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Abstract 

Background  We evaluated the diagnostic efficacy of deep learning radiomics (DLR) and hand-crafted radiomics 
(HCR) features in differentiating acute and chronic vertebral compression fractures (VCFs).

Methods  A total of 365 patients with VCFs were retrospectively analysed based on their computed tomography (CT) 
scan data. All patients completed MRI examination within 2 weeks. There were 315 acute VCFs and 205 chronic VCFs. 
Deep transfer learning (DTL) features and HCR features were extracted from CT images of patients with VCFs using 
DLR and traditional radiomics, respectively, and feature fusion was performed to establish the least absolute shrinkage 
and selection operator. The MRI display of vertebral bone marrow oedema was used as the gold standard for acute 
VCF, and the model performance was evaluated using the receiver operating characteristic (ROC).To separately evalu-
ate the effectiveness of DLR, traditional radiomics and feature fusion in the differential diagnosis of acute and chronic 
VCFs, we constructed a nomogram based on the clinical baseline data to visualize the classification evaluation. The 
predictive power of each model was compared using the Delong test, and the clinical value of the nomogram was 
evaluated using decision curve analysis (DCA).

Results  Fifty DTL features were obtained from DLR, 41 HCR features were obtained from traditional radiomics, and 
77 features fusion were obtained after feature screening and fusion of the two. The area under the curve (AUC) of the 
DLR model in the training cohort and test cohort were 0.992 (95% confidence interval (CI), 0.983-0.999) and 0.871 
(95% CI, 0.805-0.938), respectively. While the AUCs of the conventional radiomics model in the training cohort and 
test cohort were 0.973 (95% CI, 0.955-0.990) and 0.854 (95% CI, 0.773-0.934), respectively. The AUCs of the features 
fusion model in the training cohort and test cohort were 0.997 (95% CI, 0.994-0.999) and 0.915 (95% CI, 0.855-0.974), 
respectively. The AUCs of nomogram constructed by the features fusion in combination with clinical baseline data 
were 0.998 (95% CI, 0.996–0.999) and 0.946 (95% CI, 0.906–0.987) in the training cohort and test cohort, respectively. 
The Delong test showed that the differences between the features fusion model and the nomogram in the train-
ing cohort and the test cohort were not statistically significant (P values were 0.794 and 0.668, respectively), and the 
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differences in the other prediction models in the training cohort and the test cohort were statistically significant 
(P < 0.05). DCA showed that the nomogram had high clinical value.

Conclusion  The features fusion model can be used for the differential diagnosis of acute and chronic VCFs, and its 
differential diagnosis ability is improved when compared with that when either radiomics is used alone. At the same 
time, the nomogram has a high predictive value for acute and chronic VCFs and can be a potential decision-making 
tool to assist clinicians, especially when a patient is unable to undergo spinal MRI examination.

Keywords  Vertebral compression fracture (VCF), Deep learning, Radiomics, Tomography, X-ray computed, Differential 
diagnosis

Introduction
Vertebral compression fractures (VCFs) are a common, 
highly disabling injury. The incidence of VCFs continues 
to increase to the status of a global public health problem 
that cannot be ignored [1]. Acute or chronic VCFs are 
important factors that need to be considered when decid-
ing on conservative or surgical treatment [2]. In actual 
clinical practice, magnetic resonance imaging (MRI) 
examination plays an important role in the diagnosis of 
acute fractures. However, its high examination cost, long 
scanning time, and many contraindications may limit its 
application in some populations. Computed tomography 
(CT) examination has limited ability to identify acute 
fractures, so missed diagnoses may delay treatment. 
Radiographic indications of acute VCFs are presence 
of a step defect, presence of a soft-tissue hemorrhage, 
and a linear white band of condensation [3]. Although 
these radiographic findings can also be estimated on CT 
images, Radiologists and orthopedists showed insuffi-
cient confidence in evaluating acute VCFs based on CT 
imaging findings [4], because well-demarcated fracture 
lines of fresh fractures and sclerotic margins of older 
fractures are severely hampered by compressed fractures.

