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Abstract 

Background:  Machine learning has many attractive theoretic properties, specifically, the ability to handle non pre-
defined relations. Additionally, studies have validated the clinical utility of mpMRI for the detection and localization of 
CSPCa (Gleason score ≥ 3 + 4). In this study, we sought to develop and compare machine-learning models incorpo-
rating mpMRI parameters with traditional logistic regression analysis for prediction of PCa (Gleason score ≥ 3 + 3) and 
CSPCa on initial biopsy.

Methods:  A total of 688 patients with no prior prostate cancer diagnosis and tPSA ≤ 50 ng/ml, who underwent 
mpMRI and prostate biopsy were included between 2016 and 2020. We used four supervised machine-learning algo-
rithms in a hypothesis-free manner to build models to predict PCa and CSPCa. The machine-learning models were 
compared to the logistic regression analysis using AUC, calibration plot, and decision curve analysis.

Results:  The artificial neural network (ANN), support vector machine (SVM), and random forest (RF) yielded similar 
diagnostic accuracy with logistic regression, while classification and regression tree (CART, AUC = 0.834 and 0.867) 
had significantly lower diagnostic accuracy than logistic regression (AUC = 0.894 and 0.917) in prediction of PCa and 
CSPCa (all P < 0.05). However, the CART illustrated best calibration for PCa (SSR = 0.027) and CSPCa (SSR = 0.033). The 
ANN, SVM, RF, and LR for PCa had higher net benefit than CART across the threshold probabilities above 5%, and the 
five models for CSPCa displayed similar net benefit across the threshold probabilities below 40%. The RF (53% and 
57%, respectively) and SVM (52% and 55%, respectively) for PCa and CSPCa spared more unnecessary biopsies than 
logistic regression (35% and 47%, respectively) at 95% sensitivity for detection of CSPCa.

Conclusion:  Machine-learning models (SVM and RF) yielded similar diagnostic accuracy and net benefit, while 
spared more biopsies at 95% sensitivity for detection of CSPCa, compared with logistic regression. However, no 
method achieved desired performance. All methods should continue to be explored and used in complementary 
ways.
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Background
Prostate cancer (PCa) is the most common malig-
nancy of the male reproductive system, with over one 
million cases and 358 989 deaths in 2018 [1, 2]. Pros-
tate-specific antigen (PSA) testing, introduced in the 
1990s, not only increased the incidence of clinically 
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insignificant PCa  (CSPCa, defined as Gleason score 
≥  3  +  4), but also led to an increased number of 
unnecessary biopsies. This is particularly the case in a 
PSA gray zone, at which 65–70% of men have a nega-
tive biopsy result [3]. In our study, the PCa and CSPCa 
were detected in 23% and 17%, 27% and 18%, 53% and 
47%, 68% and 66%, 73% and 68%, and 93% and 93% 
of the men with serum total PSA (tPSA) in the range 
of ≤ 10  ng/ml, 10–20  ng/ml, 20–30  ng/ml, 30–40  ng/
ml, 40–50  ng/ml, and > 50  ng/ml, respectively. There-
fore, the major challenge is to identify CSPCa among 
cases with serum tPSA ≤ 50 ng/ml at an early stage.

Studies have validated the clinical utility of multipar-
ametric resonance imaging (mpMRI) in the detection 
and localization of International Society of Urological 
Pathology grade ≥ 2 cancers [4, 5]. Additionally, pre-
dictive models have the potential to improve diagnos-
tic accuracy to influence disease trajectory and reduce 
healthcare costs [6, 7]. To reduce unnecessary biopsy 
and overdiagnosis, a dozen of nomograms have been 
used to help diagnose PCa and/or CSPCa, includ-
ing PCPT-RC [8], STHLM3 [9], ERSPC-RC [10], and 
CRCC-PC [11], which are based on standard statistical 
technique of logistic regression (LR).

