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Abstract 

Background:  Anterior cruciate ligament (ACL) rupture in humans is a common condition associated with knee pain, 
joint instability, and secondary osteoarthritis (OA). Surgical treatment with an intraarticular graft provides reasonable 
outcomes at mid and long-term follow-up. Non-modifiable and modifiable factors influence risk of ACL rupture. The 
etiology, mechanobiology, causal biomechanics, and causal molecular pathways are not fully understood. The dog 
model has shared features of ACL rupture that make it a valuable spontaneous preclinical animal model. In this article, 
we review shared and contrasting features of ACL rupture in the two species and present information supporting 
spontaneous canine ACL rupture as a potentially useful preclinical model of human ACL rupture with a very large 
subject population.

Results:  ACL rupture is more common in dogs than in humans and is diagnosed and treated using similar 
approaches to that of human patients. Development of OA occurs in both species, but progression is more rapid in 
the dog, and is often present at diagnosis. Use of client-owned dogs for ACL research could reveal impactful molecu-
lar pathways, underlying causal genetic variants, biomechanical effects of specific treatments, and opportunities 
to discover new treatment and prevention targets. Knowledge of the genetic contribution to ACL rupture is more 
advanced in dogs than in humans. In dogs, ACL rupture has a polygenetic architecture with moderate heritability. 
Heritability of human ACL rupture has not been estimated.

Conclusion:  This article highlights areas of One Health research that are particularly relevant to future studies using 
the spontaneous canine ACL rupture model that could fill gaps in current knowledge.
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Background
Anterior cruciate ligament (ACL) rupture is a common 
condition associated with knee pain and life-changing 
loss of function. The estimated incidence in humans is 
~ 13.5–75/100,000 persons per year [1]. Primary ligament 
repair has historically proven unsuccessful and current 
surgical treatment involves ACL graft reconstruction, 

although there is recent growing interest in a bridge-
enhanced primary repair technique [2, 3]. There is 
a ~ 50% risk of knee osteoarthritis (OA) after ACL rup-
ture that is not influenced by surgical treatment [4]. It has 
been recognized for many years that familial predisposi-
tion to ACL rupture exists [5].

Animal models are important for investigating biologi-
cal mechanisms and developing new treatments. Dogs, 
goats, sheep, pigs, and rabbits have all been used as large 
animal models for ACL research. Readers are referred 
to Bascuñán et al. for a comparison of the strengths and 
limitations of these large animal models used for human 
ACL rupture [6]. Client-owned companion animals that 
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develop disease spontaneously are vital to One Health 
research. One Health is the intersection of human health, 
animal health and their shared environment which con-
siders shared risk factors, biology, and disorders while 
also recognizing the impact of important differences. 
Shared environment and high prevalence of spontane-
ous cranial cruciate ligament rupture makes the client-
owned dog a widely accessible preclinical animal model 
of human ACL research.

The morphology of the canine stifle (knee), includ-
ing the cruciate ligament complex consisting of the cra-
nial (anterior) and caudal (posterior) cruciate ligaments 
(PCL), and the meniscal cartilages [7] is proportionally 
like the human knee. An intercondylar notch (ICN) and 
posterior tibial slope (PTS) is present in both species. For 
consistency, human anatomic terminology will be used to 
describe both species in this article.

Initially considered a traumatic injury in dogs, it is 
now accepted that mid-substance ACL rupture is a con-
sequence of progressive fiber damage [8]. In dogs, ACL 
rupture incidence is up to ~ 2610/100,000 dogs per year 
in high-risk breeds (e.g., Newfoundland, Rottweiler, 
Labrador Retriever, Bulldog and Boxer) [9, 10]. In 1973, 
experimental ACL transection was performed in labo-
ratory dogs as a model of OA [11]. However, artificially 
induced ACL transection models may not completely 
replicate the biological environment and pathologic tis-
sue changes associated with spontaneous disease.

