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Abstract 

Background:  Germline mutations represent a high risk of hereditary cancers in population. The landscape and 
characteristics of germline mutations in genitourinary cancer are largely unknown, and their correlation with patient 
prognosis has not been defined.

Methods:  Variant data and relevant clinical data of 10,389 cancer patients in The Cancer Genome Atlas (TCGA) data-
base was downloaded. The subset of data of 206 genitourinary cancer patients containing bladder urothelial carci-
noma (BLCA), kidney chromophobe carcinoma (KICH), kidney renal clear cell carcinoma (KIRC), kidney renal papillary 
cell carcinoma (KIRP) and prostate adenocarcinoma (PRAD) cancer with germline mutation information was filtered 
for further analysis. Variants were classified into pathogenic, likely pathogenic and non-pathogenic categories based 
on American College of Medical Genetics and Genomics (ACMG) guidelines. Genome Aggregation Database (gno-
mAD) database was used to assist risk analysis.

Results:  There were 48, 7, 44, 45 and 62 patients with germline mutations identified in BLCA, KICH, KIRC, KIRP and 
PRAD, respectively. Pathogenic germline mutations from 26 genes and likely pathogenic mutations from 33 genes 
were revealed. GJB2, MET, MUTYH and VHL mutations ranked top in kidney cancers, and ATM and CHEK2 mutations 
ranked top for bladder cancer, while ATM and BRCA1 mutations ranked top for prostate cancer. Frameshift, stop 
gained and missense mutations were the predominant mutation types. BLCA exhibited the highest ratio of stop 
gained mutations (22/48 = 45.8%). No difference in patient age was found among pathogenic, likely pathogenic and 
non-pathogenic groups for all cancer types. The number of male patients far overweight female patients whether 
PRAD was included (P = 0) or excluded (P < 0.001). Patients with pathogenic or likely pathogenic germline mutations 
exhibited significantly worse overall survival rate than the non-pathogenic group for all genitourinary cancers. More 
important, analyses assisted by gnomAD database revealed that pathogenic or likely pathogenic germline mutations 
significantly increased the risk for genitourinary cancer in population, with the odds ratio at 14.88 (95%CI 11.80–18.77) 
and 33.18 (95%CI 24.90–44.20), respectively.

Conclusions:  The germline mutational status for genitourinary cancers has been comprehensively characterized. 
Pathogenic and likely pathogenic germline mutations increased the risk and indicated poor prognosis of genitouri-
nary cancers.
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Introduction
Genitourinary cancers include bladder carcinoma (BLCA), 
kidney chromophobe carcinoma (KICH), kidney renal 
clear cell carcinoma (KIRC), kidney renal papillary cell 
carcinoma (KRIP) and prostate adenocarcinoma (PRAD). 
The age-standardized rate (ASR) of bladder cancer, renal 
cell cancers and prostate cancer was reported to be 9.0 
[1] 15.80 [2] and 29.3 [3] per 100,000 people in men, 
respectively, and 2.2 [1] and 7.56 [2] per 100,000 people 
in women, respectively. People in North American and 
Europe generally exhibited higher incidence than people in 
Asia and Africa [1–3].

Approximately 10–15% of cancer patients belong to 
hereditary cancer, characterized by strong hereditary back-
ground known as pathogenic germline mutations [4–6]. 
These patients generally inherit pathogenic mutations 
from their parents and have high risk of cancer than people 
without germline mutations. Many of them show cancer 
phenotypes at earlier stage of life than average risk popu-
lation who may have sporadic cancers at elder ages. They 
may pass germline mutations to the next generation, thus 
increasing the cancer risk of their children. Genitourinary 
cancer with germline mutations represents a specific type 
of cancers with strong hereditary background. Reports on 
individual genitourinary cancer types showed strong link 
between the onset of cancer with pathogenic germline 
mutations, including prostate cancer [7] and urothelial can-
cer [8]. Genes involved in germline alterations of genitou-
rinary cancer included those in DNA damage and repair 
(DDR) pathways, such as ATM, BRCA1, BRCA2, MLH1 
and MSH2 [9, 10].

