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Is preoperative glenoid bone mineral
density associated with aseptic glenoid
implant loosening in anatomic total
shoulder arthroplasty?
Sandrine Mariaux1, Raphaël Obrist2, Alain Farron1, Fabio Becce3† and Alexandre Terrier1,2*†

Abstract

Background: Aseptic loosening of glenoid implants is the primary revision cause in anatomic total shoulder
arthroplasty (aTSA). While supported by biomechanical studies, the impact of glenoid bone quality, more specifically
bone mineral density (BMD), on aseptic glenoid loosening remains unclear. We hypothesized that lower
preoperative glenoid BMD was associated with aseptic glenoid implant loosening in aTSA.

Methods: We retrospectively included 93 patients (69 females and 24 males; mean age, 69.2 years) who underwent
preoperative non-arthrographic shoulder computed tomography (CT) scans and aTSA between 2002 and 2014.
Preoperative glenoid BMD (CT numbers in Hounsfield unit) was measured in 3D using a reliable semi-automated
quantitative method, in the following six contiguous volumes of interest (VOI): cortical, subchondral cortical plate
(SC), subchondral trabecular, and three successive adjacent layers of trabecular bone. Univariate Cox regression was
used to estimate the impact of preoperative glenoid BMD on aseptic glenoid implant loosening. We further
compared 26 aseptic glenoid loosening patients with 56 matched control patients.

Results: Glenoid implant survival rates were 89% (95% confidence interval CI, 81–96%) and 57% (41–74%) at 5 and
10 years, respectively. Hazard ratios for the different glenoid VOIs ranged between 0.998 and 1.004 (95% CI [0.996,
1.007], p≥0.121). Only the SC VOI showed significantly lower CTn in the loosening group (622±104 HU) compared
with the control group (658±88 HU) (p=0.048), though with a medium effect size (d=0.42). There were no
significant differences in preoperative glenoid BMD in any other VOI between patients from the loosening and
control groups.
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Conclusions: Although the preoperative glenoid BMD was statistically significantly lower in the SC region of
patients with aseptic glenoid implant loosening compared with controls, this single-VOI difference was only
moderate. We are thus unable to prove that lower preoperative glenoid BMD is clearly associated with aseptic
glenoid implant loosening in aTSA. However, due to its proven biomechanical role in glenoid implant survival, we
recommend extending this study to larger CT datasets to further assess and better understand the impact of
preoperative glenoid BMD on glenoid implant loosening/survival and aTSA outcome.

Keywords: Anatomic total shoulder arthroplasty, Aseptic loosening, Bone mineral density, Computed tomography,
Glenoid implant

Background
The incidence of total shoulder arthroplasty (TSA) is in-
creasing with population growth, aging, and the con-
comitant increase in prevalence of glenohumeral
osteoarthritis (OA) [1–4]. Since the 1970s and the
implantation of the first contemporary total shoulder
prostheses, issues with radiolucent lines around glenoid
components and aseptic loosening have been observed
[5–7]. Despite major technological advances in pros-
thesis design, aseptic loosening of glenoid implants
remains the primary cause of revision surgeries in
anatomic TSA (aTSA) – affecting 0.01 to 6% of shoulder
replacement surgeries – and its trend is increasing in
proportion to the increase in TSA [5, 7–9].
The main risk factors for aseptic loosening of glenoid

implants reported in the literature are related to bio-
mechanical causes: malpositioning (in particular retro-
version) of the glenoid component, head/glenoid
implant diameter mismatch, persistence/recurrence of
static posterior subluxation of the humeral head, and ro-
tator cuff deficiency [10–14]. Indeed, all the above men-
tioned factors can cause impingements and/or excessive
stress on the glenoid implant or at its bone interface.
This may eventually lead to repeated micromotion and
progressive implant loosening.
In addition to the aforementioned potential biomech-