Radiomics is a discipline that extracts many quantita-
tive features from medical images and further analyses 
image features that cannot be observed by the naked eye 
through advanced algorithmic models [5, 6]. Radiomics 
is helpful for evaluating the microstructural changes of 
trabecular bone [7]. Traditional radiomics based on CT 
images has shown good results in the evaluation of VCFs 
in the acute and chronic phases and in the identification 
of benign and malignant VCFs [8, 9]. The diagnosis of 
acute and chronic VCFs based on CT images by machine 
learning has also been reported, but it is mainly limited 
to osteoporotic vertebral compression fractures [10]. 
Unfortunately, the round region of interest was drawn on 
the location with highest preserved height of sagittal ver-
tebral body. This may drop the microstructural changes 
of trabecular bone outside the region of interest. Deep 
learning mainly uses a filter matrix to perform feature 
extraction on images through a convolutional neural net-
work (CNN), which requires many labelled datasets to 

understand the potential relationships between data [11]. 
Deep transfer learning (DTL) is a process of taking a pre-
trained deep learning network [12] and fine-tuning it to 
learn a new task so that DLR can be applied to a small 
dataset, a strategy that has become a research hotspot 
in recent years [13–15]. Therefore, this study aimed to 
compare DLR combined with traditional radiomics vs. 
a single radiomics, and to develop and verify the deep 
learning radiomics nomogram (DLRN) for the differen-
tial diagnosis of acute and chronic VCFs.

Methods
Patients
After review by the hospital’s institutional review com-
mittee, the patients were exempted from the requirement 
to obtain informed consent. We retrospectively analysed 
the CT and MRI data of 399 patients with thoracic/lum-
bar compression fractures diagnosed and treated in our 
hospital between April 2016 and April 2022. The inclu-
sion criteria were as follows: ① diagnosis of benign 
VCFs, including traumatic or osteoporotic fractures; 
and ② complete original data, including CT and MRI 
vertebral examinations, with an interval between the 
two examinations of less than 3 days. Exclusion criteria: 
① suspected infection or tumour-related pathological 
fractures; ② poor image quality or presence of foreign 
body artifacts; ③ patients with uncertain health status 
or acute or chronic VCFs. Acute VCFs was defined as 
sudden onset of chest and back pain and bone marrow 
oedema within 4 weeks of MRI examination [16]. The 
chronic phase was defined as the absence of bone mar-
row oedema, which was evaluated by two senior doc-
tors with 6 years and 10 years of experience in skeletal 
and muscle imaging who made a diagnosis of acute or 
chronic VCFs. When their results are inconsistent, a final 
conclusion will be reached through their consultation. 
The detailed screening process is shown in Fig.  1. The 
flowchart and DLR workflow of this study (Figs. 2 and 3) 
shows the case collection and grouping, image preproc-
essing, feature extraction, feature analysis, and model 
construction. Patients were randomly allocated to train-
ing and test cohorts in an 8:2 ratio.
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Clinical baseline characteristics and CT image acquisition
The age and sex of all patients were collected from the 
clinical medical record system. All CT images were col-
lected with a 256-slice spiral CT scanner (Philips, Bril-
liance iCT). Scanning parameters were as follows: tube 
voltage 120 kVp, tube current using an automatic tube 
current modulation with a fixed noise index. All images 
(slice thickness: 1.0 mm) were reconstructed using a 
bone window (width: 1500; window level: 500), then 

processed and analysed based on the acquired bone 
window images.