Over the past decade, we have entered the era of big 
data, and major advancements have emerged in the 
fields of statistics, artificial intelligence technology 
and urological medicine [12, 13]. Machine learning-
assisted models have been proposed as a supplement 
or alternative for standard statistical techniques, 
including artificial neural network (ANN), support 
vector machine (SVM), classification and regres-
sion tree (CART), and random forest (RF). Machine 
learning has many attractive theoretic characteristics, 
specifically, the ability to deal with non-predefined 
relations such as nonlinear effects and/or interactions, 
at the cost of reducing interpretability and explana-
tion, especially for complex nonlinear models [14, 15]. 
However, model validation helps to discover domain-
relevant models with better generalization ability, and 
further implies better interpretability. These new algo-
rithms incorporating mpMRI parameters may help 
improve the diagnosis of CSPCa [16, 17], but available 
data is limited.

In this study, we sought to develop and evaluate of 
multiple supervised machine-learning models based 
on age, PSA derivates, prostate volume, and mpMRI 
parameters to predict PCa and CSPCa. Additionally, 
we compare our models with conventional LR analy-
sis to evaluate whether there were improvements in 
the diagnostic ability, using the same variables and 
population.

Methods
Study populations
This retrospective study was approved by the Institu-
tional Ethics Review Board, and a waiver of informed 
consent was obtained. Between April 2016 and March 
2020, prostate biopsy and mpMRI examination was done 
among 903 consecutive patients without a prior prostate 
biopsy. The 25 patients diagnosed with other types of 
tumors, 94 patients with incomplete data, and 96 patients 
with tPSA > 50  ng/ml were excluded leaving 688 cases 
available for analysis.

Data collection
The clinical variables including the age at prostate 
biopsy, serum tPSA and free PSA  (fPSA) level, reports 
of mpMRI examination, and results of prostate biopsy 
were extracted from clinical records. Prostate volume 
was measured using mpMRI examination, the ratio of 
fPSA (f/t PSA) was measured by dividing the (fPSA) by 
the tPSA, and the PSA density  (PSAD) was calculated 
by dividing the tPSA by the prostate volume. All mpMRI 
examination were performed using the 3.0-T MRI system 
with a pelvic phased-array coil, complaint with European 
Society of Urology Radiology guidelines. The scan proto-
col for all patients included T2-weighted imaging, diffu-
sion-weighted imaging, and dynamic contrast-enhanced 
imaging. The prostate mpMRI images were interpreted 
by two experienced genitourinary radiologists with at 
least three years of prostate mpMRI experience. The 
mpMRI results were divided into groups according to 
the reports: “negative”, “equivocal”, and “suspicious” for 
the presence of PCa (MRI-PCa), seminal vesicle invasion 
(MRI-SVI), lymph node invasion (MRI-LNI) according to 
the mpMRI reports.

All patients underwent transrectal ultrasound-guided 
systematic12-point biopsy according to the same proto-
col by three surgeons. If suspected malignant nodules by 
mpMRI and/or ultrasound, additional 1–5 needles were 
performed in regions with cognitive MRI-ultrasound 
fusion and/or abnormal ultrasound echoes. Biopsy cores 
were analyzed according to the standards of International 
Society of Urological Pathology.

Machine learning‑assisted methods
Four types of supervised machine learning-based 
methods (ANN, SVM, CART, and RF) were applied in 
this study. Nine variables comprising age, PSA deri-
vates (tPSA, f/tPSA, and PSAD), prostate volume, 
mpMRI results (MRI-PCa, MRI-SVI, and MRI-LNI), 
and results of prostate biopsy were used to develop the 
PCa and CSPCa prediction models. Age of patients, 
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PSA derivates, and prostate volume were normalized 
[(value  −  minimum value)/(maximum value  −  mini-
mum value)] to fall in between 0 and 1, and entered 
as continuous variables. The mpMRI parameters were 
entered as dummy variables, and biopsy results were 
entered as binary variables.