anical causes of aseptic glenoid loosening in aTSA,
glenoid bone quality has also been suggested and investi-
gated as an additional contributor. Lower bone mineral
density (BMD) has indeed been shown to increase the
respective risks of periprosthetic fracture in total ankle
arthroplasty [15] and pedicle screw loosening in spinal
fusion surgery [16]. However, the precise role of pre-
operative glenoid BMD in aseptic glenoid loosening has
not been thoroughly evaluated using a reliable quantita-
tive CT method so far [17–22].
Terrier et al. assessed the association between CT-

derived preoperative glenoid BMD and several biomech-
anical predictions (cement stress, bone-cement interface
stress, and bone strain) in aTSA, using patient-specific
finite element models [22]. They showed that preopera-
tive glenoid BMD was strongly negatively correlated with

these biomechanical predictions, particularly in the sub-
chondral trabecular bone, thus suggesting that this
factor may contribute to aseptic loosening of glenoid
implants [22]. However, to our knowledge, the clinical
impact and relevance of the patient’s preoperative glen-
oid BMD on glenoid implant survival in aTSA has not
been evaluated in large case series yet.
Therefore, our objective was to test the hypothesis that

aseptic loosening of glenoid implants in aTSA is associ-
ated with lower preoperative glenoid BMD. To do so, we
retrospectively analyzed an institutional case series of
aTSA patients, quantified the preoperative glenoid BMD
in several predefined volumes of interest (VOI) from
shoulder CT datasets, and evaluated its association with
aseptic glenoid loosening.

Methods
Patients and study design
After approval by the institutional ethics committee
(Lausanne University Hospital CER-VD, protocol 136/
15), we retrospectively reviewed all consecutive cases
treated with aTSA in our tertiary referral hospital
between January 2002 and December 2014 (n=262). All
patients were operated through a deltopectoral approach
by the same senior shoulder surgeon for the following
clinical indications: primary glenohumeral OA (n=200),
post-traumatic glenohumeral OA (n=31), avascular
necrosis of the humeral head (n=11), inflammatory arth-
ritis (n=12), or another diagnosis (n=8). The cemented
Aequalis all-polyethylene keeled glenoid component
(Wright-Tornier, Bloomington, MN, USA) was im-
planted after minimum glenoid bone reaming to pre-
serve the bone stock. Holes for keeled glenoid implants
were drilled using proper instrumentation, and high-
viscosity bone cement was vacuum mixed and applied to
fix them. All glenoid implants (small, medium, or large)
were adapted to the size of the patient’s glenoid cavity
according to the manufacturer’s recommendation chart
for heads/glenoids diameter mismatch.
Of these 262 cases, we included all patients who had

undergone preoperative shoulder CT scans (n=184). The
following exclusion criteria were subsequently applied:
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patients lost to follow-up (< 2 years) (n=51), shoulder CT
arthrography (n=32), non-arthrographic shoulder CT
scans with metal artifacts or incomplete CT coverage of
the glenoid (n=3), septic loosening of the glenoid im-
plant (n=3), glenoid implant malpositioning (n=1), and
recurrent postoperative scapulohumeral subluxation (n=
1). CT arthrograms were excluded because the intra-
articular iodinated contrast medium interfered with
glenoid BMD measurements due to beam hardening ar-
tifacts [23, 24]. The resulting study population consisted
of 93 patients, with a mean age at surgery of 69.2 years
(range, 45.9–88.2 years), a female/male ratio of 69/24, a
mean body mass index (BMI) of 27.4 (range, 18.4–42.4),
and a smoking history in 10/93 patients (10.8%).

Shoulder CT protocol
All preoperative non-arthrographic shoulder CT scans
were performed on 8-, 16-, or 64-detector row CT
systems (LightSpeed Ultra, LightSpeed Pro 16, Light-
Speed VCT, and Discovery CT750 HD; GE Healthcare,
Waukesha, WI, USA) using the following standardized
data acquisition settings: tube potential, 120–140 kVp;
tube current, 144–440 mA; and gantry revolution time,
0.5–0.8 s. The image reconstruction parameters were as
follows: field of view 14× 14–32× 32 cm (thus yielding
in-plane pixel sizes of 0.27× 0.27–0.63× 0.63 mm); sec-
tion thickness, 0.6–3.0 mm; section interval, 0.3–2.0 mm;
and sharp (bone or bone plus, GE Healthcare) kernels.

