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Abstract

Background: Internal fixation is recommended for treating Vancouver B1 periprosthetic femoral fractures. Although
several fixation procedures have been developed with high fixation stability and union rates, long-term weight-
bearing constructs are still lacking. Therefore, the aim of the present study was to evaluate the stability of a double-
plate procedure using reversed contralateral locking compression-distal femoral plates for fixation of Vancouver B1
periprosthetic femoral fractures under full weight-bearing.

Methods: Single- and double-plate fixation procedures for locking compression-distal femoral plates were analysed
under an axial load of 1,500 N by finite element analysis and biomechanical loading tests. A vertical loading test
was performed to the prosthetic head, and the displacements and strains were calculated based on load-
displacement and load-strain curves generated by the static compression tests.

Results: The finite element analysis revealed that double-plate fixation significantly reduced stress concentration at
the lateral plate place on the fracture site. Under full weight-bearing, the maximum von Mises stress in the lateral
plate was 268 MPa. On the other hand, the maximum stress in the single-plating method occurred at the defect
level of the femur with a maximum stress value of 1,303 MPa. The principal strains of single- and double-plate
fixation were 0.63 % and 0.058 %, respectively. Consistently, in the axial loading test, the strain values at a 1,500 N
loading of the single- and double-plate fixation methods were 1,274.60 ± 11.53 and 317.33 ± 8.03 (× 10− 6),
respectively.

Conclusions: The present study suggests that dual-plate fixation with reversed locking compression-distal femoral
plates may be an excellent treatment procedure for patients with Vancouver B1 fractures, allowing for full weight-
bearing in the early postoperative period.
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Background
Total hip arthroplasty (THA) is a surgical procedure for
hip joint replacement with an artificial prosthesis that
has been proven to improve quality of life for the major-
ity of patients with hip disability. Periprosthetic femoral
fractures are serious complications of THA that often
require revision surgery [1–3]. Treatment decisions for
periprosthetic femoral fractures are typically made based
on the Vancouver classification system [4, 5]. Vancouver
type B1 femoral fractures occur around the stem tip with
a stable implant and are often associated with complica-
tions characterised by non-union and implant failure [2,
6, 7].
Internal fixation is recommended as the treatment to

minimise the risk of prosthetic loosening and reduce
early mobilisation [8–10]. There are various procedures
for internal fixation, most of which have shown good
clinical outcomes. Recent biomechanical studies demon-
strated that locking plate constructs results in greater
stiffness than conventional cable plating [11–14]. None-
theless, single locking plate fixation may not always offer
optimal fixation, and failure or less satisfactory results
have often been reported. Such cases most likely occur
as a result of full weight-bearing on the plate system [15,
16]. Additional attachment of an anterior plate is sug-
gested to improve fracture stability and has shown some
satisfactory results in biomechanical studies [17, 18]. In
these studies, however, the lateral locking plates were
too short and narrow, which may limit their clinical ap-
plications. An alternative approach of using a reversed
contralateral distal femoral locking plate has been re-
ported for the treatment of Vancouver B1 fractures, with
a good fracture union rate. However, there is always a
risk of failure due to plate weight-bearing [19–21].
Addition of an anterior locking plate to the reversed
contralateral locking compression-distal femoral plates
(LCP-DF) might be a good choice to improve fixation
stability and overcome weight-bearing restrictions when
using a single-plate system. Therefore, the aim of the
current study was to evaluate the potential advantages of
a reversed contralateral LCP-DF double-plate fixation
procedure for treatment of Vancouver B1 fractures
under full weight-bearing using finite element analysis
(FEA) and biomechanical testing.

