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Artificial intelligence improves the accuracy
of residents in the diagnosis of hip
fractures: a multicenter study
Yoichi Sato1,2* , Yasuhiko Takegami3, Takamune Asamoto2,4, Yutaro Ono2,5, Tsugeno Hidetoshi2,5, Ryosuke Goto6,
Akira Kitamura6 and Seiwa Honda2

Abstract

Background: Less experienced clinicians sometimes make misdiagnosis of hip fractures. We developed computer-
aided diagnosis (CAD) system for hip fractures on plain X-rays using a deep learning model trained on a large
dataset. In this study, we examined whether the accuracy of the diagnosis of hip fracture of the residents could be
improved by using this system.

Methods: A deep convolutional neural network approach was used for machine learning. Pytorch 1.3 and Fast.ai
1.0 were applied as frameworks, and an EfficientNet-B4 model (a pre-trained ImageNet model) was used. We
handled the 5295 X-rays from the patients with femoral neck fracture or femoral trochanteric fracture from 2009 to
2019. We excluded cases in which the bilateral hips were not included within an image range, and cases of femoral
shaft fracture and periprosthetic fracture. Finally, we included 5242 AP pelvic X-rays from 4851 cases. We divided
these 5242 images into two images per image, and prepared 5242 images including fracture site and 5242 images
without fracture site. Thus, a total of 10,484 images were used for machine learning. The accuracy, sensitivity,
specificity, F-value, and area under the curve (AUC) were assessed. Gradient-weighted class activation mapping
(Grad-CAM) was used to conceptualize the basis for the diagnosis of the fracture by the deep learning algorithm.
Secondly, we conducted a controlled experiment with clinicians. Thirty-one residents;young doctors within 2 years
of graduation from medical school who rotate through various specialties, were tested using 300 hip fracture
images that were randomly extracted from the dataset. We evaluated the diagnostic accuracy with and without the
use of the CAD system for each of the 300 images.

Results: The accuracy, sensitivity, specificity, F-value, and AUC were 96.1, 95.2, 96.9%, 0.961, and 0.99, respectively,
with the correct diagnostic basis generated by Grad-CAM. In the controlled experiment, the diagnostic accuracy of
the residents significantly improved when they used the CAD system.
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Conclusions: We developed a newly CAD system with a deep learning algorithm from a relatively large dataset
from multiple institutions. Our system achieved high diagnostic performance. Our system improved the diagnostic
accuracy of residents for hip fractures.

Level of evidence: Level III, Foundational evidence, before-after study. Clinical relevance: high

Background
In Japan, as many as 13 million elderly people have
osteoporosis [1, 2]. Fragility fractures, such as hip frac-
tures and spinal fractures are also increasing, with 200,
000 patients suffering from hip fractures annually [3].
Patients with hip fractures require admission to hospital
as soon as possible, because the longer the patients delay
getting treatment, the worse their walking ability and
prognosis will be [4, 5].
Most hip fracture patients visit the emergency depart-

ment because they have difficulty walking due to pain.
In the emergency department, clinicians are exposed to
excessive time and mental stress, which can cause fa-
tigue and misdiagnosis [6, 7]. This tendency is particu-
larly pronounced among residents [8]. In previous
studies, the misdiagnosis rate at the initial diagnosis for
hip fractures was estimated to be 2–10% [9].
A delay in the diagnosis and treatment worsens the prog-

nosis [10], and a misdiagnosis may lead to medical litigation
[6]. To prevent a misdiagnosis, radionuclide bone scans,
computed tomography (CT), and magnetic resonance im-
aging (MRI), as well as plain X-rays, are recommended as
additional diagnostic imaging [11, 12]. However, these add-
itional tests are not always available in all institutions.
In recent years, deep learning, a method of machine