Canine ACL rupture has a similar natural history to the 
human condition, as meniscal damage and OA typically 
develop [12–14] (Table  1). Incomplete or partial ACL 
rupture occurs in both species [15, 16]. Specific opera-
tive techniques for surgical treatment differ in humans 
and dogs [17, 18]. Clinical presentation, diagnostic 

imaging, and treatment for both species are summarized 
in Table 2. This review aims to highlight shared features 
of ACL rupture between the two species and underscore 
possible research opportunities where this model could 
be used to close gaps in knowledge, particularly regard-
ing genetics, development of post-traumatic OA, and 
non-surgical treatment of ACL rupture and knee OA.

Comparative anatomy
The canine and human knee has comparable intraarticu-
lar features, including the ACL, PCL, ICN, femoral con-
dyles, menisci, and tibial plateau (Fig. 1). The infrapatellar 
fat pad and the synovium surrounding the cruciate liga-
ments provide a similar rich vascular envelope [19, 20]. 
The anterolateral ligament (ALL) is absent in the dog.

The primary biomechanical function of the ACL is to 
resist anterior tibial translation, internal tibial rotation, 
and hyperextension [19, 21]. The anteromedial bundle of 
the human ACL is taut during flexion [22] while in the 
dog the anteromedial bundle is taut during extension 
[23]. ACL tensile properties are similar in both species 
with comparable mean ultimate loads (2160 ± 157 N) 
in humans and (1867 ± 324 N) dogs [24, 25] despite a 
smaller body size. ACL stiffness is also similar in humans 
(242 ± 28 N/mm) and dogs (201 ± 41 N/mm) [24, 25].

Tibial plateau morphology in quadrupeds and bipeds 
is different. An osteological study reported mean PTS 
of 6.9 ± 3.7° along the medial condyle and 4.7 ± 3.6° 
along the lateral condyle in humans [26]. In dogs, PTS 
24.0 ± 3.2° medially and 25.5 ± 3.8° laterally [27]. A more 
flexed standing angle at the knee is found in dogs and 
a higher PTS such that functional PTS is parallel to the 
ground [28]. A limitation to the canine ACL model is 
the dog’s flexed weight-bearing knee may not precisely 

Table 1  Epidemiology, etiology, and pathology of canine and human anterior cruciate ligament (ACL) rupture

ACL anterior cruciate ligament, ECM extracellular matrix, OA osteoarthritis  

Parameter Canine ACL rupture Human ACL rupture

Heritability 0.27–0.48 in high-risk breeds Unknown

ACL bundles Anteromedial and posterolateral Anteromedial and posterolateral

Sex Increased risk with neutering Increased risk in athletic females

Incidence Up to ~ 2610/100,000 dogs per year in high-risk breeds ~ 13.5–75/100,000 persons per year

Pathophysiology Mainly non-contact rupture Mainly non-contact rupture

Prodromal fiber rupture Typical Unknown

Contralateral ACL rupture Up to 73% of cases Up to 12.5% of cases

Secondary meniscal damage Typical Typical

Development of knee OA Associated with ACL fiber rupture, often precedes knee instability Multifactorial, often follows ACL rupture

Epidemiological risk factors Breed, neutering, obesity Increased risk in women. Activity that increases 
shoe playing surface friction and torsional 
forces

Molecular pathways Altered ECM homeostasis and synovitis Altered ECM homeostasis



Page 3 of 12Binversie et al. BMC Musculoskeletal Disorders          (2022) 23:116 	

model the same high compressive forces experienced in a 
weight-bearing extended human knee due to differences 
in gait biomechanics and anatomy.

Research opportunities
Progressive degradation of ACL biomechanical prop-
erties as incomplete ACL rupture develops could be an 
important area of future research.

Etiology
In humans, approximately 70% of ruptures arise from 
non-contact injury typically after a sudden change in 
velocity and direction with a planted foot [29]. The pro-
portion of non-contact ruptures in dogs is higher (~ 99% 
of cases). ACL rupture occurs when plastic tissue damage 
occurs from excessive loading. Rupture risk is influenced 
by ACL structure, composition and biomechanics, knee 
anatomy, and modifiable factors. It is now recognized 
that repeated submaximal knee loading with subfailure 
fiber rupture developing gradually over time explains 
some ruptures in humans [30] like dogs.