Materials and Methods
Construction of the finite element analysis model
A three-dimensional (3D) model of composite femurs
(4th generation, Sawbones Worldwide, WA) was con-
structed by computed tomography (CT) imaging
(Mimics 16, Materialise, Software & Services for Bio-
medical Engineering, Leuven, Belgium) of the data ob-
tained from CT (Eclos-4 S, Hitachi, Otawara, Tochigi,
Japan) [22]. The periprosthetic femoral fracture model

was assembled in a 3D-computer aided design software
(UG NX 5, SIEMENS, Plano, TX), and the stem position
was determined based on radiographs and CT data of an
experimental THA model. A transverse fracture was cre-
ated 10 mm below the tip of the Exeter femoral stem
(Stryker, Kalamazoo, MI) and the construct was fixed
using two different fixation methods (Fig. 1). The single-
plate method was performed by fixing a 9-hole LCP-DF
locking plate (Depuy Synthes, West Chester, PA) lat-
erally with four proximal uni-cortical locking screws and
three distal bi-cortical locking screws. The double-plate
method was performed similarly to the single-plating
method with an additional anterior 7-hole metaphyseal
locking plate (Depuy Synthes) with two proximal uni-
cortical locking screws and three distal bi-cortical lock-
ing screws. To provide additional fixation to the prox-
imal fragments, two cerclage cables (Depuy Synthes)
were used with a tension of 400 N.

Material properties
All sections were assigned isotropic material properties with
an elastic modulus of 16.3 GPa for cortical bone [23], 0.15
GPa for cancellous bone [24], 2.8 GPa for polymethylmetha-
crylate (PMMA) cement [25], 195 GPa for Orthinox stainless
steel [26], and 110 GPa for Titanium [27]. A Poisson’s ratio
of 0.3 was used for all materials [26].

Finite element analysis modelling
A finite element pre-processor was generated using
HyperMesh 13 (Altair Engineering, Troy, MI). Tetrahe-
dral primary elements were used, whereas the number of
elements and nodes were 1,023,382 and 224,630 in the
single-plate fixation method, and 1,047,309 and 231,601
in the double-plate fixation method, respectively. To set
up the boundary conditions, the cortical and trabecular
bones were fixed by glue, with a coefficient of friction of
0.1, 0.1, 0.3, 0.1 and 0.1 used at the bone-stem, bone-
plate, bone-screw, bone-cable, and cable-fastener inter-
faces, respectively [28]. The distal end of the femoral
model was fixed with cement. These constructs were po-
sitioned at 20 degrees of frontal plane adduction and
aligned vertically in the sagittal plane. This position was
to simulate the anatomical one-legged stance. There-
after, the constructs were tested under an axial load of 1,
500 N (Fig. 2) as previously described [29, 30], and the
results were then analysed using a nonlinear FEA soft-
ware (MSC Marc 2017, MSC Software, Newport Beach,
CA).

Testing and analysis
Biomechanical testing was conducted using synthetic
composite femurs (Sawbones Worldwide). Composite
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bones were placed in a bench-mounted vice grip, and
then neck osteotomy, trochanteric reaming, and rasping
were performed. Polymethyl methacrylate (PMMA) ce-
ment (Simplex P, Stryker) was pressurised into compos-
ite bone, and an Exeter hip prosthesis (Stryker) was
manually inserted. Stem alignment was checked using
X-ray (data not shown). To provide additional fixation
to the proximal fragments, two cerclage cables (Depuy
Synthes) were used with a tension of 400 N (Fig. 3 A).
The strain gauge (KFG-2 N-120-C1, Kyowa, Chofu, Japan)
was attached to the surface of the LCP-DF, parallel to the
plate axis, and at the defect level (Fig. 3B). The distal end
of the composite bone was placed in an 80-mm-wide
threaded steel pipe and fixed with two steel bolts for anti-
rotation. The constructs were further fixed by pouring the
cement into the steel pipe, and the fracture fixation
models were made with the mechanical test equipment
(AGS-H, Shimadzu, Japan). To achieve maximum vertical
load directly on the head of the prosthesis, the mounting
platform was placed to facilitate biaxial translation of the
specimen (Fig. 3 C). For the axial loading test, a sequen-
tially vertical loading test was performed on the prosthetic
head at a velocity of 5 mm/min up to 1,500 N. The test
was repeated thrice for each construct. The maximum dis-
placements and strains were calculated based on the load-
displacement and load-strain curves generated by the
static compression tests.