CT assessment of preoperative glenoid BMD and
morphology
Preoperative glenoid BMD was quantified in 3D from
preoperative shoulder CT datasets using the same
reliable method described in detail elsewhere [22].
Briefly, we measured the average CT numbers (CTn; in

Hounsfield unit, HU) in six contiguous 3-mm-thick
VOIs (cortical bone (CO), subchondral cortical plate
(SC), subchondral trabecular bone (ST), and three suc-
cessive adjacent layers of trabecular bone (T1, T2, and
T3)) defined within a 40-mm-high cylinder aligned with
the mediolateral scapular axis, centered on and adjusted
to include the entire glenoid cavity, and whose medial
base was positioned at the spinoglenoid notch (Fig. 1).
Within this cylinder fully encompassing the glenoid,
bone mineral tissue was then segmented using a lower
threshold of 300 HU [25]. All these measurements were
performed using the Amira software (Thermo Fisher
Scientific, Waltham, MA, USA) and user-defined Matlab
scripts (MathWorks, Natick, MA, USA).
In addition, preoperative glenoid morphology was

assessed on a picture archiving and communication
system workstation (Vue PACS; Carestream Health,
Rochester, NY, USA) by a board-certified orthopedic
surgeon and a senior musculoskeletal radiologist inde-
pendently, using the updated Walch grading system [26].
In the case of discrepancy, consensus was reached with a
senior shoulder surgeon.

Aseptic loosening of glenoid implants
Aseptic loosening of glenoid implants was assessed using
conventional shoulder radiographs (anteroposterior and
axial/axillary, with/without lateral/scapular “Y” views)
performed at regular follow-up visits at 3, 6, 12, and 24
(+/− 1) months, followed by once a year or every 2 years,
depending on the patient’s clinical course. In the case of
radiological uncertainty and/or onset of clinical symp-
toms (e.g. pain, feeling of instability or locking, de-
creased range of motion), shoulder CT arthrography was
performed. Radiographic prosthetic loosening was de-
fined as the presence and/or enlargement over time of

Fig. 1 Computed tomography numbers (in Hounsfield unit) were measured in six contiguous 3-mm-thick volumes of interest: cortical bone (CO),
subchondral cortical plate (SC), subchondral trabecular bone (ST), and three successive adjacent layers of trabecular bone (T1, T2, and T3). All
volumes of interest were defined within a 40-mm-high cylinder aligned with the mediolateral scapular axis, centered on and adjusted to include
the entire glenoid cavity, and whose medial base was positioned at the spinoglenoid notch
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complete (thickness > 1.5 mm) radiolucent lines at the
glenoid bone-cement interface, and/or migration (> 5
mm), tilt (> 5°), or shift of the glenoid component [2, 5,
8, 27, 28]. The same observers as above independently
reviewed all shoulder radiographs and, when available
(n=11), postoperative CT arthrograms, with the same
consensus agreement approach in the case of
discrepancy.

Statistical analysis
We first performed a Kaplan-Meier estimator to evaluate
the survival (radiographic aseptic loosening as described
above) of glenoid implants in the overall aTSA study
population. Survival rate was assessed at 5 and 10 years
postoperatively. This analysis was supplemented with
univariate Cox proportional hazards regression models
to estimate the effect of preoperative glenoid BMD
(reflected by CTn in the various predefined VOIs) on
glenoid implant survival (defined by the absence of asep-
tic glenoid loosening). We further analyzed the influence
of gender, age, BMI, and smoking history on implant
survival.
In a second step, we compared two patient groups. All

patients with glenoid implant aseptic loosening were in-
cluded in the loosening (LSG) group, while the control
(CTR) group was formed by matching patients in terms
of follow-up time, gender, age, BMI, smoking history,
and Walch glenoid types. The follow-up time in the
CTR group was at least 2 years. Continuous and categor-
ical variables were compared using one-tailed
independent-samples Student’s t-test (or Wilcoxon
signed-rank test in the case of skewed distribution with
Lilliefors test) and chi-squared test, respectively. We
tested the hypothesis that preoperative glenoid BMD
(CTn) was numerically lower in the LSG than in the
CTR group. Statistical significance was set at p< 0.05.
The effect size was measured using Cohen’s d standard-
ized difference between the two means, and interpreted
as small (d≤0.2), medium (d=0.5), or large (d≥0.8) [29].
Statistical analysis was performed using Matlab’s Statis-
tics and Machine Learning Toolbox (MathWorks) by
one of the authors (AT).