Image segmentation
Accurate segmentation of fractured vertebrae is a prereq-
uisite for image analysis. Manual segmentation by radi-
ologists was used in this study. First, radiologist A (with 
6 years of experience in skeletal and muscle imaging) 
imported the CT images into ITK-snap software (version 

Fig. 1  Flow chart of study inclusion

Fig. 2  Study flowchart
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3.8.0, http://​www.​itksn​ap.​org) and displayed them in 
three dimensions. The edges of the fractured vertebrae 
were identified layer by layer and delineated by hand in 
the sagittal images while avoiding the inclusion of adja-
cent intervertebral discs, pedicles, or adipose tissues. The 
fractured vertebral region was completely delineated on 
each layer of the image and saved as a mask file in “nifti” 
format after the final cross-sectional and coronal exami-
nation (Fig.  4A-D). One month later, 30 patients in the 
training sequence were randomly selected and re-delin-
eated by radiologist A and radiologist B (with 10 years 
of experience in skeletal and muscle imaging). Intraclass 
correlation coefficients (ICCs) were calculated to evalu-
ate the consistency of vertebral delineation within and 
between observers.

HCR feature extraction
In order to avoid data leakage, only the training cohort 
was used in the feature selection part. Before feature 
extraction, the images were standardized. All images 
were subjected to isotropic interpolation in advance to 
generate isotropic 3D data with a pixel spacing of 1 mm, 
which were unified as the input images for greyscale 
feature extraction and filtering transformation. The fea-
ture extraction algorithm was standardized with refer-
ence to the Image Biomarker Standardization Initiative. 

Fig. 3  Deep learning radiomics workflow

Fig. 4  Segmentation of a fractured vertebral body for radiomic 
analysis in an 82-year-old woman with an acute compression fracture. 
A Compression fracture of L4 on sagittal non-contrast-enhanced 
spine CT images. B Hyperintense on sagittal T2 weighted 
fat-suppressed imaging of acute vertebral fracture. C ROI on sagittal 
CT images. D Three-dimensional volume meshes

http://www.itksnap.org
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The open-source software package Pyradiomics (http://​
pypi.​org/​proje​ct/​pyrad​iomics/) based on the Python 
3.6 platform was used to extract the HCR features. The 
HCR features included first-order features, shape, the 
greyscale co-occurrence matrix (GLCM), grey-level 
size zone matrix (GLSZM), grey-level run length matrix 
(GLLRLM), and neighboring grey-tone difference 
matrix (NGTDM) and grey level dependence matrix 
(GLDM). A detailed description of the HCR features 
extracted in this study can be found in the Pyradiomics 
document (http://​pyrad​iomics.​readt​hedocs.​io).

DTL feature extraction
Before extracting the DTL features, the region of inter-
est (ROI) with the largest sagittal area was selected for 
cropping. The input image is resampled as a 64 × 64 size 
using linear differences, and the mean and standard devi-
ation of the pixel intensities are normalized to 0 and 1. 
The image input to the network is a sagittal image, so the 
input channel is 1. In the deep learning library PyTorch 
based on the Python 3.6 platform [17], DTL similar to 
earlier methods [18, 19] was applied. We chose ResNet50 
(Figs. 5 and 6) as the basic model of our transfer learn-
ing model, and we carefully set the learning rate to better 
perform transfer.

Since the second-to-last layer of the model (Average-
Pooling layer) was selected as the transfer feature, we 
divided the model parameters into two parts: 1. back-
bone and 2. task-spec. The parameters of the task-spec 
part were randomly initialized. The initialization of the 
backbone part used the model parameters pretrained by 
ImageNet. For the parameters of the task-spec part, we 
used the cosine annealing learning rate decay algorithm 
for reference [20]. It varies with the number of iterations 
is shown in Supplementary 1.

Fig. 5  A simple convolutional neural network architecture

Fig. 6  Schematic diagram of the deep convolutional neural network 
pretraining and fine-tuning network structure