learning using multi-layered neural networks, has emerged
and improved the accuracy of image recognition [13]. In
the field of medicine, many previous studies have reported
the application of deep learning to imaging analysis and
demonstrated its high diagnostic accuracy [14]. Several
studies have applied a deep learning algorithm to the diag-
nosis of fractures [15]. Olczak first demonstrated that artifi-
cial intelligence (AI) with the use of a deep learning
approach for the diagnosis of ankle and wrist fracture on
plain X-rays [16]. There have been some papers on the use
of a deep learning algorithm to diagnose hip fractures.
Some of these studies diagnose from antero-posterior im-
ages only [17–20], one from both antero-posterior and lat-
eral images [21], one can predict not only presence of
fractures but also fracture type [22], and one of the same al-
gorithms can be used to diagnose both proximal femur and
pelvic fractures [23] . Additionally, a previous study re-
ported that deep learning algorithm improved the diagnos-
tic accuracy of fracture detection by clinicians [20, 22, 24].
However, these studies were conducted in a single center.
The dataset was relatively small and the image processing

method was uniform. Few studies have described the im-
provement of clinicians’ diagnostic accuracy for hip frac-
tures with the aid of deep learning algorithms and no
studies have reported differences in outcomes according to
years of clinical experience.
Thus, we planned to train a deep learning model using

a large dataset with images obtained by various protocols
in a multi-institutional setting. We newly developed the
computer-aided diagnosis (CAD) system using a model
that could visualize the diagnostic method of the AI. In
the present study, we hypothesized that the CAD system
would improve the diagnostic accuracy of clinicians, in-
cluding residents.

Methods
Subjects
All research contents were performed in accordance
with the ethical standards of the amended Declaration of
Helsinki. This study was conducted with the approval of
the ethics committee of each hospital (Gamagori City
Hospital: approval No. 368–1, Tsushima City Hospital:
Approval No. 2019–3, Nagoya Daini Red Cross Hospital:
approval No. 1360).
We collected images from 3 hospitals (Gamagori City

Hospital, Tsushima City Hospital, Nagoya Daini Red Cross
Hospital) in Aichi Prefecture, Japan. The Nagoya Daini Red
Cross Hospital provided tertiary care in an urban area with
a population of 2.3 million. The other two hospitals—
Gamagori City Hospital and Tsushima City Hospital—are
primary care hospitals in a rural area in Japan. Table 1
shows the background factors of each institution.
We collected 5295 cases of femoral neck fractures or

femoral trochanteric fractures that were diagnosed by
orthopedic surgeons using plain X-ray, CT or MRI be-
tween 2009 and 2019. Patients aged 20 years and older
were included in the study. Among these 5295 cases,
391 cases subsequently suffered a hip fracture on the op-
posite side during the study period. We also included
hip implants on the opposite side (n = 452), complicated
pubic or sciatic fracture (n = 93), cases with osteoarth-
ritis of the hip (Kellgren–Lawrence Grade III or IV: 84
cases) [25], including spine implants (n = 46), and patho-
logic fractures of the proximal femur due to metastatic
cancer (n = 12). We excluded images for the following
reasons: periprosthetic fractures (n = 32), bilateral hips
were not included within an image range (n = 14), and
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femoral shaft fracture (n = 7). Finally, we utilized 5242
AP pelvic X-rays in 4851 cases (Sex: male, n = 1193; fe-
male, n = 3658, mean age at injury: 81.1 years) (Fig. 1).
Of these, we diagnosed 5024 (95.8%) from frontal simple
hip radiographs, 97 (1.9%) with radiographic lateral
views as well, and 121 (2.3%) with CT or MRI for defini-
tive or exclusionary diagnosis.