Results
The average follow-up time for the 93 patients included
in our study was 6.2 years (range, 2.0–14.1 years).
Among them, 26 (28.0%) developed aseptic loosening of
their glenoid implant according to our diagnostic criteria
described above, which was confirmed in all cases intra-
operatively. The Kaplan-Meier survival curve showed
glenoid implant survival rates (absence of radiological
loosening) of 89% (95% confidence interval (CI), [81,
96%]) and 57% (95% CI, [41, 74%]) at 5 and 10 years, re-
spectively (Fig. 2). The hazard ratios (HR) of Cox

regressions for the different VOIs were very close to 1
(95% CI, [0.996, 1.007]). Gender (HR, 0.900 (95% CI,
[0.368, 2.201]), p=0.817), age (HR, 1.001 (95% CI, [0.952,
1.053]), p=0.966), BMI (HR, 1.044 (95% CI, [0.957, 1.139]),
p=0.332), and smoking history (HR, 0.364, (95% CI,
[0.049, 2.717]), p=0.325) were also not significantly associ-
ated with aseptic glenoid loosening (Supplemental
material).
The LSG group consisted of 26 patients: 19 females, 7

males; mean age, 67.5 years (range, 49.7–80.9 years);
mean BMI, 26.8 kg/m2 (range, 18.4–40.9 kg/m2)
(Table 1). Walch glenoid types were as follows: A1 (n=
4), A2 (n=8), B1 (n=4), and B2-B3 (n=10). The mean
follow-up time was 7.6 years (range, 2.9–14.1 years). On
the other hand, the following 59 patients matched for
follow-up time, gender, age, BMI, smoking history, and
Walch glenoid types were included in the CTR group:
43 females, 16 males; mean age, 69.5 years (range, 45.9–
88.2 years); mean BMI, 27.3 kg/m2 (range, 19.1–41.2 kg/
m2) (Table 1). Walch glenoid types were as follows: A1
(n=7), A2 (n=15), B1 (n=17), B2-B3 (n=16), C (n=3), and
D (n=1). The mean follow-up time in this CTR group
was 6.1 years (range, 3.1–13.2 years).
CTn were normally distributed in all different glenoid

VOIs, except in ST of the LSG group. Only the SC VOI
showed significantly lower CTn in the LSG group (622±
104 HU) compared with the CTR group (658±88 HU)
(p=0.048), though with a medium effect size (d=0.420).
There were no significant differences in CTn in any
other VOI between patients from the LSG and CTR
groups (Fig. 3 and Table 2).

Discussion
We hypothesized that lower preoperative glenoid BMD
was associated with aseptic loosening of glenoid

Fig. 2 Kaplan-Meier survival curve (solid line) for glenoid implants in
patients with anatomic total shoulder arthroplasty, with the
corresponding 95% confidence intervals (dashed lines)

Mariaux et al. BMC Musculoskeletal Disorders           (2021) 22:49 Page 4 of 9



implants in aTSA. Although the preoperative glenoid
BMD was statistically significantly lower in the SC re-
gion of patients with aseptic glenoid implant loosening
compared with controls, this single-VOI difference be-
tween groups had only a moderate effect size. We were
thus unable to prove that lower preoperative glenoid
BMD is significantly associated with aseptic glenoid im-
plant loosening in aTSA.
CT has previously been used to characterize the qual-