Although there are some reports available on germline 
mutations in certain types of genitourinary cancers, the 
full profile and characteristics of germline alterations in all 
genitourinary cancers have not been investigated in detail. 
It is also unclear on the correlation between germline 
alterations and patient phenotypes and prognosis. The risk 
caused by germline alterations in genitourinary cancers has 
not been quantified. Here we performed a database study 
and characterized the profile of germline mutations and 
their links with patient phenotypes, risk and prognosis for 
five individual genitourinary cancers. We aimed to provide 
useful information for future prevention, early intervention 
and treatment of genitourinary cancer patients with ger-
mline alterations.

Methods and materials
Germline variants and relevant clinical data of 10,389 
cancer patients corresponding to 33 cancer types were 
downloaded from the TCGA database (generated by 
Huang et al.[11]) as the input dataset (https://​www.​scien​
cedir​ect.​com/​scien​ce/​artic​le/​pii/​S0092​86741​83036​35). A 
subset of 206 genitourinary cancer patients containing 
BLCA, KICH, KIRC, KIRP and PRAD were filtered for 
further analysis. All variants were classified into patho-
genic, likely pathogenic and non-pathogenic subgroups 
based on American College of Medical Genetics and 
Genomics (ACMG) guidelines [12]. A summary of the 
patient demographic and clinicopathological information 
is presented as Table 1.

Information on variants from different variant cat-
egories was collected, and was grouped by gene names 
or cancer types, and was ranked in descending order to 
identify the high-frequency variants. The distribution of 
mutational categories and pathogenicity was plotted by R 
software. Variants in representative genes were displayed 
as lollipop plots by the R software. Variants located out-
side the exon regions were not displayed in plots. Wil-
coxon tests were performed to compare the age among 
groups with different pathogenicity. Chi-square test or 
fisher exact test was used to determine the significance 
among rates or percentage. The Kaplan–Meier analysis 
and log-rank test were used to analyze and compare the 
overall survival rate among different groups. Variant fre-
quency data in population from the gnomAD database 
was used to calculate the risk of germline mutations. The 
odds ratio (OR) values were calculated based on the vari-
ant frequency from the database and in this study. The 
significance of OR values was assessed by Fisher’s exact 
test and P values were adjusted by the Benjamini and 
Hochberg (BH) method. P < 0.05 was regarded as statisti-
cal significant difference.

Results
The landscape and characteristics of germline mutations 
in genitourinary cancer
The mutation data of a total of 206 patients with geni-
tourinary cancers were collected. The demographic and 
clinicopathological information of all patients is summa-
rized in Table  1. The number of male patients far over-
weight that of the female patients (P = 0.013). The race 
of patients was mainly white with cancer stage informa-
tion invalid for the majority of patients. No difference in 
age was found among the pathogenic, likely pathogenic 
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and non-pathogenic groups. Five cancers were involved 
in this study, including BLCA, KICH, KIRC, KIRP and 
PRAD.

The distribution of germline mutations in genitourinary 
cancers was investigated first. All germline mutations 

were divided into pathogenic, likely pathogenic and non-
pathogenic based on ACMG guidelines. The numbers 
and types of pathogenic and likely pathogenic mutations 
for kidney, bladder and prostate cancers are shown in 
Fig. 1A. It can be observed that for pathogenic mutations, 

Table 1  Demographic and clinicopathological information for subjects included in this study

Factors Categories Pathogenecity, number (%) P

Pathogenic Likely pathogenic Non-pathogenic

Gender

Female 21 (35.6) 10 (19.2) 15 (15.8) 0.013

Male 38 (64.4) 42 (80.8) 80 (84.2)

