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Abstract
Background  Robot-assisted total knee arthroplasty (r-TKA) can reportedly achieve more accurate implant 
positioning than conventional total knee arthroplasty (c-TKA), although its learning curve is controversial. Moreover, 
few studies have investigated r-TKA in Asians, who have different anatomical characteristics. This study aimed to 
determine the learning curve for r-TKA and compare implant positions between r-TKA and c-TKA according to the 
learning curve in Asian patients.

Methods  This prospective study included 50 consecutive c-TKAs (group C), followed by 50 consecutive r-TKAs 
conducted using the MAKO robotic system (Stryker, USA). Cumulative summation analyses were performed to assess 
the learning curve for operative time in r-TKA. Accordingly, the r-TKA cases were divided into the initial (group I) and 
proficiency cases (group P). The femoral and tibial component positions in the coronal, sagittal, and axial planes and 
lower limb alignment were compared among the three groups.

Results  r-TKA was associated with a learning curve for operative time in 18 cases. The operative time was significantly 
shorter in groups C and P than that in group I, with no significant difference between groups C and P. Groups I and 
P demonstrated fewer outliers with respect to lower limb alignment, femoral component coronal position, axial 
position, and tibial component sagittal position than those in group C, with no significant difference between groups 
I and P.

Conclusion  The operative time did not differ significantly between r-TKA and c-TKA after the learning curve. 
Surgeons could expect more accurate and reproducible lower limb alignment and implant positioning with r-TKA in 
Asian patients, irrespective of the learning curve.
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Background
Knee osteoarthritis (OA) can cause progressive pain and 
dysfunction, eventually leading to a decline in the qual-
ity of life. Total knee arthroplasty (TKA) is considered 
the most effective treatment for pain relief and functional 
recovery in patients with severe knee OA [1, 2]. However, 
there are conflicting reports regarding patient dissatisfac-
tion even after TKA [3, 4]. Although the causes of dis-
satisfaction are numerous, improper positioning of the 
prosthesis due to inaccurate bone resection could be a 
major reason. Numerous studies have reported that com-
ponent malpositioning can lead to residual pain, instabil-
ity, and functional deterioration, which eventually affects 
the longevity of the prosthesis [5–9]. Therefore, accurate 
prosthesis positioning is essential for improving clinical 
outcomes and implant survival after TKA [10, 11].

In conventional TKA (c-TKA), the incidence of outli-
ers exceeding 3° from the planned lower limb alignment 
or implant position has been reported to be up to 30% 
[12]. Robot-assisted total knee arthroplasty (r-TKA) has 
recently gained popularity in the field of arthroplasty to 
reduce these outliers. Several studies have reported that 
r-TKA demonstrated better radiological and clinical out-
comes compared to c-TKA with respect to lower limb 
alignment, knee joint stability, functional recovery, length 
of hospital stay, and prosthesis survivorship, although 
there are some concerns regarding the learning curve 
[13–16]. However, these findings are not fully applicable 
to Asian patients because previous studies only focused 
on Western populations. Asian patients have different 
body features and anatomical characteristics, such as a 
higher incidence of constitutional varus deformity, ante-
rior and lateral femoral bowing, and proximal tibia varus 
compared to their Western counterparts, which could 
affect not only the learning curve of r-TKA, but also 
lower limb alignment and implant position after TKA. 
However, studies evaluating the learning curve in r-TKA 
or comparing the lower limb alignment and implant posi-
tion between r-TKA and c-TKA in Asian patients are 
lacking.

Therefore, this study aimed to determine the learning 
curve for r-TKA and compare the lower limb alignment 
and implant position between r-TKA and c-TKA accord-
ing to the learning curve of r-TKA in Asian patients. We 
hypothesized that accurate lower limb alignment and 
implant position in Asian patients may be better achieved 
with r-TKA than those with c-TKA, irrespective of the 
stages in the learning curve.