ity of the glenoid bone support and its relationship with
aseptic glenoid implant loosening in aTSA. Chevalier
et al. used micro finite element models based on micro-
CT scans of cadaveric scapulae to evaluate the influence
of bone volume fraction, trabecular anisotropy and cor-
tical thickness on stress within the periprosthetic bone
and cement mantle [19]. In a further computational
study, Chen et al. measured the glenoid BMD in HU
after simulated eccentric reaming for version correction
of Walch B2 glenoids [18]. They analyzed BMD in five
adjacent 1-mm layers under the reamed glenoid surface,
and concluded that increased version correction resulted
in gradual depletion of high-quality bone from the anter-
ior regions of B2 glenoids. Chamseddine et al. recently
measured the glenoid BMD using a clinical quantitative
CT technique on cadaveric scapulae where keeled or
pegged cemented glenoid components were implanted

[17]. They divided the glenoid in different regions (infer-
ior or superior, and inner, peripheral or full regions) and
quantified BMD in mg of calcium hydroxyapatite per
cm3. They reported that glenoids with lower BMD ex-
hibited increased micromotion and displacement at the
bone-implant interface, suggesting that implant failure
most likely occur in glenoids with lower BMD, and that
the fixation design may play a secondary role.
Other author groups have investigated and compared

the glenoid BMD in various shoulder disorders. Couteau
et al. initially compared the glenoid BMD in HU in pa-
tients with rotator cuff disorders, primary glenohumeral
OA, and rheumatoid arthritis using CT datasets and
subdividing glenoids into 20 VOIs [30]. They found that
the glenoid BMD was higher centrally in patients with
rotator cuff disorders, as opposed to primary OA where
BMD was higher posteriorly and inferiorly. Divergent re-
sults were reported more recently by Harada et al. who
reported, using CT osteoabsorptiometry in seven glenoid
areas, a decrease in subchondral BMD in the central
glenoid region of shoulders with symptomatic rotator
cuff tears [31]. This variation in glenoid BMD was fur-
ther emphasized by Knowles et al. who compared CT-
based regional BMD and porosity in symmetric and
asymmetric OA glenoid erosion patterns [32]. They sub-
divided glenoids in quadrants and two different 2.5-mm
depths. Concentric OA glenoids exhibited uniform sub-
articular BMD, while eccentric OA glenoids (Walch B2-
B3 types) showed densest bone with least porosity
postero-inferiorly or in the neoglenoid region. Simon
et al. reported similar results, while quantifying and
characterizing in 3D the glenoid subchondral BMD with
CT in five zones and three layers/depths [33]. They
found that glenoid BMD varied depending on depth
from the articular surface, topographic zone, and OA
wear pattern. All these studies confirm the importance
of evaluating glenoid BMD in several specific regions/
volumes rather than considering only one average dens-
ity/CTn, when assessing its impact on aseptic loosening.
However, none of these studies has yet investigated the
association between preoperative glenoid BMD and
aseptic loosening of glenoid implants in aTSA.
Our results confirm that the preoperative glenoid

BMD gradually decreases with distance/depth from the
articular surface. As expected and previously reported,

Table 1 Comparison of patient demographics and characteristics between the loosening (LSG) and control (CTR) groups

LSG (n=26) CTR (n=59) P-value

Gender 19 F / 7 M 43 F / 16 M 0.985

Age (years) 67.5 (49.7–80.9) 69.5 (45.9–88.2) 0.362

Body mass index (kg/m2) 26.8 (18.4–40.9) 27.3 (19.1–412) 0.667

Walch glenoid type A1 (n=4), A2 (n=8), B1 (n=4), B2-B3 (n=10) A1 (n=7), A2 (n=15), B1 (n=17), B2–3 (n=16), C (n=3), D (n=1) 0.644