Evaluation of fractures
Two orthopedic surgeons (YS, TA) assessed the presence
or absence and the type of fracture. The Kappa statistic of
inter-observer correlation for the presence or absence of
these fractures was 0.91. If the results differed, it was

decided after a discussion. To classify the fracture type, we
used the Garden classification (Garden classification stage I,
II, III, IV: G/S I-IV) for femoral neck fractures [26] and the
AO/OTA classification for femoral trochanteric fractures
(AO/OTA 31-A1, A2, A3) [27]. We defined a great tro-
chanteric fracture as one in which the fracture line did not
extend to the medial cortex [28]. A total of 5024 cases
(95.8%) were diagnosed from AP pelvic X-rays alone. Other
patients were diagnosed by lateral X-ray (n = 97; 1.9%) and
CT or MRI (n = 121; 2.3%). All of these images were incor-
porated into the dataset without any specific labeling, and
were being trained equally. Table 2 shows the classifications
of fracture types.

Table 1 Information about the participating medical institutions

Gamagori City Hospital Tsushima City Hospital Nagoya Daini
Red Cross Hospital

Overall P-value

Medical sphere (Number of people) 140,000 300,000 570,000 1,010,000 < 0.001*

Number of ambulances per year in 2019 3351 4380 12,726 20,457 < 0.001*

Number of emergency patients in 2019 14,131 13,724 37,713 65,568 < 0.001*

Number of residents in 2019 7 11 47 65 < 0.001*

X-ray generator MODEL TF-6TL-6
(TOSHIBA, Japan)

UD150L-40
(SHIMADZU, Japan)

DHF-153HII
(HITACHI, Japan)

Image processing unit CALNEO Smart C12
(FUJIFILM, Japan)

Aero DR
(Konica Minolta, Japan)

FCR VELOCITY
(FUJITSU, Japan)

Image file format .jpeg .dcm .jpeg

Image size 4892 × 4020 pixel 3451 × 2836 pixel 2039 × 1380 pixel

* P < 0.05

Fig. 1 Patient flow
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Image capturing environment and image data extraction
X-rays were taken with the patient in the supine position
with internal rotation of their hip. The central beam in
the AP view was directed to the midpoint between the
upper border of the pubic symphysis and a horizontal
line connecting both anterior iliac spines. The imaging
conditions were as follows: 70 kV, 200mA, 0.4 s, and
tube-to-film distance, 100 cm. The X-ray generator and
CR or DR image processor. We used a Digital Imaging
and Communications in Medicine (DICOM) image dis-
play (Toshiba Medical Systems Corporation, Tokyo) as
the image reference software program. The image file
format and the size of the original image varied from
each institution. (Table 1).

Image preprocessing and development of the algorithm
We described the details image processing and the algo-
rithm in Supplemental method. We used uncompressed
data. Images extracted from the DICOM server were
converted into 3 channels and 8-bit JPEG images, and
both were resized to 380 × 380 pixels. For each image,
the window level was not adjusted. All images were
given a rectangle that included the entire fracture site.
To extract larger images, we placed a vertical dividing
line at a position with a 50-pixel margin for the rect-
angle and adopted the images without the rectangle as
the non-fractured side data and generated 5242 images
that did not contain the fracture site. We also adopted
the image of the side containing the rectangle of the
same size as the non-fractured site data as the fracture
side data and generated 5242 images containing the frac-
ture site. In total, 10,484 images were prepared for ma-
chine learning (Supplementary Figure 1).
We randomly divided the dataset into three sets: a

training dataset (non-fracture sides, n = 4242; fracture

side, n = 4242; total, 8484 images), a validation dataset
(non-fracture side, n = 500; fracture side, n = 500; for a
total of 1000 images), and a test dataset (non-fracture
side, n = 500; fracture side, n = 500; for a total of 1000
images) (Fig. 1).
We used gradient-weighted class activation mapping

(Grad-CAM) [29] to conceptualize the basis for the deep
learning algorithm’s diagnosis of a fracture. We used the
show-heatmap-function of Fast.AI (http://www.fast.ai)
on the deep learning algorithm to obtain the heatmap.
Through this process, we have developed a CAD system
based on a deep learning algorithm that provides diag-
nosis and visualization of basis.
We determined the calculation time for the whole

process of the inference and the generation of heat maps
for one image of the test dataset. The calculation
method is the average time per image of the test dataset
divided by the calculation time, which was deduced from
1000 images of test data.