Age

 < 40 2 (3.4) 3 (5.8) 3 (3.2) 0.963

40–49 6 (10.2) 6 (11.5) 9 (9.5)

50–59 19 (32.2) 17 (32.7) 25 (26.3)

60–69 17 (28.8) 12 (23.1) 33 (34.7)

70–79 12 (20.3) 10 (19.2) 20 (21.0)

 >  = 80 3 (5.1) 4 (7.7) 5 (5.3)

Stage

I 7 (11.9) 5 (9.6) 10 (10.5) 0.685

II 0 (0.0) 2 (3.9) 2 (2.1)

III 4 (6.8) 1 (1.9) 2 (2.1)

IV 0 (0.0) 1 (1.9) 2 (2.1)

Not specified 48 (81.3) 43 (82.7) 79 (83.2)

Race

Asian 1 (1.7) 2 (3.8) 4 (4.2) 0.688

African American 8 (13.6) 8 (15.4) 7 (7.4)

White 38 (64.4) 31 (59.6) 59 (62.1)

Not specified 12 (20.3) 11 (21.2) 25 (26.3)

Cancer

BLCA 17 (28.8) 13 (25.0) 18 (18.9) 0.736

KICH 2 ( 3.4) 2 ( 3.8) 3 (3.2)

KIRC 14 (23.7) 8 (15.4) 22 (23.2)

KIRP 12 (20.4) 14 (27.0) 19 (20.0)

PRAD 14 (23.7) 15 (28.8) 33 (34.7)

Ethnicity

African 11 (18.6) 10 (19.2) 13 (13.7) 0.774

American 1 (1.7) 2 (3.8) 2 (2.1)

Asian 1 (1.7) 2 (3.8) 4 (4.2)

European 46 (78.0) 37 (71.3) 76 (80.0)

Mix 0 (0.0) 1 (1.9) 0 (0.0)

Total 59 52 95

Fig. 1  The germline mutational status and distribution for kidney, bladder and prostate cancer. A the number of pathogenic and likely pathogenic 
mutations for each individual cancers; B the mutation types for genes with pathogenic or likely pathogenic mutations in all cancers. C schemes 
show the distribution of individual germline mutations for representative genes. Please be noted that variants located outside the exon region, 
mainly splicing variants, were not plotted in the schemes

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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GJB2, MET, MUTYH and VHL ranked top in kidney can-
cer, and ATM and CHEK2 ranked top for bladder cancer, 
while ATM and BRCA1 ranked top for prostate cancers. 
For likely pathogenic mutations, FANCM and FH ranked 
top for kidney cancer, RAD51C ranked top for bladder 
cancer, and ATM and PMS2 ranked top for prostate can-
cer. Pathogenic germline mutations from 26 genes and 
likely pathogenic mutations from 33 genes are shown 
in Fig.  1B. ATM germline mutations ranked the first in 
number in all pathogenic mutations, followed by BRCA1, 
CHEK2, VHL and BLM. ATM also ranked the highest in 
likely pathogenic mutations, followed by FANCM, FH 
and PMS2 (Fig.  1B). The distribution of mutation types 
for all involved genes is shown in Fig.  1B, grouped by 
mutation pathogenicity (pathogenic or likely pathogenic). 
The main mutation types included frameshift, stop 
gained and missense mutations, while other less frequent 
types, such as splicing and start lost mutations were also 
present (Fig.  1B). The mutational distribution of rep-
resentative genes is shown in Fig.  1C, including ATM, 
BRCA1, BRCA2, PMS2, BLM and VHL. The mutational 
distribution appeared to be random and no obvious hot-
spot mutations were found.