The machine learning models were fit using the pack-
ages in R (version 3.6.2). The ANN is based on biologi-
cal neural networks and composed of interconnected 
groups of artificial neurons [15]. And it was trained 
using the function of “Std_Backpropagation” in the 
package of “RSNNS”, and used three hyperparameters: 
size, learnFuncParams, and maxit. The three hyperpa-
rameters for ANN are c(3,3), 0.05 and 100 in the PCa 
model, and c(4,2), 0,05, and 100 in the CSPCa model. 
The SVM model is a machine learning model that finds 
an optimal boundary between the possible outputs. It 
was trained using the package of “e1071”, used a radical 
kernel and consisted of three hyperparameters: degree, 
cost, and gamma. The three hyperparameters for SVM 
are 3, 1, and 0.005 in the PCa model, and 3, 2 and 0.005 
in the CSPCa model. The CART is based on the recur-
sive partitioning method and belongs to a family of 
nonparametric regression methods. It was trained with 
the package of “rpart” and used three hyperparameters: 
minsplit, minbucket, and complexity parameter cp. The 
three hyperparameters for CART are 15, 5, and 0.01 in 
the PCa model, and 10, 3 and 0.01 in the CSPCa model. 
The RF is an ensemble learning method which that gen-
erating multiple decision trees and forming a “forest” to 
jointly determine output class [18]. The RF model was 
trained with using the package of “randomForest” in R, 
and used two hyperparameters: ntree, and mtry in this 
study. The two hyperparameters for RF are 500 and 2 in 
the PCa and CSPCa models.

Statistical analysis
All data cleaning and analyses were conducted using R 
statistical software (Version 3.6.2). Diagnostic accuracy 
of the models was evaluated using the area under the 
ROC curve (AUC). The 95% confidence interval (CI) 
and comparisons of AUCs were determined using the 
method of DeLong et  al. [19]. Performance character-
istics of the models were examined by calibration plots. 
Calibration was assessed by grouping men in the vali-
dation cohort into delices (each of size 20 or 21), and 
then comparing the mean of predicated probabilities 
and the observed proportions. The sum squares of the 
residuals (SSR) was used to assess the deviation of cal-
ibration plots from the 45° line [20]. The clinical util-
ity of the models was evaluated with a decision-curve 
analysis.

Results
Patient characteristics
A total of 688 cases were included in this study. The 
patients (480, 70%) biopsied before December 31, 2018 
were used as training cohort, and the remaining patients 
(208, 30%) were used as validation cohort. Table 1 sum-
marized the patient characteristics stratified by patho-
logical results. PCa patients displayed higher age (70 vs 
66 years, P < 0.001), tPSA (20.8 vs 10.5 ng/ml, P < 0.001), 
and PSAD (0.46 vs 0.18, P < 0.001), while lower f/tPSA 
(0.11 vs 0.15, P < 0.001) and prostate volume (38 vs 58 ml, 
P < 0.001) compared with no-PCa (Table 1). Additionally, 
the proportions for suspicious presence of PCa (73% vs 
22%), SVI (31% vs 0.7%), and LNI (10% vs 0%) by mpMRI 
examination were higher among PCa patients than no-
PCa (Table 1). The CSPCa patients displayed similar pat-
tern with no-CSPCa patients (Table 1).

Comparison of predictive accuracy 
between machine‑learning models
In our study, four machine-learning models based on age, 
PSA derivates, prostate volume, and mpMRI parameters 
were developed to predict initial biopsy results. Among 
these machine-learning assisted models for PCa and 
CSPCa, the SVM (AUC = 0.903 for PCa and AUC = 0.925 
for CSPCa), RF (AUC = 0.897 for PCa and AUC = 0.916 
for CSPCa), LR (AUC = 0.894 for PCa and AUC = 0.917 
for CSPCa), and ANN (AUC = 0.891 for PCa and 
AUC = 0.911 for CSPCa) models outperformed CART 
(AUC = 0.834 for PCa and AUC = 0.867 for CSPCa) 
model in diagnostic accuracy (all P < 0.05); Whilst the 
pairwise comparison of AUCs were insignificant amongst 
ANN, SVM, RF, and LR models for PCa and CSPCa, 
respectively (each P > 0.05) (Fig. 1).