Follow-up time (years) 7.6 (2.9–14.1) 6.1 (3.1–13-2) 0.055

Fig. 3 Box-and-whisker plot showing CT numbers (in Hounsfield
unit, HU) for each of the six volumes of interest (cortical bone (CO),
subchondral cortical plate (SC), subchondral trabecular bone (ST),
and three successive adjacent layers of trabecular bone (T1, T2, and
T3)) in patients with aseptic loosening of glenoid implants (LSG)
compared with control (CTR) patients. Circles represent mean values
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cortical bone regions were denser than trabecular bone
regions [18, 32, 33]. We also observed that the SC BMD
was lower in patients with aseptic glenoid implant loos-
ening compared with CTR cases. It is unfortunately diffi-
cult to compare our results in terms of CTn (HU)/BMD
with other studies because the measured glenoid re-
gions/VOIs varied greatly among studies. Moreover, the
vast majority of previous studies were biomechanically
oriented, using computerized or cadaveric models, as
opposed to ours which focused primarily on clinical out-
come, more specifically aseptic loosening of glenoid im-
plants. In our study, we first divided the glenoid into
cortical and trabecular bone. Indeed, we avoided mixing
cortical and trabecular bone, assuming that they could
reasonably have different biomechanical properties and
effects on the glenoid bone support. For the same rea-
son, we subdivided cortical bone into eccentric and ar-
ticular regions/VOIs, and trabecular bone into several
contiguous layers at different depths from the articular
surface. We then used CTn in HU as a surrogate for
BMD, as previously proven in the literature. Jun et al. re-
cently analyzed with clinical CT imaging the architecture
and mineralization of cadaveric glenoids compared to
high-resolution micro-CT. They showed that clinical CT
imaging was able to quantify regional (anatomic and
peri-implant) variations in glenoid BMD [34]. Previously,
Schreiber et al. demonstrated that CTn in HU correlated
well with BMD and compressive strengths as measured
with dual x-ray absorptiometry scans and mechanical
testing of synthetic bone models [35]. Most recently, a
CT study reported that OA glenoids had a higher BMD
than normal glenoids, with higher CTn in the SC region
particularly posteriorly, which is consistent with our
findings [36].
Our study shows a 28% rate of aseptic glenoid implant

loosening at 6.2 years and 57% survival rate at 10 years
follow-up, which differ from the rates reported in the lit-
erature. In a review, Gonzalez et al. found a 14.3% rate
of aseptic loosening in a series of 2657 aTSAs with a
mean follow-up of 6 years [37]. However, Walch et al., in

a multicenter study based on radiographic analysis [38],
and Denard et al. both reported higher aseptic loosening
rates of 32 and 43% at mean follow-ups of 8.5 and 9.5
years, respectively; the latter study in patients aged 55
years or younger [39]. On the other hand, the estimated
survival rate of aTSA is 83–95% at 10 years [5, 40, 41].
However, the glenoid implant survival rate reported in
our study is biased for several reasons. First, our study
included B2-B3 glenoids and patients with inflammatory
arthritis, which could increase complication rates. In-
deed, the indications for TSA have changed and nar-
rowed over time [42]. Second, we had to exclude a
substantial number of patients because they did not
underwent preoperative shoulder CT scans or only
shoulder CT arthrograms which could not be used here.
All this had an influence on our reported lower 10-year
glenoid implant survival rate.
To our knowledge, our study is the first to quantita-

tively assess the impact of preoperative glenoid BMD in
3D on glenoid implant survival – more specifically asep-
tic glenoid loosening – in aTSA. Most previous studies
have evaluated the quality of the glenoid bone support
using CT datasets (either micro- or conventional CT),
but only few have correlated their findings with clinical
and radiological outcomes [17–19, 22]. Our semi-
automated quantitative measurement method based on a
computerized 3D scapular reconstruction model has
proven its reliability and already helped improving glen-
oid implant positioning [43]. This method further allows
an in-depth analysis with subdivision of the glenoid bone
and its region-specific BMD, distinguishing between the
various cortical and trabecular regions. The technique is
being made fully automated using deep learning, which
should enable future rapid analysis of large clinical CT
datasets.
Among the major limitations of our study are the in-

herent weaknesses of a retrospectively designed study
and the relatively high number of patients lost to follow-
up. Furthermore, the minimum follow-up was only 2
years, which may have underestimated cases with aseptic