Incomplete ACL ruptures represent 10–27% of cases 
in humans [31], with similar OA progression to that of 
complete ACL rupture [32]. In the dog, incomplete ACL 

rupture typically progresses to complete rupture with an 
unstable knee [33].

Human patients with an ACL rupture are twice as likely 
than individuals without ACL rupture, to have a relative 
with ACL rupture [5], but heritability has not been deter-
mined. In dogs, ACL rupture is moderately heritable [34].

Research opportunities
Current knowledge suggests that development of sub-
failure fiber rupture and the associated inflammatory 
response within the knee joint is another important area 
for future comparative research. Knowledge of the genet-
ics of canine ACL rupture is much advanced relative to 
human ACL rupture and translational genetic studies 
represent another substantial research opportunity.

Non‑modifiable factors
Age
In humans, ACL rupture risk is increased in adolescents 
and young adults [29]. In the Labrador Retriever, peak 
age of onset is 4 years with few dogs presenting over the 
age of 8 years [35]. Large breed dogs and dogs with bilat-
eral ACL ruptures present at a younger age [9, 36, 37].

Table 2  Clinical, radiographic and treatment parameters for canine and human anterior cruciate ligament (ACL) rupture

ACL anterior cruciate ligament, PCL posterior cruciate ligament, OA osteoarthritis, MR magnetic resonance; aLess commonly used/investigational

Parameter Canine ACL rupture Human ACL rupture

Diagnosis Clinical and radiographic Clinical and radiographic

Symptoms Knee pain and instability Knee pain and instability

Screening test Anterior drawer, tibial compression Anterior drawer, Lachman, pivot-shift

Radiographic effusion

  Before diagnosis Yes No

  At diagnosis Yes Yes

  After diagnosis Yes Yes

Radiographic OA

  Before diagnosis Typical Atypical

  At diagnosis Typical Atypical

  After diagnosis Yes Frequently at long-term follow-up

Detection of ACL fiber rupture and secondary 
signs

MR imaging MR imaging

Prediction of disease progression from incom-
plete to complete ACL rupture

Knee radiography None

Arthroscopic ligament findings Fiber rupture in both ACL bundles and PCL Fiber rupture in both ACL bundles

Other arthroscopic findings Synovitis, articular cartilage fibrillation and sof-
tening, meniscal tear,  periarticular osteophytes

Synovitis, articular cartilage fibrillation and soften-
ing, meniscal tear

Histological changes in the ACL Loss of collagen fibers and fiber crimp, chon-
droid transformation of ligament fibroblasts

Loss of collagen fibers and fiber crimp, chondroid 
transformation of ligament fibroblasts

Conservative treatments Physiotherapy, activity modification, knee brace 
occasionally

Physiotherapy, activity modification, knee brace

Surgical treatments Stabilization by tibial osteotomy or extracapsular 
suture

Stabilization by ACL reconstruction with intraar-
ticular graft. Repair of proximal ACL avulsion, 
extraarticular augmentationa
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Sex and hormonal factors
In humans, young female athletes are at highest risk 
of ACL rupture, including contralateral ACL rupture 
[29]. Sex hormone effects on knee valgus and anterior-
posterior laxity may influence risk of injury. Estrogen, 
progesterone, and androgen receptors are found on 
human ACL fibroblasts [38, 39]. Androgen receptors 
have also been identified in canine ACL fibroblasts [40]. 
Increasing estrogen and ACL laxity in the preovulatory 
phase may influence knee valgus and external rotation 
and associated ACL strains in women [41]. However, 
women often present with ACL ruptures during the 
early follicular and late luteal phase with low estro-
gen and progesterone [42]. ACL rupture risk in dogs 

is increased by ovariohysterectomy or castration [43]. 
Prevalence of ACL rupture is higher in neutered dogs, 
particularly when neutered at a young age [36]. In dogs, 
neutering may influence PTS [44].