Controlled experiment with clinicians
To investigate the application of the CAD system and
verify its effectiveness in a clinical setting, we conducted
a controlled experiment with clinicians. There were 65
residents;young doctors within 2 years of graduation
from medical school without speciality, in the three in-
stitutions included in the study. Thirty-one of these resi-
dents agreed to participate in the study (10 in their first
year of residency, and 21 in their second year of resi-
dency). Each of these participants provided their in-
formed consent at their respective institutions.
We randomly extracted 300 images (133 on the non-

fractured side and 167 on the fractured side) from 1000
test image datasets described as a previous study [24].
The 300 images included 136 right femur images and

Table 2 Patient background and the classification of fracture type

Gamagori City
Hospital

Tsushima City
Hospital

Nagoya Daini
Red Cross Hospital

Overall P-value

Mean age at time of injury (95% CI) 81.8 (70.4, 93.2) 81.4 (70.9, 91.9) 80.1 (67.6, 92.6) 81.1 (69.6, 92.6) < 0.001*

Sex (male/female) 340/1156 287/829 566/1673 1193/3658 0.13

Fracture type Garden (I,II/III,IV) 275/450 191/324 528/897 994/1671 < 0.001*

AO31- (A1/A2/A3) 489/253/54 383/185/48 509/322/76 1381/760/178 0.09

Greater trochanteric fracture 96 74 88 258 < 0.001*

Number of X-rays 1617 1205 2420 5242

Complications Pathologic fractures due to tumors 3 2 7 12 0.80

Osteoarthritis of the hip 26 15 43 84 0.50

Hip implants on the opposite side 132 125 195 452 0.05

Spine implants 7 4 35 46 < 0.001*

Complicated pubic or sciatic fracture 23 17 53 93 0.12

Age at injury and fracture type were evaluated for each fracture site when there were multiple images in bilateral cases
95%CI 95% confident intervals
* P < 0.05
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164 left femur images. First, we checked the perform-
ance of the deep learning algorithm for the 300 images.
Then, clinicians undertook the diagnostic test. Before

conducting the test, we presented the accuracy of the
CAD to the clinicians. The outline of the diagnostic test
was as follows: 1) the clinicians diagnosed the presence
or absence of fracture by themselves; 2) after the clin-
ician answered, the CAD system added the visualization
of the fracture to the same image; 3) as a second test,
the clinician responded again based on the hint. (Supple-
mental Figure 4) This sequence was repeated 300 times.

Assessment
Performance of the deep learning algorithm
We evaluated the performance of the trained deep learn-
ing algorithm using the test image dataset. We also cal-
culated the accuracy, sensitivity, specificity, F-value,
receiver operating characteristic (ROC) curve and mea-
sured the area under the curve (AUC), as described in
the STARD 2015 guidelines [30].

Evaluation of the heatmap generated by the CAD system
We performed accuracy validation of Grad-CAM in ac-
cordance with the previous research [18]. We used a
total of 40 images, 20 with and 20 without fractures, ran-
domly selected from images that the algorithm was able
to correctly diagnose in the test data set, for accuracy
validation. For accuracy validation, we used the area with
the highest signal intensity in the Heat map as the basis
for determining “with fracture” if it was located directly
above the femur between the femoral head and just
above the popliteus. The assessor (YS) evaluated the
consistency between the high signal intensity region on

the heat map and the actual fracture site on the X-ray
using sensitivity and specificity. The kappa value for
intra-observer correlation between two-week intervals
was 1.0.

The diagnostic accuracy of clinicians with or without the
use of the CAD system
We compared the accuracy, sensitivity, and specificity
with/without the aid of the CAD system among resi-
dents. We also compared the diagnostic accuracy of the
first-year residents to that of second-year residents.