Materials and methods
Patients
This prospective study was conducted at a single cen-
ter between August 2021 and June 2022. A total of 94 
patients with 110 knees who experienced failure of 

conservative treatment for knee OA (Kellgren–Lawrence 
grades III–IV) and decided to undergo TKA were offered 
enrollment. The exclusion criteria were as follows: insuf-
ficient bone stock that needed an augmentation block or 
long stem, the presence of neurological dysfunction that 
limited the standing position, and a history of osteotomy 
with the affected knee. After study participants provided 
informed consent, 84 patients with 100 knees were finally 
included in the study, according to the above-mentioned 
criteria. The patients were assigned to different treatment 
groups according to the date of surgery. The first 50 con-
secutive knees underwent c-TKA (group C); thereafter, 
50 consecutive knees underwent r-TKA after installa-
tion of the MAKO Robotic Arm Interactive Orthopedic 
System (RIO; Stryker, Kalamazoo, MI, USA) in Decem-
ber 2021. Based on the inflection point of the learning 
curve [17, 18], r-TKA cases were divided into initial cases 
(group I) and proficiency cases (group P) (Fig.  1). This 
study was approved by the Institutional Review Board of 
Hallym University Kangnam Sacred Heart Hospital.

Surgical technique and rehabilitation
All surgical procedures were conducted by a single high-
volume (> 200 cases per year) surgeon (KJI) specializ-
ing in knee arthroplasty without previous navigation or 
robotic surgery experience. Mandatory theoretical and 
one cadaveric training were performed with MAKO 
RIO® for 4 h prior to the commencement of the study. 
All patients in both groups underwent treatment with an 
identical surgical protocol, except for the MAKO RIO® in 
the r-TKA group. A posterior stabilizing prosthetic (Tri-
athlon®, Stryker, Kalamazoo, MI, USA) was implanted 
with patellar resurfacing using a standard medial parapa-
tellar approach and tourniquet inflation (300 mmHg).

In the case of r-TKA, two pins were inserted into the 
femur and tibia 10 cm away from the previous skin inci-
sion. Femoral and tibial arrays were placed on the pins, 
and the bone surface was registered. The patient-specific 
computed tomography (CT)-based bone model was con-
firmed using the registered landmarks, followed by bone 
resection, which was performed based on the planned 
preoperative values.

For c-TKA, bone resection was performed with refer-
ence to the intramedullary (IM) guide of the distal femur 
and the extramedullary guide (EM) of the proximal tibia. 
The femoral entry point was drilled at the intersection of 
the IM centerline and distal cortex of the femur along the 
sagittal and coronal planes. The femoral component rota-
tion was set to be parallel to the surgical transepicondylar 
axis (sTEA). The tibial alignment guide was positioned 
parallel to the longitudinal axis of the tibia in the coronal 
plane. Thereafter, it was adjusted to the target slope of 2° 
in the sagittal plane.
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The tourniquet was deflated after final fixation of the 
cemented prosthesis, and the remaining focus of bleed-
ing was cauterized after manual compression using gauze 
packing at the surgical site during cement hardening. A 
closed suction drain was placed in the joint, and the cap-
sule was closed in a watertight fashion. Range of motion 
exercises were initiated on postoperative day (POD) 1. 
The drain was removed, and ambulation with a walker 
was initiated on POD 2.

Radiographic evaluation
All patients underwent a standing radiograph series on 
POD 6 to determine the accuracy of prosthesis position-
ing. The hip–knee–ankle (HKA) angle was defined as the 
angle formed by the mechanical axis of the femur and 
tibia on full-length standing anteroposterior (AP) radio-
graphs. Alignment of the femoral and tibial components 
was measured in the coronal and sagittal planes. Coronal 
femoral alignment (CFA) was defined as the medial angle 
between the line connecting the femoral component 