http://pypi.org/project/pyradiomics/
http://pypi.org/project/pyradiomics/
http://pyradiomics.readthedocs.io
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Feature selection and fusion
To screen the HCR features with good reproducibil-
ity and low redundancy, the ICCs between the HCR 
features were first calculated. The HCR features with 
ICC ≥ 0.8 were selected twice [21], and the feature 
quantity decreased from 1648 to 1589. Second, for the 
features with high repeatability, Spearman’s rank cor-
relation coefficient was calculated to express the rela-
tionships between the features, and one of any pair of 
features with a correlation coefficient greater than 0.9 
was retained. To preserve the characterization ability of 
features to the greatest extent, we used the greedy algo-
rithm for feature selection; that is, the feature with the 
highest redundancy in the current set was deleted each 
time. After Spearman correlation coefficient screening 
and greedy selection, the number of features decreased 
from 1589 to 224. Finally, using the least absolute 
shrinkage and selection operator (LASSO) algorithm, 
we shrank some regression coefficients by constructing 
a penalty function λ to force them to become 0, thereby 
incorporating the stable HCR features into LASSO-Cox 
analysis. Ten-fold cross-validation was performed to 
determine the optimal λ value based on the minimum 
value standard. According to the model corresponding 
to the optimal λ value, we screened for the radiomics 
parameters with nonzero coefficients and their weights. 
Correlation analysis was performed on the relevant fea-
tures selected by the LASSO-Cox algorithm to elimi-
nate redundancy, and the parameters with correlation 
coefficients greater than 0.5 were removed. Finally, the 
independent and stable HCR features were retained.

Since the dimension of deep transfer features is 2048, 
to ensure balance between features, we used princi-
pal component analysis to reduce the dimensionality 
of deep transfer learning features and reduce the deep 
learning model to 100 dimensions to improve the gen-
eralization ability of the model and to reduce the risk of 
overfitting.

After fusing the selected hand-crafted features and 
deep learning features, the Z score method was used to 
standardize all the features fusion, and the mean and 
variance of each column of features were calculated. 
Each column of features was converted into a stand-
ard normal distribution by subtracting the mean and 
dividing by the variance. In the feature fusion stage, we 
performed early fusion of the features screened by the 
hand-crafted method and the deep transfer features 
to form a complete feature set. Finally, LASSO-Cox 
was used to screen out the features with a coefficient 
of nonzero, and the features fusion were selected and 
dimensionality-reduced to find the subset with optimal 
feature fusion. Finally, a 74-dimensional feature fusion 
subset was obtained.

Models construction and validation
After feature fusion and screening, we used the scikit-
learn machine learning library to construct a machine 
learning classification model. The machine learning 
classification model included a support vector machine 
(SVM), k-nearest neighbour (KNN), decision trees, ran-
dom forest (RF), extremely randomized trees, eXtreme 
gradient boosting (XGBoost), and light gradient boosting 
machine. All models were trained by using grid search 
algorithm in training cohort. Common used parameters 
in each model was considered to be tuned. The perfor-
mance of different classification models was compared. 
To prevent overfitting, 5-fold cross-validation was done 
to select the optimal parameters for the classification 
model in the training sequence. Finally, the optimal 
Radiomics feature importance score was obtained. The 
receiver operating characteristic curve (ROC) was plot-
ted, and the area under the curve (AUC), accuracy, sen-
sitivity, and specificity were calculated to evaluate the 
performance of various prediction models. The DLRN 
of feature fusion model combined with Clinical baseline 
characteristics was drawn to visualize the classification 
assessment.

Statistical analysis
All statistical tests were performed using R software ver-
sion 4.0.2. Delong test was used to compare the AUC of 
various prediction models, and Decision curve analysis 
(DCA) was used to compare the clinical values of vari-
ous prediction models. The nomogram and DCA were 
calculated mainly by using R “rmc” and “rmda” packages. 
The statistical significance for all two-sided tests was set 
at P < 0.05.

