values gradually decrease with increas-
ing f/tPSA and then remain constant with a threshold of 
0.13 (Fig. 3A). When f/tPSA < 0.13, the SHAP values > 0, 
implying that low f/tPSA values had a positive effect on 
predicting PCa and patients were at greater risk of PCa. 
Similarly, patients with lower serum potassium con-
centration levels were more likely to be PCa patients, 
and the threshold for K was 4.29mmol/L (Fig.  3B). On 
the contrary, increasing values of P, CKMB and LDL-C 
showed a positive correlation with increasing SHAP val-
ues (Fig. 3C, D and E). The thresholds for P, CKMB and 
LDL-C were 1.29 mmol/L, 11.6 U/L and 3.05 mmol/L, 
respectively. The relationship between Cre and PCa risk 
showed a specific nonlinear relationship, with a cut-off 
point of 91.8umol/L, which had a risk threshold interval 
between 74.5-99.1umol/L (Fig. 3F).

Table 1  Baseline characteristics of the benign prostatic 
hyperplasia(BPH) and prostate cancer (PCa) patients
Variable All patients

(n = 1915)
BPH
(n = 823)

PCa
(n = 1092)

Age (year) 67(62–73) 69(62–74) 67(61–72)
BMI (Kg/m2) 24.74(22.72–

26.67)
24.57(22.39–
26.56)

24.82(23.03–
26.73)

ALB (g/L) 41.2(39.10–43.30) 40.6(38.60–42.90) 41.5(39.60–43.50)
ALP (U/L) 63.3(53.9–75.1) 63.2 (53.9–74.5) 63.5(53.9–75.5)
CKMB (U/L) 13.6(10.7–16.5) 13.1(1.1–16.1) 13.9(11.20-16.78)
fPSA (ng/ml) 0.71(0.26–1.60) 0.82(0.38–1.68) 0.64(0.16–1.54)
tPSA (ng/ml) 5.24(1.68–12.40) 4.48(2.00-9.81) 6.16(1.34–14.90)
f/tPSA 0.15(0.09–0.24) 0.19(0.13–0.25) 0.11(0.07–0.21)
Na (mmol/L) 142.7(141.2-144.1) 142.6(141.1–

144.0)
142.8(141.3-
144.1)

Ca (mmol/L) 2.23(2.17–2.30) 2.22(2.16–2.28) 2.25(2.19–2.32)
Cl (mmol/L) 104.4(102.4-106.4) 104.6(102.4-106.7) 104.4(102.3-

106.2)
P (mmol/L) 1.12(1.01–1.23) 1.09(0.98–1.19) 1.15(1.04–1.28)
fCa (mmol/L) 1.15(1.11–1.18) 1.14(1.10–1.17) 1.15(1.12–1.18)
LDH (U/L) 150.1(134.7-168.6) 150.2(135.2-166.8) 149.9(133.83–

169.6)
CK (U/L) 79.8(59.6-107.2) 77.3(57.1–105.0) 82.4(61.7-108.4)
Cre (umol/L) 79.8(71.6–89.4) 79.7(71.7–89.9) 79.9(71.53-89.0)
UA (µmol/L) 328.2(275.8-379.9) 327.6(277.4-383.3) 328.6(274.4-

378.8)
TG (mmol/L) 1.14(0.84–1.59) 1.09(0.83–1.51) 1.17(0.85–1.66)
HDL-C 
(mmol/L)

1.14(0.97–1.36) 1.14(0.95–1.33) 1.15(0.98–1.37)

LDL-C 
(mmol/L)

2.71(2.25–3.27) 2.62(2.18–3.09) 2.81(2.30–3.40)

Apo-A1 (g/L) 1.25(1.10–1.42) 1.22(1.07–1.39) 1.27(1.12–1.44)
Apo-B (g/L) 0.87(0.74–1.03) 0.85(0.72–0.99) 0.90(0.75–1.06)
K (mmol/L) 4.02(3.81–4.23) 4.03(3.81–4.27) 4.01(3.80–4.21)
Data are presented as median (inter-quartile range)