Fig. 1  Flow diagram of patient enrollment
* c-TKA, conventional total knee arthroplasty; r-TKA, robot-assisted total knee arthroplasty; group C, conventional total knee arthroplasty group; group I, 
initial phase group; group P, proficiency phase group
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condyles and the mechanical axis of the femur on full-
length standing AP radiographs. Coronal tibial align-
ment (CTA) was defined as the medial angle between the 
horizontal tibial tray and the mechanical axis of the tibia 
on full-length standing AP radiographs. Sagittal femoral 
alignment (SFA) was the proximal angle between the line 
perpendicular to the distal cement surface and the ana-
tomical axis of the femur on lateral standing radiographs. 
Sagittal tibial alignment (STA) was defined as the angle 
between the axis of the horizontal tibial tray and the ana-
tomical axis of the tibia on lateral standing radiographs 
(Fig. 2). All patients underwent CT assessment on POD 2 
to evaluate the rotational alignment of the femoral com-
ponent. The angle between the sTEA and posterior con-
dylar axis (PCA) was denoted as the femoral component 
rotation (FCR) (Fig. 3).

In the c-TKA group, the target alignment of CFA, CTA, 
and SFA was determined to be 90°, HKA was 0°, and STA 
was 88°. The rotational alignment of the femoral com-
ponent was parallel to the surgical TEA. In the r-TKA 
group, all target alignments were planned according to 
the MAKO system using a patient-specific CT-based 
bone model. This procedure was optimized by assessing 
the implant size, limb alignment, and implant position 
using virtual implant templates.

The differences between the target alignment values 
and the true alignment values were calculated to deter-
mine the position error. The valgus of the coronal align-
ment was denoted as a negative value, and the varus was 
denoted as a positive value. Flexion of sagittal alignment 
was denoted as a negative value and extension as a posi-
tive value. Internal rotation of the femoral component 
was negative, and external rotation was positive. Differ-
ence values diverging at ± 3° were considered outliers. 
The operative time, which was defined as the interval 
between initial skin incision and wound closure, was 
determined from the anesthesia record.

Statistical analysis
Sample size calculation was performed in accordance 
with a previous study that evaluated the outlier ratio of 
r-TKA compared to c-TKA. A minimum of 50 knees 
were required in each group to perform Fisher’s exact 
test with a power of 0.80 and alpha value of 0.05 [19].

Data analysis was performed using the independent 
t-test and one-way analysis of variance for continuous 
variables, and Pearson’s chi-square test or Fisher’s exact 
test for categorical variables. The learning curve of the 
operative time in r-TKA was determined using cumula-
tive summation (CUSUM) analysis, according to previ-
ous studies [18, 20, 21].

Radiographic parameters were measured twice by 
two independent observers, with a 2-week interval 
between the measurements. Intra- and inter-observer 

Fig. 3  Component position angle on CT. The FCR was determined as the 
angle between the sTEA and PCA
*CT, computer tomography; FCR, femoral component rotation; sTEA, surgi-
cal transepicondylar axis; PCA, posterior condylar axis

 

Fig. 2  Component position angle on radiograpy. CFA was determined as 
the medial angle between the line connecting the femoral component 
condyles and the mechanical axis of the femur. CTA was defined as the 
medial angle between the horizontal tibial tray and the mechanical axis 
of the tibia. SFA was the proximal angle between the line perpendicular 
to the distal cement surface and the anatomical axis of the femur. STA was 
defined as the angle between the axis of the horizontal tibial tray and the 
anatomical axis of the tibia
*CFA, coronal femoral alignment; CTA, coronal tibial alignment; SFA, sagit-
tal femoral alignment; STA, sagittal tibial alignment
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measurement reliabilities were assessed using intraclass 
correlation coefficients. All statistical analyses were per-
formed using SPSS Statistics (version 25.0, IBM, USA). 
Statistical significance was set at p < 0.05.