Statistical analysis
The EZR software program was used to perform the
statistical analyses [16]. We used Fisher’s exact test were
used to analyze categorical variables. The normality of
the distribution of diagnostic accuracy was tested for
using the Shapiro-Wilk test. As a result, the value did
not show a normal distribution. Thus, we used the
Wilcoxon signed-rank test. P values of < 0.05 were con-
sidered to indicate statistical significance. Scikit-Learn
(https://scikit-learn.org/) was used to analyze the per-
formance of the deep learning algorithm.

Results
Performance of the deep learning algorithm
The performance of the deep learning algorithm was as
follows: accuracy, 96.1% (95% CI: 94.9, 97.3); sensitivity,
95.2% (95% CI: 93.9, 96.5); specificity, 96.9% (95% CI:
95.8, 98.0), and F-value, 0.961 (95% CI: 0.950, 0.972).
The ROC curve is shown in Fig. 2; the AUC was 0.99
(95% CI, 0.98, 1.00).

Fig. 2 ROC Curves. This is the ROC curve for the EfficientNet-B4 model, which showed an AUC of 0.992. Class 0 indicates cases without fracture,
and Class 1 indicates cases with fracture. Each ROC curve was calculated. The micro-average ROC sums contributions by class, while the macro-
average ROC shows the average results for all classes (AUC = 0.992)
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On the other hand, the deep learning algorithm mis-
diagnosed 39 of the 1000 images. A total of 24 images
with fractures were diagnosed as “without fracture” (false
negative). These included slightly displaced fractures
(n = 21); fractures located at the greater trochanter of
the femur (n = 9), non-displaced femoral neck fractures
(n = 8), femoral trochanteric fractures (n = 8; AO31 -
A1). The others included relatively displaced fractures
(n = 3); femoral trochanteric fracture (n = 2; AO31 - A2,
3), and displaced femoral neck fracture (n = 1; G/S 3, 4).
A total of 15 images without fracture were diagnosed as
“with fracture” (false-positive). These included 13 cases
with normal images, a case with deformity after conser-
vative treatment and a case after nail removal (Fig. 3).

Evaluation of the heatmap generated by the CAD system
For images diagnosed by the algorithm as “with frac-
ture”, Grad-CAM showed a high-signal region consistent
with the fracture site. For images diagnosed as “without

fracture”, Grad-CAM showed high-signal areas in the re-
gion other than femoral neck and trochanteric. (Fig. 4)
For the 20 “with Fracture” images, all 20 images had the
same high-signal region on the heat map as the fracture
site. On the other hand, 19 of the 20 “without fracture”
images had high signal areas except from the femoral
head to just above the trochanter in the 19 images, but
one image had a high signal area in the greater trochan-
ter. (Supplemental Figure 5) The accuracy of Grad-CAM
was thus calculated to be 100% sensitivity and 95% spe-
cificity. The average inference time per image, including
Grad-CAM, was 1.17 s.

The diagnostic accuracy of clinicians with or without the
aid of the CAD system
The residents’ mean diagnostic accuracy was signifi-
cantly improved with the aid of the CAD system. (accur-
acy of 84.7% (95% CI: 82.2, 87.2) without aid to 91.2%
(95% CI: 89.6, 92.8) with aid; p < 0.01, sensitivity of

Fig. 3 Images that were misdiagnosed by the CAD system. a-c Incorrectly diagnosed by the CAD system (false-negative). a A case that even
orthopedic surgeons could not decide. b A case in which a non-orthopedic surgeon could be wrong. c A case in which even non-orthopedic
surgeons were not confused by the diagnosis. d-f Images that were incorrectly diagnosed by the CAD system (false-positive). d Normal image. e
A case after implant removal. f A case in which deformity healed after conservative treatment
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83.4% (95% CI: 83.4, 90.6) with aid to 90.6% (95% CI:
83.9, 97.3) with aid p < 0.01, specificity of 88.7% (95% CI:
82.1, 95.3) without aid to 93.4% (95% CI: 89.5, 97.3) with
ai p < 0.01).
The results of the diagnostic accuracy of residents in

both the first and second years are presented in Table 3.
The accuracy, sensitivity, and specificity of the residents
were improved with the CAD system, irrespective of
their year of residency.