ACL physiology and size
A smaller ACL volume is associated with increased risk 
of ACL rupture in men [45]. A larger ACL volume is 
correlated with higher ligament yield load and higher 
load to failure in dogs [46]. High-risk breeds have 
higher laxity, higher collagen turnover, lower enthalpy 
of denaturation and smaller collagen fibril diameters 
[47, 48], but ACL cross-sectional area is like low-risk 
breeds [47].

Fig. 1  Anatomical features of the dog and human knee. A, B The right knee of a dog. C, D The right knee of a human. Anatomic features including 
an anterior cruciate ligament (ACL), posterior cruciate ligament (PCL), infrapatellar fat pad (IFP), lateral and medial femoral condyles (MFC) and 
lateral and medial menisci are similar. An important difference between the dog and human knee is the lack of an anterolateral ligament (ALL) in 
the dog. A Medial femoral pouch (**). In B, the view laterally was improved by transecting the long digital extensor (LDE) tendon
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Intercondylar notch
Within the femoral ICN, the ACL and PCL twist 
around each other. A stenotic ICN may cause ACL 
impingement and promote fiber rupture [49], with 
associated increased risk of ACL rupture in both spe-
cies [49, 50]. In women, decreased ICN width is a risk 
factor for ACL rupture and graft rupture [45]. In high-
risk dog breeds, ACL impingement by the ICN is asso-
ciated with increased collagen remodeling and reduced 
ACL structural integrity [49]. However, in a study of 
Labrador Retrievers, ICN stenosis did not contribute to 
risk of canine ACL rupture in vivo [51].

Proximal tibial morphology
Studies in humans and dogs have shown that a higher 
PTS increases ACL load when larger axial compression 
forces are applied [52, 53]. In humans, increased PTS 
influences risk of both ACL rupture and ACL graft rup-
ture [54]. In dogs, higher PTS also contributes to risk of 
ACL rupture [51] and matrix degeneration in the ACL 
over time [55]. A small relative tibial tuberosity width 
in dogs also increases ACL rupture risk [56].

Axial rotation at the hip and knee
In humans, limited internal rotation at the hip increases 
peak ACL strain during pivot landings [30]. Dynamic 
alignment characterized by hip adduction, internal 
rotation, and increased knee abduction increases risk of 
ACL rupture in females [57]. In dogs, increased inter-
nal femoral torsion increases risk of ACL rupture [58].

Neuromuscular factors
Develop of muscle fatigue includes hamstring reflex 
responses in women, but not men, and leads to 
increased anterior-posterior tibial translation [59]. In 
dogs, quadriceps atrophy may lead increased anterior 
tibial thrust [60].

Quadriceps angle and patellar tendon angle
In humans, the quadriceps angle (QA) is larger in 
females [61] and is weakly associated with increased 
risk of ACL rupture. In dogs, QA does not influence 
risk of ACL rupture [58]. Patellar tendon tibial shaft 
angle in humans is also a moderate predictor of ACL 
injury [62], and similar effects on ACL rupture risk in 
dogs may exist [63].

Genetic risk
Genetic risk influences the pathological mechanisms 
that lead to ACL rupture, but specific linkages are not 
defined. Humans with ACL rupture are twice as likely 
as control subjects to have a family member with ACL 

rupture [5]. Family members of bilateral ACL rupture 
patients have increased risk [64].

Candidate gene studies have implicated genes that 
influence ligament matrix properties [65]. Genetic effects 
that increase ligament laxity, reduce strength, promote 
fibroblast apoptosis, promote abnormal matrix remode-
ling, or influence synovial sheath inflammatory responses 
may all influence injury risk. Genome-wide association 
studies (GWAS) have identified ACL rupture candidate 
variants [66, 67]. Human ACL rupture heritability has 
not been estimated.