Result
Clinical baseline characteristics
Among the 399 patients who met the inclusion criteria, 
34 were excluded because of ① infection-related frac-
tures (14 cases), ② poor image quality or the presence of 
foreign body artifacts (nine cases), and ③ uncertain poor 
health status or fracture staging (11 cases). Finally, 365 
patients were included in the study, including 149 males 
and 216 females, with an age range of 17 to 95 years and 
an average age of 61.7 ± 17.0 years. Among them were 
315 acute stage VCFs (thoracic vertebrae: 111; lumbar 
vertebrae: 204; patients aged 17-95 years, with an average 
age of 59.3 ± 18.1 years) and 205 chronic stage VCFs (tho-
racic vertebra: 88; lumbar vertebra: 117; patients aged 
39-95 years, with an average age of 71.1 ± 11.9 years). The 
baseline characteristics of the acute and chronic VCFs 
are summarized in Table 1.
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Features selection
LASSO-Cox regression analysis was used to perform 
the dimensionality reduction of the HCR. The selection 
of the penalty coefficient (λ = 0.014), the process of fea-
ture selection, and the curve of the variation of the fea-
ture coefficient with λ are shown in (Fig.  7). After the 
final screening, a total of 41 HCR were selected, includ-
ing first-order statistical features (19), shape features (2), 
GLCM (15), GLSZM (4) and GLRLM (1). The Radiom-
ics feature importance score was constructed from the 40 
HCR and their corresponding regression coefficients. The 
Radiomics feature importance score formula is shown in 
Supplementary 2.

LASSO-Cox regression analysis was used to perform 
the dimensionality reduction of DTL features. The 
selection of the penalty coefficient (λ = 0.012), the pro-
cess of feature selection, and the curve of the variation 
of the feature coefficient with λ are shown in (Fig. 8). 
After the final screening, a total of 50 DTL features 
were selected. The Deep Learning feature importance 
score was constructed from the 50 DTL features and 

their corresponding regression coefficients. The Deep 
Learning feature importance score formula is shown in 
Supplementary 3.

LASSO Cox regression was used to perform dimen-
sionality reduction of features fusion. The selection of 
the penalty coefficient (λ = 0.014), the feature screen-
ing process, and the graph of the variation of the feature 
coefficient with λ are shown in (Fig.  9). After the final 
screening of the features fusion, 30 hand-crafted features 
and 44 DTL features were retained, and the Deep Learn-
ing Radiomics feature importance score was constructed 
from the features fusion and their corresponding regres-
sion coefficients. The Deep Learning Radiomics feature 
importance score formula is given in Supplementary 4.

Predictive performance of the models
SVMs are the most effective machine learning algo-
rithms in DLR, traditional radiomics, and the predic-
tion model of their fusion (Supplementary 5). As shown 
in Table  2 and Fig.  10, the optimal prediction model 
is the features fusion, with an AUC of 0.997 (95% CI, 
0.994–0.999) for the training cohort and 0.915 (95% CI, 
0.855–0.974) for the test cohort. The features fusion 
were combined with the clinical baseline data to con-
struct a nomogram with an AUC of 0.998 (95% CI, 
0.996–0.999) for the training cohort and 0.946 (95% 
CI, 0.906–0.987) for the test cohort. Using the Delong 
test, there was no significant difference between the 
features fusion model and nomogram in the training 
cohort and the test cohort (P values were 0.794 and 
0.668, respectively), and the differences in the other 
prediction models between the training cohort and the 
test cohort were statistically significant (P < 0.05). DCA 

Table 1  Baseline Patient Characteristics in the Acute and 
Chronic VCFs

# p-value for difference in the number of acute and chronic fractures
a  Data are mean ± standard deviation (range) age at the time of CT examination

Acute VCFs 
(n = 253)

Chronic VCFs 
(n = 112)

p-value

Age (years)a 59.3 ± 18.1 (17-95) 71.1 ± 11.9 (39-95) 0.225

Females/Males 164/89 78/34 0.812

Number of 
VCFs (thoracic, 
lumbar)

315 (111, 204) 205 (88,117) 0.956#

Fig. 7  Hand-crafted feature selection using the least absolute shrinkage and the histogram of the Radiomics feature importance score based on 
the selected features. The optimal λ value of 0.014 was selected
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Fig. 8  DTL feature selection using the least absolute shrinkage and the histogram of the Deep Learning feature importance score based on the 
selected features. The optimal λ value of 0.012 was selected