Table 2 Average CT numbers (in Hounsfield unit) for each of the six volumes of interest (cortical bone (CO), subchondral cortical
plate (SC), subchondral trabecular bone (ST), and three successive adjacent layers of trabecular bone (T1, T2, and T3)) in patients
from the loosening (LSG) and control (CTR) groups, with the corresponding standard deviations (SD), minimum (Min) and maximum
(Max) values, Cohen’s d effect sizes, and p-values

CO SC ST T1 T2 T3

LSG CTR LSG CTR LSG CTR LSG CTR LSG CTR LSG CTR

Average 660 657 622 658 458 472 358 365 310 312 309 338

SD 124 104 104 88 138 135 115 139 105 118 105 137

Min 424 426 385 496 257 199 196 115 142 99 157 137

Max 853 861c 763 886 762 830 640 793 584 624 645 837

Cohen’s d 0.029 0.420 0.102 0.049 0.001 0.197

P-value 0.547 0.048 0.224 0.413 0.483 0.187
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glenoid implant loosening occurring at mid- or long-
term. However, the average follow-up time for LSG and
CTR groups was longer and appropriate. Although asep-
tic glenoid implant loosening is one of the main compli-
cations in aTSA, the prosthetic survival rate is estimated
to range between 95 and 99% and 83–95% at 5 and 10
years, respectively [5, 41, 44]. Despite recommendations
for regular follow-up, patients with favorable clinical
outcome tend not to show up at scheduled follow-up
visits. Another study limitation is the lack of clear defin-
ition and consensus for the diagnosis of aseptic glenoid
implant loosening. The most widely used definition from
Cofield states that aseptic loosening is a shift and media-
lization of the glenoid component usually accompanied
by superior tilting of the glenoid prosthetic surface on
plain radiographs [45, 46]. A more recent definition by
Martin et al. defined aseptic loosening as migration of
more than 5mm or tilt of more than 5 degrees of the
glenoid implant [28]. However, smaller displacements or
enlargements over time of radiolucent lines at the bone-
cement interface may also be seen in patients with asep-
tic glenoid implant loosening [28]. Furthermore, the dis-
tinction between radiolucent lines around the glenoid
implant, which are relatively common (10–94%) and
usually asymptomatic [27, 47, 48], and aseptic loosening
remains unclear. A further limitation is the absence of
systematic postoperative shoulder CT scans to assess
both the accurate position of the glenoid implant relative
to the glenoid VOIs measured preoperatively, and the
glenoid bone-cement interface postoperatively. Indeed,
depending on intraoperative glenoid bone reaming (pa-
tients with B2-B3 glenoid types all underwent minimum
anterior reaming in our series, n=7), the bone region on
which the glenoid implant was lying may be slightly dif-
ferent/offset from the corresponding VOI measured on
preoperative CT. Our results should also be weighed by
missing retrospective data on and analysis of potential
confounding factors for aseptic glenoid implant loosen-
ing, such as patients’ comorbidities (e.g. diabetes) and
activity level. Finally, the type of glenoid implant used
may also have an influence on our results. During the
study inclusion period, only keeled glenoid implants
were implanted in our institution. Recent data show that
such glenoid implant designs are associated with a
slightly increased rate of aseptic loosening compared
with pegged implants [49].

Conclusions
Although we observed lower preoperative glenoid BMD
in the SC region of patients with aseptic glenoid implant
loosening compared with matched CTR cases, this stat-
istical difference was only moderate (medium effect size)
and not found in any other glenoid regions. We were
thus unable to assert that lower preoperative glenoid

BMD is clearly associated with aseptic loosening of glen-
oid implants in aTSA. However, due to the proven bio-
mechanical role of the bone support in glenoid implant
survival, we still recommend extending this initial study
to larger CT datasets with higher follow-up rates to fur-
ther assess and better define the real impact of the pre-
operative glenoid BMD on aTSA outcome overall and
glenoid implant survival in particular. Finally, the
methods and results presented here might eventually be
implemented in preoperative planning softwares, and
used to aid in better preparing the implantation of glen-
oid components in aTSA.
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