Data analysis and statistics
Statistical analysis was performed using Student’s t-test
to compare the differences between two independent
groups, and the results were considered significant when
P < 0.05. Data are presented as means ± standard error.

Results
To define areas of high stress and stress shielding with
single- and double-plate fixation, von Mises stress distri-
butions at 1,500 N of axial loading were determined by
FEA (Fig. 4). Of note, the maximum von Mises stress in
the single-plating method occurred at the femoral defect
level, and the stress areas were present at the centre of
the LCP-DF plate, with a maximum stress value of 1,
303 MPa. The stress level at the defect level was much
lower in the double-plating than in the single-plating
method, and the stress level was high at the central part
of both plates. The maximum stress value was 268 MPa,
located slightly proximal to the centre of the LCP-DF
plate and 248 MPa slightly proximal to the centre of the
anterior plate (Fig. 4). The maximum principal strains of
the single- and double-plate fixation methods at the an-
terior side of the lateral LCP-DF plate were noted to be
distributed parallel to the axis of the plate with values of
-0.63 % and 0.058 %, respectively (Fig. 5). To further

Fig. 1 3D model of two different fixation methods for finite element analysisWe created the figure using the 3D-CAD software UG NX 5(SIEMENS)
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assess the fixation strength of the plate constructs, bio-
mechanical testing was performed. In the axial loading
test, the single-plate fixation strain values were signifi-
cantly higher than for double-plate fixation above 370 N
of axial loading. In addition, the strain values at 1,500 N
loading of the single- and double-plate fixation methods
were 1,274.60 ± 11.53 and 317.33 ± 8.03 (× 10− 6), re-
spectively (Fig. 6). These results suggest that double-
plate fixation with lateral LCP-DF offers greater stiffness
and stability to the construct than single-plate fixation
under full weight-bearing.

Discussion
Treatment of Vancouver B1 periprosthetic femoral frac-
tures remains one of the major challenges for ortho-
paedic surgeons. Despite advances in treatment
procedures, problems including lack of proximal fix-
ation, non-union, and loss of fixation occur often and re-
quire surgical intervention. Locking plates represent the
most common choice for fracture treatment and provide
stable fracture fixation. Recent biomechanical studies
have shown that locking plates have a higher axial load-
ing resistance than conventional cable plate fixation,
which is also used to stabilise periprosthetic femoral
fractures [11, 31]. However, clinical failure of this treat-
ment has been increasingly reported. For instance, But-
taro et al. [15] reported a high failure rate in the
majority of 14 patients with Vancouver B1 fractures
treated by single lateral locking plate fixation. This may
be due to the extremely high bending forces present at
the tip of the prosthesis. On the other hand, the use of
distal femoral locking plate fixation leads to successful
union in almost all patients, but one patient had delayed
union, suggesting a limitation of single-plating proced-
ure [32]. Indeed, a reversed contralateral distal femoral
locking plate offers a significant advantage over conven-
tional plating since it allows multiple points of fixation
around the trochanteric region of the femur, fitting the
anatomical shape of the femur at all levels. Moreover,
greater fracture fixation stability was achieved using an
additional anterior plate attachment [18]. In a biomech-
anical study, a lateral plus an anterior locked plate were
stiffer than a single-plate fixation method [17]. Consider-
ing all these issues, we hypothesised that reversed
contralateral LCP-DF plus an additional anterior locked
plate would be an appropriate choice for the treatment
of Vancouver B1 fractures. Therefore, in the present
study, we used contralateral reversed LCP-DF plates as
lateral plates to approximate what is done in actual clin-
ical cases and compared single- and double-plate fix-
ation for Vancouver B1 fractures.
Our results showed that the maximum stress level to

the lateral plate in the single-plate fixation procedure
was higher than the fatigue limits of titanium (ca.
816 MPa) [33]. This may show that the contralateral re-
versed LCP-DF single-plate fixation procedure has a
high potential risk of implant failure under full weight-
bearing [15, 26, 34]. Moreover, the slope of the load-
strain curve of the single-plate method changed at a
strain of 400 × 10− 6, due to the contact of the plate with
proximal lateral side of the distal bone fragment. This
revealed that the single-plate procedure offered a weaker
fixation, being unable to maintain the position of the
proximal and the distal bone fragment, which may in-
crease the risk of delayed of bone union and implant
failure under full weight-bearing. On the other hand,