Discussion
We developed a newly CAD system based on a deep
learning algorithm for hip fracture. This system provided
high accuracy, sensitivity, and specificity. The areas acti-
vated on the heat map all corresponded to the areas
pointed out by the orthopedic surgeon. Inexperienced
residents’ diagnostic accuracy, sensitivity, and specificity
in the diagnosis of hip fracture improved when they used
the CAD system.
Our CAD system, based on a deep learning algorithm,

had some advantages over other studies. We conducted
a literature review that demonstrated the application of
AI-based systems for the diagnosis of hip fracture in

Table 4 [17–22]. We used the largest amount of learning
data from multiple institutions. In this study, almost all
of the images of hip fractures obtained from multiple in-
stitutions were used, and approximately 10,000 images
of machine learning data were generated from approxi-
mately 5000 cases. Large datasets are the key to success
in machine learning [31]. The majority of published
studies on AI to date were conducted in a single institu-
tion; only 6% of these studies used data from multiple
institutions [32]. Our multiple-center dataset provides 1)
a large amount of data, and 2) images with different im-
aging formats. In this study, the deep learning algorithm
achieved high accuracy at multiple institutions, despite
the use of different radiographic equipment and image
file formats. The high performance of the multi-center
data may help in the practical application of this system.
The performance of our deep learning algorithm was

as good as that described in previous reports. On the
other hand, the deep learning algorithm failed to diag-
nose 3.9% of images (39 out of 1000 test data) correctly.
Twenty-four images with fractures were diagnosed as
“without fracture” and 15 images without fracture were
diagnosed as “with fracture”.

Fig. 4 Visualization of the area of fracture detection using Grad-CAM. a For images diagnosed by the algorithm as “with fracture”, Grad-CAM
showed a high-signal region consistent with the fracture site . b For images diagnosed as “no fracture”, Grad-CAM showed high-signal areas in
the region other than femoral neck and trochanteric. From red to green, the diagnostic basis of the CAD system was strongly evident

Table 3 Results of the controlled experiment in which clinicians diagnosed 300 test images

Accuracy (%) Sensitivity (%) Specificity (%)

With CAD Without
CAD

P value With CAD Without
CAD

P value With CAD Without
CAD

P value

First-year residents
(95%CI)

82.1 (78.6, 85.7) 91.2 (89.3,
93.0)

<
0.001*

81.9 (79.4, 84.3) 90.5 (88.5,
92.5)

<
0.001*

86.5 (83.0, 90.1) 93.2 (91.3,
95.1)

0.08

Second-year residents
(95%CI)

85.9 (83.9,87.9) 90.9 (89.3,
92.6)

<
0.001*

84.2 (81.4, 87.0) 90.6 (88.0,
93.2)

<
0.001*

89.7 (88.2, 91.2) 93.5 (92.4,
94.7)

<
0.001*

95%CI 95% confident intervals
* P < 0.05
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Second, our CAD system, which was based on a deep
learning algorithm, was able to provide a heat map of
the fracture site, which provided evidence about where
the AI recognized the fracture. In all cases, the fracture
site indicated on the heat map was located in the area
indicated by the orthopedic surgeon. AI-based diagnos-
tics has classically been associated with a “black box
problem” [33], in that cannot explicitly express the fea-
ture quantity, the reasons for the judgment are not clear,
and humans cannot understand or interpret the reasons.
In this study, we used Grad-CAM to visualize class-
discriminative regions on the X-rays. This could reveal
the location of the diagnosis. However, the Grad-CAM
could show the fracture as a rough area, but cannot
show the fracture line itself. Besides, the image informa-
tion that the deep learning algorithm based its decision
on (e.g., the fracture line, bone marrow edema, or soft-
tissue contrast) is still unclear.
Third, in this study, the diagnostic accuracy, sensitiv-