The mutational distribution of the five types of geni-
tourinary cancers is shown in Fig. 2A. There were 48, 7, 
44, 45 and 62 patients with mutations found in BLCA, 
KICH, KIRC, KRIP and PRAD, respectively (Fig.  2A, 
Table 2). ATM, BRCA1, PMS2 and BRCA2 were among 
those with highest number of mutations. The distribu-
tion of mutation types for each cancer type is shown 
in Fig. 2B. BLCA had higher ratio of stop gained muta-
tions (22/48 = 45.8%) compared with other four types 
of cancers (44/158 = 27.8%) (P = 0.019), suggesting a 
preference of the specific type of germline mutation for 
BLCA (Table  2). The status of pathogenicity for each 
gene is shown in Fig.  2C. Pathogenic mutations were 
mainly found in high frequency mutated genes while 
non-pathogenic mutations were also present in large 
majority of genes. This can also be observed in Fig. 2D, 
in which the status of pathogenicity for each cancer 
type is shown. No difference in the distribution of path-
ogenicity status across the five cancer types was found 
(P = 0.74) (Table 2).

Fig. 2  Germline mutational status in five genitourinary cancers. A the distribution of germline mutations for each gene in BLCA, KICH, KIRC, KIRP 
and PRAD; B landscape of mutation types for each individual cancer types; C distribution of mutation pathogenicity across all involved genes; 
D landscape of mutation pathogenicity for each individual cancer types
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Table 2  The number of patients for each cancer type grouped by sex, variant type and pathogenicity

Factors Categories Cancer Types P values

BLCA KICH KIRC KIRP PRAD

Sex (%)

Female 10 (20.8) 2 (28.6) 25 (56.8) 9 (20.0) 0 ( 0.0) P = 0.00039(excl PRAD)

Male 38 (79.2) 5 (71.4) 19 (43.2) 36 (80.0) 62 (100.0) P < 0.001(incl PRAD)

Variant_Type (%)

stop_gained 22 (45.8) 0 ( 0.0) 12 (27.3) 14 (31.1) 18 (29.0) P = 0.37

frameshift_variant 10 (20.8) 4 (57.1) 14 (31.8) 14 (31.1) 25 (40.3)

missense_variant 11 (22.9) 2 (28.6) 13 (29.5) 10 (22.2) 10 (16.1)

Others 5 (10.5) 1 (14.3) 5 (11.4) 7 (15.6) 9 (14.5)

Pathogenicity (%)

Likely Pathogenic 13 (27.1) 2 (28.6) 8 (18.2) 14 (31.1) 15 (24.2) P = 0.74

NonPathogenic 18 (37.5) 3 (42.9) 22 (50.0) 19 (42.2) 33 (53.2)

Pathogenic 17 (35.4) 2 (28.6) 14 (31.8) 12 (26.7) 14 (22.6)

Number of patients 48 7 44 45 62

Fig. 3  Comparison of cancer onset age among pathogenic, likely pathogenic and non-pathogenic groups. No difference (NS.) was found among 
the three groups for all cancers and each individual cancers
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The influences of germline mutations on patient 
phenotypes and prognosis
We further investigated the correlation between germline 
mutations and patient age and sex. It can be clearly seen 
from Fig.  3 that no difference in patient age was found 
among pathogenic, likely pathogenic and non-pathogenic 
groups for all genitourinary cancer patients or five indi-
vidual cancer types (Fig.  3, as labeled), suggesting that 
the germline mutations had no influence on cancer onset 
age. The number of male patients far overweight that of 
the female patients (male:female = 160:46) for all patients 
across the five cancer types (P < 0.001), and the observa-
tion was also true even if PRAD patients were excluded 
(male:female = 98:46) (P = 0.00039) (Table  2). Interest-
ingly, the number of female overweight that of the male 
in KIRC (female:male = 25:19), exhibiting significant dif-
ference to other genitourinary cancer (P < 0.001), even if 
PRAD was excluded (P = 0.00002) (Table 2).