In high-risk dog breeds, ACL rupture is moderately 
heritable with a polygenic architecture [34]. Interest-
ingly, Type I (COL1A1) and Type V collagen (COL5A1), 
and the large proteoglycan, aggrecan (ACAN), have been 
identified as risk genes in both species [34, 68–71].

Research opportunities
The epidemiology of non-modifiable risk factors has sev-
eral shared features in humans and dogs such as internal 
femoral torsion/rotation and several areas of difference 
between the two species. Comparative research opportu-
nities appear more limited in this area except for genetic 
research, where several ACL rupture risk genes that are 
shared between the two species have been identified to 
date. As larger epidemiological data sets become avail-
able, this may clarify the role of specific risk factors in the 
two species, such as relative tibial tuberosity width.

Modifiable factors
Environmental factors
Environmental factors have not commonly been shown 
to be different between sexes [72]. In dogs, there are no 
specific data that suggest increased ACL rupture risk 
from a particular terrain [73].

Activity and neuromuscular training
Recent efforts to develop neuromuscular training pro-
grams for human athletes have shown promise in lower-
ing ACL rupture rates [74]. Habitual activity is not a risk 
factor for ACL rupture in Labrador Retrievers, a high-
risk breed [73].

Body mass index
Greater body mass index (BMI) is a risk factor for human 
ACL injury in some studies, especially when combined 
with increased PTS [75]. Obesity in dogs increases ACL 
rupture risk (OR ~ 2.1–3.8) [76, 77].

Research opportunities
Obesity is common in both humans and dogs and 
interactions between BMI and ACL rupture risk could 
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represent another area of research that needs more 
investigation.

Clinical presentation
Patient history and physical examination
Humans with ACL rupture typically present with knee 
pain, swelling, instability, and hemarthrosis. Increased 
anterior tibial translation and internal tibial rotation is 
often present [78]. The Lachman, anterior drawer, and 
pivot-shift tests are used to assess instability [79]. Dogs 
with ACL rupture typically present with lameness after 
a non-contact incident associated with normal activ-
ity. In dogs, limb muscle atrophy, knee effusion, medial 
periarticular fibrosis, and palpable anterior-posterior 
and internal rotational laxity are common findings [80]. 
Approximations of the Lachman, anterior drawer, and 
pivot-shift tests that are used in humans are also used 
to evaluate knee instability in dogs [80]. Knee fibrosis 
may reduce palpable joint laxity. In both species, ante-
rior translation of the tibia with an ill-defined endpoint 
is indicative of ACL rupture. Anterior tibial translation 
while walking in ACL deficient dogs (~ 9.7-10 mm) is 
much greater than in ACL deficient humans (~ 3 mm) 
[78, 81].

Diagnostic imaging
Knee radiography is more sensitive than palpation for 
detection of effusion and OA. Avulsion fractures at liga-
ment attachments may occur in both species. In dogs, 
subtle radiographic change may be present with obvious 
synovitis (Fig.  2). Radiographic knee effusion and OA 
predict progression of ACL rupture from incomplete to 
complete in dogs [33].

Magnetic resonance (MR) imaging is the best method 
for identifying ACL fiber tearing in both species, with 
isotropic 3 T sequences being advantageous [82]. Both 
humans and dogs with incomplete ACL ruptures have 
MR signal changes associated with fiber tearing (Fig.  3) 
that may not be detectable by physical examination, as 
well as signal changes in the synovium, meniscus, and 
subchondral bone [31, 82, 83].

Bone bruises identified by MR imaging are associ-
ated with ACL rupture in both species [84, 85]. Humans 
with ACL rupture often have bruising of femoral and 
tibial subchondral bone suggesting that landing on an 
extended knee with a flexion angle near full extension 
with increased valgus, internal tibial rotation, and ante-
rior tibial translation is a risk factor for ACL rupture [84]. 
In dogs, bone bruises often occur by the intercondylar 
notch and the tibial eminences, likely reflecting high ACL 
strains [85].