BPH benign prostatic hyperplasia, PCa prostate cancer, BMI body mass index, ALB 
serum albumin, ALP alkaline phosphatase, CKMB creatine kinase MB Isoenzyme, 
fPSA free prostate-specific antigen, tPSA total prostate-specific antigen, f/
tPSA free-to-total PSA ratio, Na sodium, Ca calcium, Cl chloride, P inorganic 
phosphorus, fCa free calcium, LDH lactate dehydrogenase, CK creatine kinase, 
Cre creatinine, UA uric acid, TG triglyceride, HDL-C high density lipoprotein 
cholesterol, LDL-C low density lipoprotein cholesterol, Apo-A1 Apolipoprotein 
A1, Apo-B Apolipoprotein B, K potassium

Table 2  Performance comparison between univariate model 
and XGBoost model
Model Accuracy(%) Sensitivity(%) Specificity(%) AUC 

(95% 
CI)

XGBoost 74.09 79.57 71.12 0.82 
(0.79–
0.82)

f/tPSA 71.82 75.46 67.07 0.75 
(0.72–
0.76)*

tPSA 64.70 68.33 59.40 0.68 
(0.65–
0.70)*

fPSA 57.04 60.36 50.00 0.61 
(0.58–
0.63)*

* The AUC of XGBoost was significantly compared with that of f/tPSA, tPSA and 
fPSA models (each P<0.001)

f/tPSA free-to-total PSA ratio, tPSA total prostate-specific antigen, fPSA free 
prostate-specific antigen
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Discussion
Accurate prostate cancer risk assessment is essential 
to facilitate the diagnosis of prostate cancer while lim-
iting the number of unnecessary prostate biopsies. A 
simple, easy-to-use, inexpensive and effective predictive 
model was attempted to be used to avoid a large num-
ber of unnecessary biopsies based on PSA alone in this 
study. Our model lies in the fact that the required clini-
cal parameters are widely available and objective, without 
requiring extra costs and expertise in novel biomarkers 
and/or imaging. Such technique can be used to screen 
populations with the advantage of low cost and ease of 
scalability, especially for hospitals in less developed areas 
with poorer medical equipment, such as many rural hos-
pitals in China. Thus, optimizing patients suitable for fur-
ther diagnosis including mpMRI or prostate biopsy.

Machine learning model is a relatively new technique 
in its infancy in clinical practice, but have shown great 
promise for application in biomedical sciences [12]. The 
predictive model in our study adds to the limited body of 
evidence supporting machine learning techniques in uro-
logical practice. XGBoost, a powerful algorithm proposed 
in 2016, uses multiple strategies to prevent overfitting, 

exploits the second-order derivatives of the loss function 
and supports parallelization, and has fast data process-
ing speed [9]. Liu et al. developed and validated several 
widely used machine learning algorithms to predict the 
risk of bone metastases in PCa patients and found that 
the XGBoost algorithm-based prediction model per-
formed the best among all the prediction models [7]. In 
a recent study to find new biomarkers associated with 
metastasis and to predict breast cancer metastatic sta-
tus, XGBoost model obtained a higher mean AUC than 
other classifiers [13]. When we used several major clas-
sical predictors as the sole determinants of classification, 
these models had lower accuracy, sensitivity, specificity 
and AUC than XGBoost model in this study. In a retro-
spective study, Perera et al. used a dense neural network 
(DNN) machine learning model incorporating age, PSA, 
free PSA, and free-to-total PSA ratio to improve the 
diagnosis of PCa, and showed an AUC of 0.72 for DNN 
compared to 0.65 (free-to-total PSA ratio) and 0.63 (PSA 
only) [14]. In comparison, our model (AUC of 0.82) is 
better than DNN model. However, this advantage should 
take into account the impact of different study cohorts. 
In decision curve analyses (Fig.  1), XGBoost model 