The influence of germline mutations on patient over-
all survival was investigated in detail (Fig.  4). Kidney, 
bladder and prostate cancer patients with no patho-
genic germline mutations (non-pathogenic group, green 
lines) exhibited significantly better overall survival than 
those with pathogenic (orange lines) or likely pathogenic 
mutations (blue lines) (P values are shown as indicated; 
Fig. 4A). Specifically, we found P < 0.001 when pathogenic 
or likely pathogenic group was compared with non-path-
ogenic group in kidney cancer and prostate cancer, and 
P < 0.01 was found in the above comparisons in bladder 
cancer. For subtypes of kidney cancers, patients with 
non-pathogenic mutations exhibited significantly bet-
ter overall survival rate than those with pathogenic or 
likely pathogenic mutations in KIRC and KIRP (P values 
are shown as indicated, Fig.  4B). Specifically, we found 
P < 0.01 when pathogenic or likely pathogenic group was 
compared with non-pathogenic group in both KIRC 

Fig. 4  The prognosis of kidney, bladder and prostate cancer patients was affected by the pathogenicity of germline mutations. Significantly better 
overall survival was observed in non-pathogenic group (green lines) compared with pathogenic (orange lines) or likely pathogenic group (blue 
lines) in kidney, bladder and prostate cancer (A), and in subtypes of kidney cancer, including KIRC and KIRP (B). P values for each cancer are labeled. 
The P values between any two subgroups are listed below: kidney cancer (P vs. LP = 0.18; P vs. Non-P < 0.001; LP vs. Non-P < 0.001); bladder cancer 
(P vs. LP = 0.2024; P vs. Non-P = 0.0015; LP vs. Non-P = 0.0011); prostate cancer (P vs. LP = 0.81; P vs. Non-P < 0.001; LP vs. Non-P < 0.001); KICH (P 
vs. LP = 1.00; P vs. Non-P = 0.27; LP vs. Non-P = 1.00); KIRC (P vs. LP = 0.1108; P vs. Non-P = 0.0014; LP vs. Non-P < 0.001); KIRP (P vs. LP = 0.7304; P vs 
Non-P = 0.0004; LP vs. Non-P = 0.0004)
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and KIRP. However, no significant difference was found 
between non-pathogenic and likely pathogenic group in 
KICH (P > 0.05), possibly due to the limited number of 
patients in this cancer type. No significant difference in 
overall survival rate between pathogenic or likely patho-
genic groups was found in all cancers (P > 0.05).

The impact of germline mutations on genitourinary cancer 
risk
To investigate the risk for genitourinary cancers in indi-
viduals carrying pathogenic or likely pathogenic germline 
mutations, the mutation prevalence of all germline muta-
tions in general population was determined by search-
ing the gnomAD (Table 3 for pathogenic and Table 4 for 
likely pathogenic mutations). By comparing the germline 
mutation frequency found in this study with the variant 
prevalence in general population, the overall OR was cal-
culated for germline mutations in this study to avoid the 
bias from individual mutations. Table 3 presents a sum-
mary of demographic information, mutational status 
and OR for those with pathogenic mutations. The OR for 
individual mutations in each type of cancer is listed. The 
overall OR value of all pathogenic mutations was 14.88 
(95% CI 11.80–18.77), when compared with the general 
population. Similarly, Table  4 summarizes the demo-
graphic information, mutational status and OR for those 
with likely pathogenic mutations, and the overall OR 
value was 33.18 (95% CI 24.90–44.20) when compared 
with the general population. The significance of each OR 
was assessed by the adjusted P value and was presented 
in both tables. These analyses suggested that the patho-
genic and likely pathogenic germline mutations were sig-
nificant risk factors for genitourinary cancer.

Discussion
In this study, we systematically investigated the charac-
teristics of germline mutations and relevant phenotypes 
in five types of genitourinary cancers, and found a series 
of features, including highly cancer type-dependent top 
mutated genes, predominant mutation types with large 
fragment alterations, male-dominant patient distribu-
tion and age-irrelevant cancer onset. We also revealed 
significant correlation between pathogenic/likely patho-
genic mutations and patient prognosis and the risk of 
genitourinary cancers in population, suggesting them as 
prognostic and risk factors. Our study established the 
clinical relevance of these mutations and highlighted the 
importance of early detection and intervention in popu-
lation with pathogenic and likely pathogenic germline 
mutations.