ity, and specificity of residents improved when they used
the CAD system. Moreover, the CAD system improved
their diagnostic accuracy regardless of the year of resi-
dency. There have been many studies in which deep
learning algorithms showed high diagnostic performance
at the basic research level [14]. However, they did not
provide comparisons with health-care professionals (i.e.,
human vs. machine), and few of the studies reported
comparisons with healthcare professionals using the
same test dataset. As shown in Table 4, in previous stud-
ies on deep learning algorithms for hip fractures, few as-
sessments were made as to how deep learning
algorithms affect clinicians’ diagnostic abilities [17–22].
Our study showed that the CAD system would be useful
for aiding residents in the diagnosis of hip fracture.

The present study was associated with several limita-
tions. First, the present dataset included cases of patho-
logical fractures caused by metastatic bone tumors but
did not include cases of osteomyelitis without fracture.
It is desirable to consult a specialist as soon as possible
in such cases; however, the CAD system developed in
this study may not be able to point this out. Second, the
image needs to be divided by preprocessing. A CAD sys-
tem that can diagnose hip fractures without preprocess-
ing from X-rays of both hips should be developed using
the deep learning algorithm obtained in this study.
Third, the diagnostic imaging test was not conducted in
an actual clinical setting. This study was retrospective
study conducted via a PACS-like web interface used by
clinicians for medical imaging. Unlike the high-
resolution monitors used in clinical practice, the reading
of the images is done on a home personal computer,
and therefore the diagnostic rate for clinicians may be
underestimated. It is also possible that the incidence of
“with fracture” images in clinical practice is different
from the frequency of diagnosis in clinical practice. In
this regard, future prospective studies in actual clinical
settings using an actual PACS system are needed.
Fourth, we have not been able to assess whether clini-
cians have fundamentally improved their diagnostic abil-
ities in the diagnostic imaging test. In the diagnostic
imaging test, clinicians read images without diagnostic
aid and images with diagnostic aid consecutively. Be-
cause clinicians didn’t read the images at regular time
intervals, the effect in terms of education is not known.
In addition, the correctness criteria for the diagnostic
imaging test was whether the clinician was able to an-
swer the fracture site correctly on the basis of the pres-
ence or absence of a fracture. Grad-CAM presented the

Table 4 Literature review

Year Insti-
tution

Number
of
patients

Number of
images for
machine
learning

Fracture type
(femoral neck/
trochanteric
fracture)

Images
including
implants on
hip or spine

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

AUC Grad-
CAM

Clinician
test (AI-
aided
test)

Adams
et al. [17]

2018 1 805 805 femoral neck
fracture

excluded 90.6 N/A N/A 0.98 no no

Urakawa
et al. [19]

2018 1 1773 3346 femoral
trochanteric
fracture

excluded 95.5 93.9 97.4 0.97 no no

Cheng
et al. [18]

2019 1 3605 3605 both included 91 98 84 0.98 yes no

Yamada
et al. [21]

2019 1 1047 2923 both excluded 98.0 98.0 98.0 N/A no no

Krogue
et al. [22]

2020 1 1118 3026 both included 93.7 93.2 94.2 0.98 yes yes

Cheng
et al. [20]

2020 1 3605 3605 both excluded 91.0 98.0 84.0 N/A yes yes

Current
study

2021 3 4851 10,484 both included 96.1 95.2 96.9 0.99 yes yes
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heat map as an indication of the fracture site, but it is
unclear how much the heat map contributed to the cli-
nician’s ability to read it.

Conclusion
We developed a newly CAD system for the diagnosis of
hip fracture based on a deep learning algorithm. This
system provided high accuracy, sensitivity, and specifi-
city. The areas activated on the heat map all corre-
sponded to the areas pointed out by the orthopedic
surgeon. The accuracy, sensitivity, and specificity of resi-
dents in the diagnosis of hip fracture improved when
they used this CAD system. This system may aid resi-
dents in the diagnosis of hip fractures.
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