Results
The demographic characteristics of the study population 
are presented in Table 1. CUSUM analysis revealed that 
r-TKA was associated with a learning curve for operative 
time in 18 cases (Fig. 4). The operative time differed sig-
nificantly among the three groups; the operative time was 
significantly shorter in groups C and P than that in group 
I, with no significant difference between groups C and P 
(group C: 91.94 ± 12.96 min, group I: 112.75 ± 13.32 min, 
and group P: 98.53 ± 12.45 min; p < 0.001). Groups I and 
P demonstrated significant differences in the position 
error of sagittal tibial component (group C: 3.72 ± 2.42°, 
group I: 0.86 ± 0.82°, and group P: 0.84 ± 0.77°; p < 0.001) 
and FCR (group C: −2.11 ± 1.58°, group I: 1.62 ± 1.12°, 
and group P: 1.30 ± 0.83°; p < 0.001) than those in group 
C. However, no significant differences were observed 
in any radiographic parameters between groups I and P 
(Table 2).

Groups I and P had fewer outliers in terms of the 
HKA angle (group C: 20%, group I: 6%, and group P: 
3%; p = 0.048), femoral component coronal position 
(group C: 18%, group I: 0%, and group P: 3%; p = 0.037), 
axial position (group C: 12% and groups I and P: no out-
lier; p < 0.043), tibial component sagittal position (group 
C: 22%, group I: 11%, and group P: 6%; p = 0.007) than 
those in group C, and the differences between groups I 
and P were not significant (Table 3). The intra- and inter-
observer measurement reliabilities were excellent for all 
parameters (ICC > 0.8, range: 0.83–0.91).

Table 1  Participants’ baseline characteristics
Variable Conventional 

TKA (n = 50)
Robot-arm 
assisted TKA 
(n = 50)

p-
val-
ue b

Age (years) 70.54 ± 9.02 70.13 ± 4.84 0.778
Sex (male/female) 8/42 7/43 0.421
BMI (kg/m2) 26.71 ± 3.75 26.79 ± 3.21 0.959
 K–L grade (III/IV) 37:13 41:9 0.470
HKA angle (°) c 6.21 ± 2.73 5.83 ± 2.69 0.764
Range of motion (°) 119.7 ± 18.83 118.4 ± 19.7 0.983
a TKA, total knee arthroplasty; BMI, body mass index; K–L grade, Kellgren–
Lawrence grade; HKA, hip–knee–ankle. b Independent t test for continuous 
variables and Pearson’s chi-square test for categorical variables. c A positive 
value denotes varus malalignment

Table 2  Comparison of position errors among the three groups
Variable Conven-

tional TKA 
(n = 50)

Robot-arm assisted TKA 
(n = 50)

p-val-
ue b

Initial 
stage

Proficiency 
stage

HKA angle (°) c 1.18 ± 2.06 0.87 ± 1.09 0.44 ± 1.36 0.165
Coronal femoral 
component (°) c

0.69 ± 1.48 0.55 ± 0.96 0.69 ± 1.10 0.918

Coronal tibial com-
ponent (°) c

0.21 ± 1.54 0.19 ± 1.06 −0.07 ± 0.68 0.580

Sagittal femoral 
component (°) d

2.46 ± 2.17 1.94 ± 2.07 2.31 ± 2.53 0.057

Sagittal tibial com-
ponent (°) d

3.72 ± 2.42 0.86 ± 0.82 0.84 ± 0.77 < 0.001

Femoral compo-
nent rotation (°) e

−2.11 ± 1.58 1.62 ± 1.12 1.30 ± 0.83 < 0.001

a TKA, total knee arthroplasty; HKA, hip–knee–ankle
b One-way analysis of variance for continuous variables
c A positive value denotes varus alignment
d A positive value denotes extension alignment
e A positive value denotes external rotation

Table 3  Proportion of outliers in the three groups
Variable Conven-

tional TKA 
(n = 50)

Robot-arm 
assisted TKA 
(n = 50)

p-
val-
ue b

Initial 
stage

Profi-
ciency 
stage

HKA angle (°) 10/50 (20%) 1/18 (6%) 1/32 
(3%)

0.048

Coronal femoral compo-
nent (°)

9/50 (18%) 0/18 (0%) 1/32 
(3%)