Fig. 9  Fusion feature selection using the least absolute shrinkage and the histogram of the Deep Learning Radiomics feature importance score 
based on the selected features. The optimal λ value of 0.014 was selected

Table 2  Diagnostic efficiency of different models in the training cohort and test cohort

ACC​ Accuracy, SEN Sensitivity, SPE Specificity

Model Training cohort Test cohort

AUC (95% CI) ACC (%) SEN (%) SPE (%) F1-score AUC (95% CI) ACC (%) SEN (%) SPE (%) F1-score

Radiomics 0.973 (0.955-0.990) 92.3 95.2 92.0 0.950 0.854 (0.773-0.934) 84.6 77.8 75.1 0.802

DLR 0.992 (0.983-0.999) 94.9 94.4 96.1 0.958 0.871 (0.805-0.938) 81.7 88.9 70.7 0.855

Features Fusion 0.997 (0.994-0.999) 97.1 96.0 98.1 0.973 0.915 (0.855-0.974) 88.5 93.6 82.9 0.914

DLRN 0.998 (0.996-0.999) 98.2 95.3 97.0 0.975 0.946 (0.906-0.987) 90.1 92.6 85.2 0.925
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demonstrated that the nomogram was more beneficial 
to the patient than the DLR, traditional radiomics, and 
features fusion prediction models (Fig. 11).

Figure  12A-D shows the cases with acute or chronic 
fractures correctly diagnosed by all the prediction mod-
els. The presence of a condensation band was a feature of 
acute fractures, and chronic fractures generally only had 
wedge-shaped or biconcave changes. When the charac-
teristics of acute and chronic fractures are not typical, the 
diagnosis may be erroneous, depending on the diagnosis 
experience of the doctor. Figure 13A-D shows the cases 
erroneously diagnosed by the doctor but correctly diag-
nosed by all the prediction models, indicating that abnor-
mal manifestations of a few acute fractures that were 
visible to the naked eye did not appear on CT images, 
and the presence of condensation band was also found in 
a few chronic fractures.

Construction of the deep learning radiomics nomogram
The comparison of three prediction models for acute 
and chronic VCFs showed that the feature fusion predic-
tion model had good prediction performance and great 
clinical benefit. The use of features fusion combined with 
Clinical baseline characteristics to construct a nomo-
gram can be used to visually distinguish between acute 
and chronic VCFs (Fig. 14).

Discussion
VCFs are often accompanied by acute or recurrent 
thoracic and lumbar pain. Some patients may develop 
VCFs based on chronic compression fractures, so imag-
ing usually shows multiple fractures in different stages 
[22–24]. In clinical work, MRI is mainly used to dis-
play bone marrow oedema to judge acute fracture. 
However, factors such as high examination cost, long 
scanning time, and more contraindications, especially 
the lack of MRI medical equipment in primary hos-
pitals, may delay the timely formulation of treatment 
plans for VCFs. In recent years, Petritsch et  al. [25] 
have used dual-energy CT virtual noncalcium (VNCa) 
technique to evaluate bone marrow oedema in trau-
matic VCFs and showed good diagnostic performance 
(AUC = 0.922). Some scholars also propose that 5 CT 
findings, including cortical or endplate fracture line, 
trabecular fracture line, condensation band, change 
in trabecular attenuation, and width of paravertebral 
soft-tissue change, are closely related to the presence 
and extent of bone marrow oedema [26]. However, in 
actual work, grassroots hospitals still do not have high-
end CT with dual-energy CT technology. It is difficult 
to effectively promote the prediction of bone marrow 
oedema based on the VNCa technique for grassroots 
hospitals. Therefore, developing an appropriate and 
convenient method for the timely diagnosis of acute 

Fig. 10  The AUCs of various prediction models in the test cohort
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and chronic VCFs is the key scientific problem to be 
solved in this study. First, the ability of DLR to differ-
entiate between acute and chronic VCFs was com-
pared with that of radiomics. Subsequently, a features 
fusion model based on DLR in combination with radi-
omics and a nomogram was established to assess the 
potential diagnostic value in differentiating acute and 
chronic VCFs as a potential decision-making tool for 

clinicians, especially when spine MRI is not available to 
the patient.