Regarding PCa models, the calibration plot of predi-
cated probabilities against observed proportion of 
PCa indicated excellent concordance in CART model 
(SSR = 0.027), followed by SVM (SSR = 0.049), LR 
(SSR = 0.063), ANN (SSR = 0.091), and RF (SSR = 0.125) 
(Fig.  2a). For CSPCa models, the calibration plot of 
CART also had good agreement between the predi-
cated probability and observed ratio of CSPCa on biopsy 
(SSR = 0.033), followed by LR (SSR = 0.046), ANN 
(SSR = 0.065), RF (SSR = 0.082), and SVM (SSR = 0.142) 
models (Fig. 2b).

Impact of machine learning‑assisted models on biopsies 
avoided
To further assess potential clinical benefit of the machine 
learning-assisted models, we performed DCA using the 
predicated risk in the validation cohort. It was observed 
that the ANN, SVM, RF, and LR models for PCa had 
higher net benefit than CART model across the threshold 



Page 4 of 8Yu et al. BMC Urol           (2021) 21:80 

probabilities above 5%, and the five models for CSPCa 
displayed similar net benefit across the threshold prob-
abilities below 40% (Fig. 3).

Clinical consequences of using machine learning-
assisted models at given sensitivity, including the number 
of biopsies that could be spared and the number of PCa 
by Gleason score that would be missed were displayed in 

Table  2. Using the SVM (74/143, 52%) and RF (76/143, 
53%) models for PCa, significantly more unnecessary 
biopsies would be spared at 95% sensitivity for detec-
tion of CSPCa, compared with using ANN (53/143, 37%) 
and LR (50/143, 35%) models (all P < 0.05) (Table  2). 
Additionally, RF (81/143, 57%), SVM (79/143, 55%), and 
ANN (76/143, 53%) models for CSPCa spared more 

Table 1  The clinical characteristics of enrolled patients stratified by pathological results between April 2016 and March 2020

PCa prostate cancer, CSPCa clinically significant prostate cancer, GS Gleason score, tPSA total prostate-specific antigen, f/tPSA free/total PSA, PV prostate volume, SVI 
seminal vesicle invasion, LNI lymph node invasion
† Data are presented as median (quartile range) unless other indicated

Clinical characteristics PCa (GS ≥ 3 + 3) CSPCa (GS ≥ 3 + 4)

No (n = 443)† Yes (n = 245)† P No (n = 488)† Yes (n = 200)† P

Age (years) 66 (61–72) 70 (63–76) < 0.001 66 (61–72) 70 (63–76) < 0.001

tPSA (ng/ml) 10.5 (6.65–17.0) 20.8 (9.67–30.3) < 0.001 10.9 (6.70–17.1) 23.0 (10.9–33.1) < 0.001

f/tPSA 0.15 (0.10–0.21) 0.11 (0.07–0.17) < 0.001 0.15 (0.10–0.21) 0.11 (0.07–0.17) < 0.001

PSAD (ng/ml2) 0.18 (0.11–0.29) 0.46 (0.25–0.73) < 0.001 0.19 (0.11–0.30) 0.52 (0.30–0.80) < 0.001

PV (ml) 58 (39–82) 38 (27–58) < 0.001 57 (38–81) 37 (27–54) < 0.001

MRI-PCa, No. (%) < 0.001 < 0.001

 Negative 250 (56) 37 (15) 264 (54) 23 (12)

 Equivocal 95 (21) 29 (12) 104 (21) 20 (10)

 Suspicious 98 (22) 179 (73) 120 (25) 157 (79)

MRI-SVI, No. (%) < 0.001 < 0.001

 Negative 439 (99) 163 (67) 481 (99) 121 (61)

 Equivocal 1 (0.2) 7 (3) 1 (0.2) 7 (4)

 Suspicious 3 (0.7) 75 (31) 6 (1) 72 (36)

MRI-LNI, No. (%) < 0.001 < 0.001

 Negative 432 (98) 202 (82) 475 (97) 159 (80)

 Equivocal 11 (2) 18 (7) 12 (2) 17 (9)