0.037

Coronal tibial component (°) 3/50 (6%) 0/18 (0%) 0/32 
(0%)

0.290

Sagittal femoral compo-
nent (°)

7/50 (14%) 2/18 
(11%)

2/32 
(6%)

0.500

Sagittal tibial component (°) 11/50 (22%) 2/18 
(11%)

2/32 
(6%)

0.007

Femoral component rota-
tion (°)

6/50 (12%) 0/18 (0%) 0/32 
(0%)

0.043

a TKA, total knee arthroplasty; HKA, hip–knee–ankle
b Pearson’s chi-square test or Fisher’s exact test for categorical variables

Fig. 4  Chart of CUSUM analysis for r-TKA. r-TKA was associated with a 
learning curve for operative time in 18 cases. * CUSUM, cumulative sum-
mation; r-TKA, robot-assisted total knee arthroplasty
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Discussion
The primary findings of this study were as follows: (1) 
r-TKA was associated with a learning curve for opera-
tive time in 18 cases, and (2) irrespective of the learning 
curve, r-TKA had a lower outlier rate in terms of lower 
limb alignment, femoral component coronal position, 
axial position, and tibial component sagittal position. To 
the best of our knowledge, this is the first clinical study 
to analyze the learning curve for r-TKA and compare the 
implant positions between r-TKA and c-TKA according 
to the learning curve in Asian patients. As mentioned 
above, r-TKA demonstrated significant advantages for 
obtaining accurate limb alignment and implant posi-
tion in the Asian population, given that conventional jigs 
and guides are susceptible to malpositioning due to the 
unique anatomical features of the Asian population.

In this study, the operative time was significantly 
shorter in groups C and P than that in group I, and no 
significant difference was observed between groups C 
and P. This result is consistent with those of previous 
studies, which reported that most surgeons record tem-
porary prolonged operative time due to inexperience 
with the surgical technique in the initial phase. [22, 23] 
However, past the inflection point in the proficiency 
phase, the operative time was significantly shortened 
compared to that in the initial phase, and no significant 
difference was observed with c-TKA [24]. Although addi-
tional time is required for array fixation and bone regis-
tration in r-TKA, this may be the result of offsetting the 
additional time by a simple and accurate bone resection 
procedure without applying a cutting jig using the pre-
cutting gap balancing technique. Two previous stud-
ies that employed CUSUM analysis reported that the 
number of cases required to attain the learning curve of 
operative time ranged from 7 to 11 cases, similar to our 
findings [17, 25]. However, Vermue et al. [18] found that 
the learning curve of operative time was longer, with a 
wider range of 11 to 43 cases. Since these results were 
recorded with relatively low-volume surgeons, they seem 
to have been influenced by the proficiency of each sur-
geon. Despite the late inflection point, these studies also 
showed no significant difference in the operative time 
compared to c-TKA in the proficiency phase.

In this study, r-TKA demonstrated fewer outliers in the 
lower limb alignment and femoral component coronal 
position than that with c-TKA. Achieving proper lower 
limb alignment in the coronal plane is essential for suc-
cessful TKA [26]. A neutral mechanical axis permits 
even contact force on the joint and maintains adequate 
ligament tension [27]. Thus, failure to restore the neutral 
mechanical axis leads to unfavorable clinical outcomes 
and prosthesis failure. However, several studies have 
reported a considerable proportion of outliers exceed-
ing 3° from the neutral mechanical axis in c-TKA [12, 28, 