Cancer patients with pathogenic or likely pathogenic 
germline mutations are a special group of patients with 
characteristic phenotypes, including early onset cancers, 

familial aggregation, multiple organ involvement, high 
level of malignancy, poor therapeutic response and poor 
prognosis [13–16]. The most commonly seen cancers 
with definite causes of germline mutations include Lynch 
syndrome and hereditary breast and ovarian cancer 
(HBOC) [17, 18], while recent evidence suggested that a 
subset patients with pathogenic germline mutations were 
also predisposed to higher lung cancer risk and familial 
aggregation [19–21]. It was reported that genes responsi-
ble for DNA damage repair (DDR) were mainly involved 
in germline mutations in hereditary cancers [8, 22]. 
This includes a series of genes, such as MLH1, MSH2, 
MSH6, PMS2, ATM, BLM, BRCA1, BRCA2, POLE and 
POLD1 [8, 22, 23]. Germline mutations of these genes 
may greatly enhance the risk of cancer, and certain group 
of mutations may correspond to certain cancer types. 
For example, genes in mismatch repair (MMR) (MLH1, 
MSH2, MSH6, PMS2, etc.) are predominantly linked to 
Lynch syndrome, and genes in homologous recombi-
nation repair (HRR) (BRCA1 and BRCA2) are mainly 
involved in HBOC. Other less-frequent germline muta-
tions are less cancer type-specific and may be found in 
any cancer.

Although hereditary cancers such as Lynch syndrome 
and HBOC have been widely studied, the germline muta-
tional status in genitourinary cancers and their correla-
tion with prognosis and cancer risk have been largely 
uninvestigated. This is possibly due to the low incidence 
of germline mutation-induced genitourinary cancer and 
the fact that there have been few definite links between 
certain germline mutations and certain type of genitou-
rinary cancer [24]. We therefore performed a database 
research and revealed interesting characteristics of ger-
mline mutations in genitourinary cancer and established 
their correlation with patient prognosis. It was not sur-
prising to find that ATM, BRCA1, PMS2 and BRCA2 were 
among genes with highest number of mutations. As men-
tioned above, these genes belong to DDR and are sensi-
tive to DNA damage. DNA damage is a common process 
happened during carcinogenesis, and factors including 
chronic inflammation, virus infection, carcinogen or 
toxin can all lead to DNA damage which initiate repair 
[25–27]. In normal tissues of subjects without germline 
mutations, repetitive damage and repair alter the micro-
environment and the normal cellular cycle controlled by 
a series of epigenetic and genetic mechanisms. Abnor-
mal gene regulation under repetitive damage and repair 
ultimately leads to accumulation of somatic mutations, 
and key mutations at driver genes result in malignant 
transformation of cells [28–30]. In contrast, for subjects 
with germline mutations at DDR genes, the DNA repair 
mechanism is impaired congenitally, cellular malignant 
transformation may therefore happen at early stage of life 
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and lead to tumor growth. This is the reason for high can-
cer incidence and low onset age for people with Lynch 
syndrome or HBOC-related germline mutations [25–27].
ATM gene mutations were also reported in recent stud-

ies on germline mutations in non-small cell lung cancer 
(NSCLC) [21, 31, 32]. It was reported to be the gene with 
highest germline mutation frequency in western popu-
lation [32]. Similarly, BRCA1, BRCA2 and PMS2 were 
also reported as germline mutations in cancers other 
than Lynch syndrome and HBOC [21, 31, 32]. BLM and 
VHL genes also contained germline mutations leading to 
Bloom syndrome [33] and Von Hippel-Lindau (VHL) dis-
ease [34], respectively. However, they were also found in 
other cancers with germline mutations. It is possible that 
DDR gene germline mutations can cause various types of 
cancers, with MMR genes preferentially found in Lynch 
syndrome and HRR genes preferentially found in HBOC. 
Functional subgroups of DDR genes may differentially 
affect carcinogenesis of different tissues.