Intraarticular findings from the knee joint
In both species with suspected incomplete ACL rup-
ture, arthroscopy typically confirms fiber rupture 
(Fig. 4) [31, 86]. In additional to ipsilateral knee synovi-
tis, contralateral knee synovitis is often present in dogs 
[86]. PCL fiber rupture is often identified in dogs with 
incomplete or complete ACL rupture [86]. Softening 
and fibrillation of hyaline articular cartilage with oste-
ophyte formation and meniscal damage is common in 
both humans and dogs with complete ACL rupture [86, 
87]. Chondroid metaplasia and matrix degeneration of 
the ACL is similar in both species [88, 89].

Research opportunities
Studies of the progression of fiber rupture in patients 
with incomplete ACL rupture is limited in humans. 
The frequency and degree of PCL fiber rupture in 
human patients with ACL rupture is currently a gap 
in knowledge. The spontaneous canine ACL rupture 
model could provide new opportunities to advance 
fundamental knowledge of the pathogenesis of incom-
plete ACL rupture, particularly through serial imaging 
studies. Serial MR imaging could shed new light on 
development of bone bruises in ACL rupture patients. 
Such research would be further enhanced by associated 
molecular analyses of synovial fluid and cruciate liga-
ment tissue.

Treatment
The mainstay of conservative treatment is a regimented 
physical therapy program and medical management 
of OA. Canine ACL rupture and knee OA creates the 
opportunity for large animal model testing of intraar-
ticular biological products [90].

Human and veterinary orthopaedic surgeons have 
used numerous surgical treatments for ACL rupture. In 
humans, primary repair and reconstruction have been 
the main intraarticular techniques. Recent research of 
bridge-enhanced primary repair for incomplete and 
complete ACL ruptures in humans has become more 
prevalent due to interest in lowering incidence of post-
traumatic OA and preservation of native tissue pro-
prioceptive and biomechanical function [2, 3]. Primary 
ACL repair in dogs often results in ACL laxity, fiber 
loss and OA [91]. ACL repair with an intraarticular 
graft has been used in both species but is rarely used 
in dogs currently because of poor outcomes, which is 
a limitation of the spontaneous canine ACL rupture 
model. Challenges with graft mechanical strength and 
fixation, cellular ingrowth, knee loading after surgery, 
disruption of ligament blood supply, and exposure to 
synovitis likely explain this difference.
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A high tibial osteotomy or tibial plateau leveling oste-
otomy (TPLO) to reduce PTS offers the best outcome 
in dogs [18]. Humans with failed ACL reconstruction 
and PTSs > 13° may also benefit from tibial osteotomy 
along with ACL repair [92].

Research opportunities
Large populations of client-owned dogs undergo surgical 
treatment of ACL rupture each year. This animal popula-
tion is an untapped resource regarding treatment related 
research, particularly progression of OA and studies of 
disease-modifying therapy.

Impact on human health
Comparative diagnostic metrics
Most dogs are managed based on physical examination 
and radiographs. Knee arthroscopy is also commonly 
performed in humans and dogs. Longitudinal radiog-
raphy and arthroscopy in dogs are easily accessible for 
research.

Availability of knee tissues
Knee synovial fluid arthrocentesis in dogs is easy to 
perform. This creates an opportunity for comparative 

Fig. 2  Radiographic features of anterior cruciate ligament (ACL) rupture in the dog and human. A,B Lateral and anterior-posterior (AP) views of 
the right knee of a dog with anterior crucitate ligament (ACL) rupture and palpable laxity. The presence of knee joint effusion (#), osteophytes (*) 
and some degree of intercondylar notch narrowing (arrow) are typical at diagnosis. C,D Lateral and AP radiographs of the right knee of a human 
demonstrating joint effusion (#). Secondary OA typically develops after ACL rupture in humans
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studies of synovial fluid biomarkers. Identification 
of a biomarker that is unique to ACL rupture, rather 
than post-traumatic OA and investigation of molecu-
lar pathways of ACL degeneration could be improved 
through use of canine joint tissues. The shortened lifes-
pan of dogs enables end-of-life studies.