Fig. 2 Finite element analysis conditions. The constructs are
positioned at 20 degrees of frontal plane adduction and aligned
vertically in the sagittal plane. Two different models were analysed
under an axial load of 1,500 N. We created the figure using the 3D-
CAD software UG NX 5(SIEMENS)
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double-plate fixation showed a significant reduction in
stress concentration in the lateral plates at the fracture
site. Under full weight-bearing, the maximum stress level
in the lateral plate was 268 MPa. The stress level in the
plates fell within the fatigue threshold of titanium (ca.
598 MPa), corresponding to approximately 5 years of
the normal functioning period [33, 35]. Likewise, the
slope of the load-strain curve seemed to be constant
when using double-plate fixation, revealing the strength
of this fixation procedure. Taken together, double-plate
fixation with reversed contralateral LCP-DF seems suit-
able for the treatment of Vancouver B1 periprosthetic
femoral fractures in the early postoperative period for

elderly patients. This fixation procedure will be further
evaluated under different physiological boundary condi-
tions that reflect the real loads imposed by patients’ rou-
tine activities.
The limitations in this study include the following: (1)

our constructs were only tested for one type of fracture
typified by a large defect, as we believe that the use of an
extreme unstable model may be more valuable for delin-
eating the usefulness of constructs and fixation methods.
In addition, it is necessary to further evaluate our pro-
cedure using cadaveric models to determine its clinical
and practical implications; (2) in our study, static loads
were analysed by geometrically nonlinear analysis and

Fig. 3 Biomechanical testing apparatus. a Single- and double-plate fixation. b The strain gauge is attached to the surface of the LCP-DF (arrow).
c The setup with the axial loading testing

Fig. 4 Pattern of von Mises stress distributions of single- and double-plate fixation at 1,500 N of axial loading in finite element analysis
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Fig. 5 Maximum principal strain distribution of single- and double-plate fixation. Comparison of the maximum principal strain at the anterior side
in the lateral LCP-DF plate (arrow)

Fig. 6 Load-strain curve in axial loading testing. The strain values of double-plate fixation (red line) are significantly lower than those of single-
plate fixation (blue line) at a load of 1,500 N (p < 0.0001)
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not perturbation analysis, because the latter is a specific
test for simulating the initial stage, and patients with
periprosthetic femoral fractures are not expected to do
intense exercise immediately after surgery. FEA and bio-
mechanical testing were therefore performed to compare
the usefulness of double-plating to that of a single-
plating procedure. Our comparative study showed that
double-plate fixation offered greater stability and
strength with lesser stress on the defect site than that of-
fered by single-plate fixation. However, appropriate
mechanical forces and biophysical environment after
surgery are necessary for the healing process of fractured
bones via stimulating local cellular proliferation and tis-
sue differentiation [36]. Therefore, it is important to pro-
mote micro-motions within the fractures and stimulate
bone union. It was documented that the optimal strain
value for bone fusion is 100 × 10− 6 or higher [37]. Our
results showed that the strain value of double-plating is
approximately 317 × 10− 6 under full weight-bearing,
which is considered to be an appropriate strain value.

Conclusions
This was the first study to report FEA and biomechan-
ical testing results of double-plate fixation using reversed
contralateral LCP-DF for Vancouver B1 periprosthetic
femoral fractures. Adding an anterior narrow locking
plate significantly reduced the stress concentration in
the lateral plate at the fracture site. The present results
showed that the double-plating method with reversed
contralateral LCP-DF significantly increased the con-
struct strength and might allow full weight-bearing from
the early postoperative period. We will perform further
study to evaluate the effects of the current fixation pro-
cedures on bone union/healing process to determine
their usefulness in clinical practice.
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