It appeared from our study that bladder cancer and 
prostate cancer shared some common top mutated 
genes, while the top mutated genes were quite different in 
kidney cancer. In kidney cancer, two KIRC and one KIRP 
patients carried GJB2, three KIRP patients carried MET, 
one KIRC and two KRIP patients carried MUTYH and 
three KIRC patients carried VHL germline mutations. 
GJB2 germline mutations have been previously reported 
in congenital hearing loss [35] and rarely been reported 
in cancer [36]. Our study revealed GJB2 germline path-
ogenic mutations in KIRC and KIRP for the first time, 
providing new evidence for the pathogenicity of the gene 
in kidney cancers. In contrast, MET germline mutations 
have been implicated in many cancers, including KRIP 
[37], and it was not surprising that we also found MET 
germline mutations in this study. Similarly, MUTYH ger-
mline mutations have also been reported in many can-
cers, including kidney cancer [38, 39]. The germline VHL 
mutations have been linked to VHL disease, which is an 
inheritable condition leading to retinal and central nerv-
ous system hemangioblastomas, clear cell renal cell carci-
nomas, pheochromocytomas, pancreatic neuroendocrine 
tumors and endolymphatic sac tumors [40]. From our 
observations,.these top mutated genes were kidney-spe-
cific and distinguish themselves from those in bladder 
and prostate cancers, although they all belong to genitou-
rinary cancer. Therefore, the mechanism of aberrancies 
in kidney cancers with germline mutations may be largely 
different from that of bladder and prostate cancer.

Determination of pathogenicity of germline mutations 
is crucial for establishing the link between mutations 
and phenotypes. Here in this study we interpreted the 
pathogenicity of all reported mutations based on ACMG 
guidelines. Frameshift and stop gained mutations were 

highly possible pathogenic or likely pathogenic muta-
tions, indicating the inherit property of mutations. The 
interpretation would be more meaningful if the patho-
genic mutations happened to key DDR genes related to 
known phenotypes. In contrast, missense mutations are 
more difficult to interpret, unless sufficient evidence is 
available to link single amino acid change with pheno-
types. This is more likely to occur in single-gene related 
hereditary diseases, such as VHL disease [34, 41, 42]. In 
our study, pathogenic mutations of VHL gene were all 
missense mutations, reflecting the intrinsic properties 
of mutations in this disease. In contrast, the ratio of mis-
sense mutations was low in other highly mutated genes, 
such as ATM, BRCA1 and PMS2. It was interesting to 
find that nearly half of the mutations found in BLCA were 
stop gained mutations. These mutations spread many 
genes including both high and low frequency genes. This 
observation demonstrated characteristic mutational 
change in BLCA, suggesting high ratio of truncated DDR 
related proteins in the specific cancer.

It is widely known that male overweight female in 
patient number with a rough ratio of 2:1 in sporadic kid-
ney and urothelial cancer [43]. We found similar trend 
in genitourinary cancer with germline mutations, sug-
gesting that male is possibly more susceptible to geni-
tourinary cancer if the chance of mutation heredity is 
similar for both sexes. It is also possible that male may 
have higher penetrance than female. KIRC is the most 
common type of kidney cancer, and it was interest-
ing that female overweight male in the number of KIRC 
patients with germline mutations, although male over-
weight female in sporadic KIRC [43]. The reason for this 
discrepancy may include the manner of heredity, muta-
tion penetrance and environmental factors. Previous 
studies on Lynch syndrome and HBOC revealed signifi-
cantly lower onset age compared with sporadic colorec-
tal, breast and ovarian cancer patients [44, 45]. However, 
we did not find age difference between those with patho-
genic or likely pathogenic mutations and those with non-
pathogenic mutations. Since non-pathogenic mutations 
were comprehensive found in sporadic cancer patients 
and normal subjects, our observation suggested that ger-
mline mutations of genitourinary cancers did not affect 
the onset age.