Isolation of specific outcomes associated with surgical 
technique
Dogs with incomplete ACL ruptures may undergo 
TPLO for PTS reduction to prevent further ACL fiber 
rupture [15]. This provides opportunities for studying 
ligament fiber response and ACL healing. Outcomes 

Fig. 3  Magnetic resonance (MR) imaging of incomplete and complete anterior cruciate ligament (ACL) rupture in the dog and human. Both 
humans and dogs can present with incomplete or complete anterior cruciate ligament (ACL) rupture. A Sagittal proton density fast spin echo (FSE) 
magnetic resonance (MR) image of a stable canine knee with incomplete ACL rupture (arrow). B Sagittal T2 FSE CUBE image of a complete canine 
ACL rupture (arrow). In humans, incomplete ACL rupture develops gradually with subfailure fiber rupture similar to the dog. C Sagittal MR imaging 
illustrating incomplete human ACL rupture (arrow). D T2-weighted MR sagittal sequence demonstrating mid-substance complete ACL rupture 
(arrow). Images A and B in Fig. 3 are reproduced with permission from Wiley [82]
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of TPLO in dogs could help isolate the long-term 
impact of PTS reductions on OA progression [15]. 
Some human patients experience rotational instability 
after ACL reconstruction [93], which can also be seen 
in dogs. ALL reconstruction in humans [93] is analo-
gous to extracapsular knee stabilization in dogs, which 
could be used as an animal model for ALL reconstruc-
tion. The role of knee synovitis in graft healing and 
associated knee laxity in humans is poorly understood. 
Studies of graft failure in the spontaneous canine ACL 
rupture model could yield new insight into mechanisms 
explaining poor graft healing.

Causal genetic variant discovery and genomic prediction 
of ACL rupture risk
Use of dogs for genetic investigation of human complex 
disease is advantageous [34]. Longer haplotype blocks 
allow GWAS to be performed with fewer markers and 
smaller sample sizes [34]. Development of polygenic 
risk scoring for ACL rupture risk prediction is enabled 
by dog studies [94].

Conclusions
Many epidemiological features of ACL rupture are com-
parable between humans and dogs. Given the high inci-
dence in many different breeds of dog, there is a very 
large study population available for comparative research. 
The greatest limitations of the spontaneous canine ACL 
rupture model are different knee biomechanics related 
to quadrupedal locomotion and differences in surgical 
treatment. OA progression is faster in dogs, enabling dis-
ease course observation over a shorter time. Sharing of 
ACL rupture genetic variants with humans has not been 
specifically investigated to date. Use of client-owned dogs 
as a preclinical animal model for studies of ACL rupture 
biology and response to treatment promises advances in 
translational One Health research.
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Fig. 4  Intraarticular findings associated with anterior cruciate ligament (ACL) rupture in the dog and human. A-D Arthroscopic views of the 
intercondylar notch (ICN) in dogs with anterior cruciate ligament rupture (ACL) (*). A Fiber rupture often involves specific fiber bundles in the 
anteromedial bundle of the ACL (*). Associated synovitis is present (arrow). B Fiber rupture and splitting (arrow) of the posterior cruciate ligament 
(PCL) is also common. C With progressive fiber rupture, associated synovitis reflects hypertrophy, vascularity and inflammatory changes. The 
healing response in fiber bundles (*) is not successful. D View of the tibial attachment of a complete ACL rupture. A marked healing response in 
ruptured fiber bundles (*) leads to enlargement of ruptured fiber bundles. E-H Arthroscopic views of a human knee with ACL rupture. E The femoral 
ICN containing both ACL and PCL as they twist around each other with overlying synovium (arrow) is similar to dogs. Both species develop an 
associated synovial inflammatory response. F PCL fiber rupture (arrow) with adjacent synovitis and hemorrhage (#). G The ACL rupture can be seen 
with few fibers remaining attached to the femur (arrow) with synovitis (#) overlying the PCL. H The blunted end of ruptured ACL fibers at the tibial 
attachment, similar to the dog
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