29]. For the distal femoral cutting procedure, the system 
of IM referencing has generally been adopted in c-TKA, 
which could be influenced by the individual anatomic 
factors of the femur [30]. Thus, patients with femoral 
deformities are vulnerable to inaccurate implantation. 
In particular, lateral bowing of the femoral shaft is com-
mon, with a high prevalence of up to 88% in Asian popu-
lations with severe OA. This causes varus orientation of 
the femoral component and functional disability [31–34]. 
In our study, no significant differences were observed in 
the mean values of both the coronal femoral and coronal 
tibial components. However, a difference in the outlier 
rates in the lower-limb alignment and the femoral com-
ponent coronal position was identified between c-TKA 
and r-TKA. Therefore, femoral component malposition 
may contribute more to the lower limb alignment error 
than tibial component malposition. This difference may 
be attributed to the anatomical characteristics of the East 
Asian population in which lateral bowing of the femo-
ral shaft is relatively common. We believe that r-TKA is 
advantageous for obtaining the planned coronal implant 
position and that better clinical results may be possible 
with better accuracy.

In this study, r-TKA demonstrated fewer outliers in 
the tibial component sagittal position than that with 
c-TKA. The posterior tibial slope is associated with the 
flexion gap, joint stability, and posterior femoral roll-
back, which further affect deep flexion and functional 
outcomes [35–38]. It is an especially important factor 
that can greatly affect patient satisfaction when consid-
ering the Asian lifestyle that favors a high knee flexion. 
Although previous studies demonstrated similar clinical 
results between the EM and IM techniques, the former 
was preferred because of concerns regarding the com-
plications asscoiated with the use of IM rods, such as 
thromboembolism and intraoperative tibial fracture [39, 
40]. However, placing an EM tibial cutting guide at the 
desired inclination is difficult. Generally, when the ante-
rior border of the tibial crest is used as reference, the EM 
rod is manually matched to the mechanical axis of the 
tibia. However, this depends entirely on the operator’s 
sense and experience. Therefore, inter-individual consis-
tency cannot be guaranteed. Previous studies have sug-
gested that the anterior border of the tibia exhibited an 
inclination of approximately 2–5° to the mechanical axis. 
This suggests that such an error can occur if the posterior 
slope is set accordingly. In addition, the method of align-
ing the rod parallel to the longitudinal axis of the fibula 
is not highly accurate. The error may be wide, depend-
ing on the presence of tibial bowing and the thickness of 
soft tissues [41–43]. In contrast to c-TKA, the desired 
value is achieved accurately in the sagittal plane with 
the mechanical axis obtained from the preoperative CT 
scan in r-TKA. Therefore, r-TKA is also advantageous 
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for obtaining the planned implant position in the sagittal 
plane.

In this study, r-TKA had fewer outliers in the femoral 
component axial position than that with c-TKA. Malrota-
tion of the femoral component can cause patellofemoral 
maltracking after TKA. It can lead to undesirable compli-
cations, such as anterior knee pain, instability, loosening, 
and fracture. This may also induce patient dissatisfaction 
and early prosthesis failure [44–47]. However, confirming 
the rotational alignment intraoperatively can be difficult. 
For the measurement of FCR alignment, the PCA, TEA, 
and Whiteside method with the AP axis were introduced. 
Although the anatomical TEA and sTEA are well-known 
landmarks, they are difficult to visualize because they are 
surrounded by structures such as the collateral ligament 
and soft tissues [48]. Hence, several studies have empha-
sized the low inter-individual consistency in determining 
TEA [49–51]. In contrast, TEA can be accurately defined 
using preoperative CT scans with an error of < 1 mm in 
r-TKA. Thus, we believe that r-TKA is also advantageous 
for obtaining the planned femoral implant position in the 
axial plane.

This study had some limitations. First, it focused only 
on the radiographic outcomes. Therefore, the manner in 
which accurate lower-limb alignment and implant posi-
tion affect the outcomes remains unclear. Further studies 
are required to confirm these findings. In addition, since 
the study was conducted with only one high-volume 
surgeon, its applicability to less experienced surgeons is 
unknown.

Conclusion
Although r-TKA had a learning curve for operative time 
in 18 cases, the operative time was not different between 
r-TKA and c-TKA after the learning curve. Moreover, 
surgeons could expect more accurate and reproducible 
lower-limb alignment and implant position with r-TKA 
in Asian patients, regardless of the learning curve.
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