Radiomics is a technology developed in recent years 
that can extract a large number of HCR features to 
improve the ability of diagnosis and prognostic predic-
tion, and HCR features need to be specified by a human 
in advance [27]. Yang et  al. [10] used a data set of 147 
patients, which were assigned to a training cohort (acute 

Fig. 11  Decision curve analysis was developed with various prediction models

Fig. 12  Cases correctly diagnosed by all the prediction models. Figs. A and B show a case correctly diagnosed as acute fracture (male, 87 years old, 
history of minor trauma, L1 acute vertebral fracture). Figs. C and D show a case correctly diagnosed as chronic fracture (female, 61 years old, with no 
history of trauma, with multiple acute and chronic fractures of the lumbar spine)
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fractures: 46, chronic fractures: 57) and a validation 
cohort (acute fractures: 26, chronic fractures: 18). And 
they constructed 14 HCR features based on CT images 
to distinguish acute and chronic osteoporosis VCFs, 
and they showed good diagnostic efficiency (the AUC of 
the test cohort was 0.82). In this study, 41 HCR features 
were used to construct the prediction model, and the 
test cohort AUC was 0.854, which was comparable with 
the results of Yang et al. (AUC, 0.82). Yang’s selection of 
the sagittal maximum area level of the vertebral body to 
delineate a two-dimensional circular ROI is related to the 
fact that it may miss features information such as corti-
cal or endplate fractures. We selected three-dimensional 
of the vertebral body as ROI so that it fully represented 
the features of the entire vertebral body. Kim et  al. [28] 
used a total of 238 fractures (159 acute and 79 chronic) 
in 122 patients and 58 fractures (39 acute and 19 chronic) 
in 32 patients were included in the training and test 
cohorts respectively. The AUC of the HCR features and 

CT findings was 0.95 in the training cohorts and 0.93 in 
the test cohorts. In this study, to ensure the robustness 
and generalization ability of the prediction model, we 
have read a large number of literature and recorded the 
sample size of deep learning and radiomic. In addition, 
during the preliminary experiment of this study, a variety 
of radiomic feature calculation methods were adopted, as 
well as a variety of methods for screening relatively stable 
features from deep learning features. Also, deep transfer 
learning is an effective way to solve the insufficiency of 
the dataset, of which fine-tuning is a common method. 
Finally, we selected 520 cases of VCFs to be included in 
the group and have used fine-tuning. In our study, a total 
of 520 VCFs (315 acute and 205 chronic) were assigned to 
a training cohort (acute fractures: 252, chronic fractures: 
164) and a validation cohort (acute fractures: 63, chronic 
fractures: 41). The AUCs of the features fusion model in 
the training cohort and test cohort were 0.997 and 0.915, 
which was comparable with the results of Kim et al.

Fig. 13  Cases incorrectly diagnosed by the doctor but correctly diagnosed by all the predictive models. Figs. A and B show a case of acute fracture 
that was misdiagnosed by the doctor (female, 57 years old, history of traffic accident and trauma, and of the L4 acute vertebral fracture). Figs. C and 
D show a case of chronic fracture mistakenly diagnosed by the doctor (female, 63 years old, history of minor trauma, L1 chronic vertebral fracture)