 Suspicious 0 (0) 25 (10) 1 (0.2) 24 (12)

Fig. 1  Receive operating characteristic (ROC) curves of 
machine-learning and logistic regression models for predicting 
prostate cancer (PCa) and clinically significant prostate cancer 
(CSPCa) in the validation cohort. a PCa: Gleason score ≥ 3 + 3; b 
CSPCa: Gleason score ≥ 3 + 4. Abbreviations ANN artificial neural 
network, SVM support vector machine, CART​ classification and 
regression tree, RF random forest, LR logistic regression

Fig. 2  Calibration plot of observed vs predicted rick of prostate 
cancer (PCa) and clinically significant prostate cancer (CSPCa) using 
machine-learning and logistic regression models in the validation 
cohort. a: PCa: Gleason score ≥ 3 + 3; b CSPCa: Gleason score ≥ 3 + 4. 
Abbreviations ANN artificial neural network, SVM support vector 
machine, CART​ classification and regression tree, RF random forest, LR 
logistic regression
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unnecessary biopsies than LR (67/143, 47%) model at 
95% sensitivity (Table 2). At 95% sensitivity for detection 
of CSPCa, the RF and SVM models for CSPCa spared 
more unnecessary biopsies than the corresponding mod-
els for PCa (Table 2). However, the differences were insig-
nificant (P = 0.688 for RF model, and P = 0.686 for SVM 
model).

Discussion
In our study, we developed, validated, and compared 
the machine learning-assisted models with LR analysis 
to predict PCa and CSPCa among patients with serum 
tPSA ≤ 50  ng/ml, using the same variables and popula-
tion. The ANN, SVM, and RF models yielded similar 
diagnostic accuracy and net benefit with LR, and CART 
had lower diagnostic accuracy than LR in prediction of 
PCa and CSPCa. However, the CART model illustrated 
best calibration for PCa and CSPCa. And the SVM and 
RF models for PCa and CSPCa spared more biopsies than 
LR at 95% sensitivity for detection of CSPCa.

PCa was detected in 20% of the subjects with serum 
tPSA in the gray zone (4–10 ng/ml) in our study (data not 
shown). This was similar with the PCa detection rates of 
the same group of patients in Singapore (21%) [21], Japan 
(20%) [22], and Korea (20%) [23], while lower than that 
in Cleveland Clinic (40%) and Durham VA hospital (43%) 
[24]. This may suggest that the relationship between PCa 
risk and PSA level varies between Asian and Western 
populations, and it is essential to establish area-based 
risk prediction models. Our study revealed that the rates 
of PCa and CSPCa increased with tPSA, and CSPCa 
were detected in 279/301 (93%) of the men with serum 
tPSA > 50  ng/ml. Therefore, we recommended all cases 
with tPSA > 50  ng/ml to undergo prostate biopsy, and 
developed machine learning-assisted models to predict 

PCa and CSPCa among patients with tPSA ≤ 50 ng/ml (in 
accordance with ERSPC-RC) [10].

A growing body of literatures have validated the clini-
cal utility of mpMRI in the detection and localization 
of CSPCa [4]. However, as far as we know, the knowl-
edge about the performance of risk prediction mod-
els incorporating mpMRI parameters is limited. We 
developed machine learning-assisted models based 
on age, PSA derivates, prostate volume, and mpMRI 
parameters in our study. The digital rectal examination 
and transrectal ultrasound were excluded as risk fac-
tors because of potential interobserver variability in its 
assessment [3, 25]. The ANN, SVM, RF and LR models 
(AUC = 0.891–0.903 for PCa, and AUC = 0.911–0.925 
for CSPCa) incorporating mpMRI parameters devel-
oped in our study outperformed CRCC-PC (AUC = 0.80 
for PCa, and AUC = 0.83 for CSPCa) and MRI-ERSPC-
RC (AUC = 0.85 for CSPCa). This may suggest that the 
combination of mpMRI parameters including MRI-PCa, 
MRI-SVI, and MRI-LNI could improve the diagnos-
tic accuracy of prediction model for PCa and CSPCa. 
The mpMRI parameters included in our models were 
extracted from the reports of mpMRI examination and 
were somewhat subjective. Some study showed that 
mpMRI radiomics features significantly associated with 
PCa aggressiveness on the histopathological and genomic 
levels [26, 27]. And addition of mpMRI radiomics may 
enhance the objectivity and diagnostic accuracy of pre-
diction model.