Previous studies reported that untreated patients with 
Lynch syndrome or HBOC exhibited significantly worse 
prognosis than sporadic patients [13–16]. Our study 
with genitourinary cancer patients also showed identical 
trend, in which patients with pathogenic or likely patho-
genic mutations exhibited much worse overall survival 
rate than those with non-pathogenic mutations, suggest-
ing that pathogenic and likely pathogenic germline muta-
tions were risk factors for the prognosis of genitourinary 
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cancer patients. Furthermore, the OR values we cal-
culated strongly supported the notion that those with 
pathogenic or likely pathogenic germline mutations were 
in much higher risk for developing all types of genitouri-
nary cancers than those without the germline mutations 
(general population). Our observation of higher overall 
OR in likely pathogenic mutations than pathogenic muta-
tions suggested that some likely pathogenic mutation 
may be essentially pathogenic, although limited available 
evidence does not support the pathogenic interpretation 
currently. These observations provided strong evidence 
for the necessity of early detection of germline mutations 
for those with strong family history and continuous sur-
veillance and early intervention for those with confirmed 
pathogenic or likely pathogenic germline mutations. On 
the other hand, it appeared from our study that no differ-
ence was found in overall survival rate between patients 
with pathogenic mutations and those with likely patho-
genic mutations. This suggested that some likely patho-
genic mutations may actually be pathogenic, although 
clinical evidence may be absent for interpretation of 
pathogenic for many likely pathogenic mutations, espe-
cially for frameshift and stop gained mutations.

Genitourinary cancer patients with pathogenic or likely 
pathogenic mutations may be treated with corresponding 
targeted drugs based on the availability of matched drugs 
for certain germline mutations. For example, locally 
advanced or metastatic genitourinary cancer patients 
with BRCA1/2 mutations may be treated with poly ADP-
ribose polymerase (PARP) inhibitors. Although it has 
long been known that PARP inhibitors were effective 
for prostate cancer with pathogenic or likely pathogenic 
BRCA1/2 mutations [46, 47], it was not until recently 
that evidence started to emerge that PARP inhibitors 
were also effective in other genitourinary malignancies 
[47–51], except in renal cell carcinoma, since no evidence 
on the presence of BRCA1/2 mutations has been availa-
ble in the cancer [52]. Similarly, locally advanced or met-
astatic cancer patients with germline mutations of MMR 
genes may be treated with immune checkpoint inhibitors 
such as PD-l inhibitors, as these cancers generally exhibit 
high tumor mutational burden and/or high microsatel-
lite instability [53]. Future development of targeted drugs 
for DDR pathway may open the door for new treatment 
strategies for genitourinary cancer patients with germline 
mutations.

This study had some limitations. First, the number 
of genitourinary cancer patients was limited since data 
was available from only 206 patients, which led to the 
limited number of patients in each individual cancer. 
Secondly, due to the lack of ethnic diversity and pre-
dominant male population, the current findings could 

be non-generalizable to non-White and female patients. 
Thirdly, the prognosis of patients may be influenced 
by therapeutic strategies, however, the information of 
therapy is not available in the TCGA database.

Conclusions
In this study, the germline mutational characteristics 
for genitourinary cancers have been comprehensively 
investigated. A series of pathogenic and likely patho-
genic germline mutations have been defined and their 
mutational landscape in several genitourinary cancers 
has been studied. Pathogenic and likely pathogenic ger-
mline mutations increased the risk and indicated poor 
prognosis of genitourinary cancers.
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