Fig. 14  Deep learning radiomic nomogram was developed with the age, gender and feature fusion
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CNNs are deep learning models widely used in the field 
of computer imaging and vision. Only when trained on 
large enough datasets can CNNs correctly learn its fea-
tures, but it is difficult to obtain such datasets in clinical 
practice [29]. In the initial study, we tried to use a vari-
ety of convolutional neural networks, such as ResNet, 
VGGnet and so on. Compared with other CNN models, 
ResNet’s structure uses shortcut connection, which can 
effectively realize fusion training. Moreover, ResNet’s 
classic network structures include ResNet-18, ResNet-34, 
ResNet-50, ResNet-101, and ResNet-152. ResNet-18 and 
ResNet-34 have the same basic structure and belong to 
relatively shallow networks. The basic structures of the 
latter three are different from those of ResNet-18 and 
ResNet-34, and belong to deeper networks. Because of 
the deep network structure of ResNet101 and ResNet152, 
many model parameters also bring some difficulties to 
the training data, which leads to their performance deg-
radation. So we finally chose ResNet50, which is generally 
recognized by the public. Now DLR methods have mostly 
been used for tumour classification and prognosis [30–
32], while there is little application in other fields, such 
as skeletal system. In our study, it was found that the dif-
ferential diagnosis ability of the feature fusion model was 
improved compared with that of using either radiomics 
alone. Finally, we found that the DLR had high predictive 
value for acute and chronic VCFs, with AUCs of 0.998 
and 0.946 in the training cohort and test cohort, respec-
tively. Although there was no significant difference in the 
AUCs between the nomogram and feature fusion model 
in the training cohort and test cohort, DCA showed that 
the nomogram brought more benefits to patients. Also, 
the HCR and DTL features were extracted from conven-
tional CT images. To our knowledge, there is no report 
on integrating HCR and DTL features for distinguishing 
acute and chronic VCFs. Besides, our research is based 
on some ordinary image data and does not require spe-
cial training, so it has significant potential. Although the 
interpretability of the current deep migration learning 
features needs to be further studied, it does not preclude 
the mapping of the features of the lesion itself in the con-
volution operation, so that it can be further used for the 
construction and classification of the prediction model.

In our study, 30 radiomic features and 44 deep trans-
fer learning features were finally screened to construct 
a fusion feature prediction model. As shown in Fig.  12, 
the correlation coefficient of shape_Flatness is higher. 
Flatness shows the relationship between the largest and 
smallest principal components in the ROI shape. The dis-
tinguishing point of acute and chronic fracture is bone 
marrow edema. The histological features in bone marrow 
oedema were characterized by hematoma and inflam-
matory exudative edema. The corresponding densities 

of BME presented a diffuse and uniform morphological 
distribution, Chronic VCFs has no bone marrow edema 
[33]. Therefore, the edge and morphological charac-
teristics of them are different. GLSZM quantifies gray 
level zones in an image. A gray level zone is defined as 
the number of connected voxels that share the same gray 
level intensity. The correlation coefficient of Zone Vari-
ance is higher. Zone Variance measures the variance in 
zone size volumes for the zones. Zone Variance reflects 
the heterogeneity of Hepatocellular carcinoma [34], and 
one possible explanation is that acute VCFs are consid-
ered to be associated with increased bone marrow water 
content, while chronic VCFs fracture healing results in 
the generation of large amounts of freshly woven bone 
with less water content. First-order statistics describes 
the distribution of voxel intensity within the image region 
defined by the ROI through common basic indicators. 
The correlation coefficient of First order_10 percent is 
high. It had a high positive correlation with the CT value 
of vertebral and osteoporosis [35, 36]. This is supported 
by the fact that about half of the cases in our study were 
osteoporotic fractures.

There are some limitations to this study that can be 
further studied and explored in future work. First, the 
sample size of VCFs was small. Although our findings 
reflect the predictive ability of deep learning features to 
a certain extent, more data would be more convincing, 
so multicentric studies should be conducted to expand 
the dataset. Second, this was a retrospective study. In the 
future, more prospective data are needed to verify the 
effectiveness of the model. Finally, the deep learning fea-
tures extracted by the DLR method are hard for humans 
to interpret [37, 38]. Therefore, future studies on the 
interpretability of imaging features will help to further 
enhance the value of DLR in clinical application.

Conclusions
In conclusion, the DLR features were fused with the HCR 
features based on CT images, which improved the iden-
tification ability of a single radiomics prediction model 
for acute and chronic VCFs, especially when a patient is 
unable to undergo spinal MRI examination.
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