Fig. 1  Decision curve analysis (DCA) of models in the validation cohort. f/tPSA free-to-total PSA ratio, tPSA total prostate-specific antigen, fPSA free 
prostate-specific antigen
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demonstrated net clinical benefit over f/tPSA, tPSA and 
fPSA across different threshold probabilities. In other 
words, using XGBoost model should be recommended 
for clinical use as it provides the highest clinical benefit. 
Our XGBoost model has higher specificity while having 

higher sensitivity compared to models that only incorpo-
rate f/t PSA. The purpose of the model is not to directly 
replace the results of puncture biopsy, but to recommend 
more real prostate cancer patients for puncture biopsy, to 

Fig. 2  Ranking of input variables in the XGBoost model to predict prostate cancer (Based on SHAP values). BMI body mass index, ALP alkaline phospha-
tase, CKMB creatine kinase, fPSA free prostate-specific antigen, tPSA total prostate-specific antigen, f/tPSA free-to-total PSA ratio, Ca calcium, Cl chloride, 
P inorganic phosphorus, CK creatine kinase, Cre creatinine, UA uric acid, TG triglyceride, HDL-C high density lipoprotein cholesterol, LDL-C low density 
lipoprotein cholesterol, Apo-A1 Apolipoprotein A1, Apo-B Apolipoprotein B, K potassium
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improve the positive rate of puncture biopsy, and to avoid 
excessive underdiagnosis and overdiagnosis.

The SHAP framework was used to explore the “black 
box” in machine learning. We identified a number of bio-
chemical parameters with predictive value and indicated 
their thresholds that have the potential to become new 
indicators for screening prostate cancer. Unlike classical 
statistical models, where machine learning allows unbi-
ased ranking of the relative importance of input variables, 
we used SHAP values to rank the degree of importance 
of the variables. The ranking in our model highlighted 
the importance of PSA-related parameters, in addition 
to the five biochemical parameters P, K, CKMB, LDL-C, 
and Cre as important predictors of prostate cancer. In 
the ranking graph of the importance of the variables, we 
can see that the degree of importance of f/tPSA is much 
higher than other variables, confirming that the free-to-
total PSA ratio is still one of the most important predic-
tors of prostate cancer in clinical practice, a result similar 
to that of a Japanese study [15].

A study conducted in a Chinese population in 2020 
found that a free-to-total PSA ratio of 0.15 had bet-
ter sensitivity and specificity in differential diagnosis of 
PCa and BPH. Similarly, we found that the model with 
a free-to-total PSA ratio threshold of 0.13 had the best 
performance. In a recent mendelian randomization and 
meta-analysis study, the researcher showed a poten-
tial causal relationship between circulating phosphorus 
and risk of prostate cancer, with high dietary phospho-
rus intake and elevated serum phosphorus concentra-
tion respectively, were associated with increased risk of 
prostate cancer [16]. This study supported our findings 
and further confirms the potential of serum inorganic 
phosphorus to predict PCa. The normal range of serum 
potassium (K) was 3.5–5.5 mmol/L [17], and the serum 
potassium of the patients in this study was basically 
within the normal range, even so, we found that the 
potential risk threshold for potassium was 4.29 mmol/L. 
Serum potassium concentrations are mainly associ-
ated with chronic kidney disease and heart failure [18]. 