For prediction of PCa, ANN has become (alongside LR) 
one of the fastest growing and most effective machine-
learning algorithms [15]. Theoretically, ANN has consid-
erable advantages over traditional statistical approaches, 
which automatically allow no explicit distributional 
assumptions, arbitrary nonlinear associations, and possi-
ble interactions. A systematic review including 28 studies 
showed that ANN outperformed regression in 10 (36%) 
cases, ANN and regression tied in 14 (50%) cases, and 
regression wined in the remaining 4 (14%) cases [14]. In 
our study, ANN displayed similar diagnostic accuracy 
and net benefit for prediction of PCa and CSPCa with 
LR. Based on the available data, ANN does not have sig-
nificantly advantages in clinical practice compared with 
LR, and should not replace traditional LR for the classifi-
cation of medical data.

Another three machine-learning algorithms (SVM, 
CART, and RF) were developed to predict PCa and 
CSPCa in our study. Some studies showed that RF algo-
rithms outperformed LR model in the fields of identifying 
peripheral artery disease and mortality risk [28], predict-
ing clinical outcomes after robot-assisted radical prosta-
tectomy [29], and predicting clinical outcomes of large 
vessel occlusion before mechanical thrombectomy [30]. 

Fig. 3  Decision curve analysis (DCA) of machine-learning and logistic 
regression models for predicting prostate cancer (PCa) and clinically 
significant prostate cancer (CSPCa) in the validation cohort. a PCa: 
Gleason score ≥ 3 + 3; b CSPCa: Gleason score ≥ 3 + 4. Abbreviations 
ANN artificial neural network, SVM support vector machine, CART​ 
classification and regression tree, RF random forest, LR logistic 
regression
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The RF and SVM showed similar diagnostic accuracy 
with LR model in prediction of PCa and CSPCa in our 
study, while spared more unnecessary biopsies than LR 
model at given sensitivity of 98% or 95% (Table 2). Above 
all, our study did not have enough power to draw con-
clusion that ANN, SVM, CART and RF models outper-
formed traditional LR analysis in diagnostic of CSPCa. 
Now we are entering the era of big data, in which com-
plete patient data including macro-level physiology and 

behavior, laboratory and imaging studies, and “-omic” 
data, are becoming more readily available. Machine 
learning may become an indispensable tool to handle the 
complex data [6]. Further validation is required.

Conclusions
Our study developed and compared machine-learning 
models with LR analysis to predict PCa and CSPCa. The 
SVM and RF models yielded similar diagnostic accuracy 

Table 2  Percentage of biopsies that would be spared or delayed using machine-learning and logistic regression models at given 
sensitivity for detection of CSPCa in the validation cohorts

PCa prostate cancer, CSPCa clinically significant prostate cancer, GS Gleason score, ANN artificial neural network, SVM support vector machine, CART​ classification and 
regression tree, RF random forest, LR logistic regression, NA not applicable
† Number of biopsies spared = number of unnecessary biopsy avoided + number of biopsy delayed

Models Sensitivity for 
detection of 
CSPCa

Cut-off for 
predicted risk 
(%)

Biopsies sSpared 
† (n = 208), n (%)

Unnecessary biopsy avoided Biopsy delayed

GS < 3 + 3 
(n = 131), n 
(%)

GS = 3 + 3 
(n = 12), n 
(%)

GS = 3 + 4 
(n = 11), n 
(%)

GS = 4 + 3 
(n = 18), n 
(%)

GS ≥ 4 + 4 
(n = 36), n 
(%)

Biopsies spared or delayed using PCa models at given sensitivity for detection of CSPCa

ANN 64/65 (98%) 9 34 (16) 32 (24) 1 (8) 0 (0) 1 (6) 0 (0)