Fig. 3  Shapley additive explanation (SHAP) dependence plots between prostate cancer risk and individual risk factors. (A) Dependence plot between 
free-to-total PSA ratio (f/t PSA) and SHAP value. (B) Dependence plot between potassium (K) and SHAP value. (C) Dependence plot between inorganic 
phosphorus (P) and SHAP value. (D) Dependence plot between creatine kinase MB Isoenzyme (CKMB) and SHAP value. (E) Dependence plot between 
low density lipoprotein cholesterol (LDL-C) and SHAP value. (F) Dependence plot between creatinine (Cre) and SHAP value
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No studies have been done to explore the relationship 
between potassium and prostate cancer, and our find-
ings may provide a new direction for research. Earlier, A 
Gries et al. accidentally found that the amount of CKMB 
may be associated with prostate cancer [19]. Since then, 
based on the continuous development of proteomics, 
many scholars have suggested the inclusion of CKMB as 
a malignancy marker in clinical screening [20]. Our study 
provided new evidence that CKMB may be a risk factor 
for PCa with a threshold value of 11.6 U/L, similar to the 
results of Guo et al. [21]. The current discussion on the 
relationship between lipids and prostate cancer is still 
controversial, and we found that LDL-C is an important 
predictor of PCa. Similarly, a case-control study con-
ducted by Magura et al. reported that high LDL-C may 
be a risk factor for PCa [22]. Several values have been 
used to define creatininemia, but thresholds are typically 
in the 1.5-2.0 mg/dL (132.6-176.8umol/L) range [23], and 
the vast majority of patients in this study had creatinine 
values in the normal range. A prospective study reported 
a strong association between higher serum creatinine in 
the normal range and higher risk of prostate cancer, and 
the correlation appeared to be dose-dependent [24]. We 
found a positive association between creatinine and PCa 
risk when creatinine values were less than 91.8umol/L, 
similar to the results of this prospective study. Interest-
ingly, a negative correlation was observed when creati-
nine values were greater than 91.8umol/L. Previously, a 
nonlinear relationship between creatinine and PCa risk 
has not been reported, and we have proposed a risk 
threshold interval (74.5-99.1umol/L), but more studies 
are needed to validate it. Notably, the SHAP framework 
offers a promising method for interpreting predictions 
as well as visualizing nonlinear relationships in machine 
learning-based models in oncology.

Initial machine learning techniques in prostate can-
cer diagnosis were introduced by Snow et al. using PSA 
level, DRE and TRUS parameters [25]. Multiple subse-
quent iterations have been generated, mostly including 
DRE or TRUS parameters. However, these parameters 
are not considered first-line screening tests and may be 
considered subjective parameters with some degree of 
interobserver variability [26], thus limiting their clinical 
application. In fact, current guidelines from the United 
States Prevention Task Force (USPTF) and Urological 
Society of Australia and New Zealand (USANZ) do not 
support the routine use of DRE [27, 28]. These subjective 
parameters were excluded from our model, thus reducing 
the limitations of clinical use. In addition to parameter 
objectivity, potential generality and wide applicability are 
also the advantages of our model. Other novel biochemi-
cal markers for prostate cancer risk assessment such as 
the prostate health index (PHI) [29] and prostate cancer 
antigen 3 (PCA3) [30] may reduce unnecessary biopsies 

to some extent, but cost, convenience and accessibil-
ity are barriers to widespread clinical application. Using 
AUC as a predictor of performance, PHI was 0.70 [29] 
and PCA3 was 0.734 [30], and the result of our study 
(AUC of 0.82) was comparable to these markers. Multi-
parametric MRI scanning of prostate have been increas-
ingly used for prostate cancer diagnosis in recent years 
[5]. Nevertheless, the availability of MRI for PCa diag-
nostic purposes is limited for less affluent or developing 
countries such as China due to the equipment require-
ments and high costs. Therefore, using machine learning 
techniques to maximize the predictive value of widely 
available clinical parameters would provide a cheaper 
and effective alternative to improve cancer prediction.

There are several noteworthy limitations of this study. 
First, the retrospective design resulted in many potential 
biases. For example, factors such as selection bias and 
variations in data collection methods will limit the valid-
ity of casual inference. Second, SHAP values illustrate 
relationships specific to a given model and dataset, and 
cannot be used to infer causality or underlying biologi-
cal processes. Finally, both the training and test patient 
cohorts were from the same hospital at different time 
periods, and thus further multi-center external validation 
at other hospitals or regions is needed. Due to the limi-
tation of database, the ability to predict clinically signifi-
cant PCa was not reported in this study.

Conclusion
Our machine learning model used routine serum bio-
chemical markers to predict the risk of prostate cancer 
diagnosis with a high net benefit and avoid more unnec-
essary biopsies. The parameters included were objective 
and widely available, and the model can be used as a tool 
to optimize patient selection for further diagnosis, espe-
cially for those in underdeveloped or developing regions. 
P, K, CKMB, LDL-C, and Cre may be potential biochemi-
cal markers for predicting PCa, and risk thresholds for 
these markers were obtained using the SHAP method, 
which will be useful in diagnosis.
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