SVM 64/65 (98%) 11 57 (24) 55 (42) 1 (8) 0 (0) 0 (0) 1 (3)

CART​ 64/65 (98%) NA NA NA NA NA NA NA

RF 64/65 (98%) 7 61 (29) 57 (44) 3 (25) 1 (9) 0 (0) 0 (0)

LR 64/65 (98%) 7 30 (14) 27 (21) 2 (17) 1 (9) 0 (0) 0 (0)

ANN 62/65 (95%) 11 56 (25) 51 (39) 2 (17) 1 (9) 1 (6) 1 (3)

SVM 62/65 (95%) 14 77 (37) 71 (54) 3 (25) 1 (9) 1 (6) 1 (3)

CART​ 62/65 (95%) NA NA NA NA NA NA NA

RF 62/65 (95%) 11 79 (38) 73 (56) 3 (25) 1 (9) 2 (11) 0 (0)

LR 62/65 (95%) 10 53 (25) 47 (36) 3 (25) 1 (9) 1 (6) 1 (3)

ANN 59/65 (91%) 27 109 (52) 99 (76) 4 (33) 3 (27) 1 (6) 2 (6)

SVM 59/65 (91%) 23 110 (53) 100 (76) 4 (33) 4 (36) 1 (6) 1 (3)

CART​ 57/65 (88%) 10 104 (50) 90 (69) 6 (50) 4 (36) 1 (6) 3 (8)

RF 59/65 (91%) 20 101 (49) 91 (69) 4 (33) 4 (36) 2 (11) 0 (0)

LR 59/65 (91%) 24 107 (51) 97 (74) 4 (33) 4 (36) 1 (6) 1 (3)

Biopsies spared or delayed using CSPCa models at given sensitivity for detection of CSPCa

ANN 64/65 (98%) 7 60 (29) 58 (44) 1 (8) 0 (0) 0 (0) 1 (3)

SVM 64/65 (98%) 9 69 (33) 65 (50) 3 (25) 0 (0) 0 (0) 1 (3)

CART​ 64/65 (98%) NA NA NA NA NA NA NA

RF 64/65 (98%) 7 79 (38) 75 (57) 3 (25) 1 (9) 0 (0) 0 (0)

LR 64/65 (98%) 6 61 (29) 57 (44) 3 (25) 0 (0) 1 (6) 0 (0)

ANN 62/65 (95%) 8 79 (38) 75 (57) 1 (8) 1 (9) 1 (6) 1 (3)

SVM 62/65 (95%) 10 82 (39) 76 (58) 3 (25) 1 (9) 1 (6) 1 (3)

CART​ 62/65 (95%) NA NA NA NA NA NA NA

RF 62/65 (95%) 8 84 (40) 78 (60) 3 (25) 1 (9) 2 (11) 0 (0)

LR 62/65 (95%) 7 70 (34) 64 (49) 3 (25) 1 (9) 1 (6) 1 (3)

ANN 59/65 (91%) 9 96 (46) 86 (66) 4 (33) 4 (36) 1 (6) 1 (3)

SVM 59/65 (91%) 18 124 (60) 112 (85) 6 (50) 4 (36) 1 (6) 1 (3)

CART​ 58/65 (89%) 10 109 (52) 97 (74) 5 (42) 4 (36) 1 (6) 2 (6)

RF 59/65 (91%) 13 102 (49) 92 (70) 4 (33) 3 (27) 3 (17) 0 (0)

LR 59/65 (91%) 14 105 (50) 32 (24) 4 (33) 3 (27) 1 (6) 2 (6)
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and net benefit with LR, while spared more unnecessary 
prostate biopsies than LR model at 95% sensitivity for 
detection of CSPCa. CART model illustrated best cali-
bration for the prediction of PCa and CSPCa. Our study 
did not have sufficient power to draw conclusion that 
machine-learning models outperformed traditional LR 
analysis in prediction of PCa and CSPCa. All methods 
should continue to be used and explored in complemen-
tary ways.
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