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A finite element analysis of sacroiliac joint

displacements and ligament strains in
response to three manipulations
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Abstract

Background: Clinical studies have found that manipulations have a good clinical effect on sacroiliac joint (SIJ) pain
without specific causes. However, the specific mechanisms underlying the effect of manipulations are still unclear.
The purpose of this study was to investigate the effects of three common manipulations on the stresses and
displacements of the normal SIJ and the strains of the surrounding ligaments.

Methods: A three-dimensional finite element model of the pelvis-femur was developed. The manipulations of hip
and knee flexion (MHKF), oblique pulling (MOP), and lower limb hyperextension (MLLH) were simulated. The
stresses and displacements of the SIJ and the strains of the surrounding ligaments were analyzed during the three
manipulations.

Results: MOP produced the highest stress on the left SIJ, at 6.6 MPa, while MHKF produced the lowest stress on the
right SIJ, at 1.5 MPa. The displacements of the SIJ were all less than 1 mm during the three manipulations. The three
manipulations caused different degrees of ligament strain around the SIJ, and MOP produced the greatest straining
of the ligaments.

Conclusion: The three manipulations all produced small displacements of the SIJ and different degrees of ligament
strains, which might be the mechanism through which they relieve SIJ pain. MOP produced the largest
displacement and the greatest ligament strains.
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Background
The sacroiliac joint (SIJ) is the largest axial joint in the
human body; it connects the spine and the lower limbs
and transmits the weight of the upper body to the pelvis
and lower limbs [1–3]. The SIJ is composed of an anter-
ior synovial part and a tightly connected ligament part at
the rear [4, 5]. The sacrum is wedge-shaped, tilted from
top to bottom and with a concave surface that is closely
inserted into the convex surface of the ilium [6, 7]. It
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includes some strong intrinsic and extrinsic ligaments
[8, 9]. Due to its special anatomical structure, the SIJ is
very stable [10–12]. However, certain bone or soft tissue
lesions can cause joint instability, which subsequently in-
duces SIJ pain. Recent studies have found that SIJ dis-
eases can also cause low back pain and account for
approximately 14.5–22.5% of cases [13].
The causes of SIJ pain include pathological bone de-

struction, traumatic fracture and dislocation, and pain
without specific causes [5]. Commonly, abnormal gait,
heavy physical exertion, leg length discrepancy, inflam-
mation, scoliosis, and lumbar fusion surgery with fix-
ation of the sacrum may be factors related to SIJ pain
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without specific causes [14]. The mechanism may in-
clude the following processes: Pathogenic factors acting
on the auricular surface of the sacrum and ilium may
cause injury to the ligaments or muscles around the SIJ,
which will result in slight movement of the SIJ, making
the joints difficult to reset. The mechanical environment
of the joints may ultimately be imbalanced, and the soft
tissues will be damaged. This condition is clinically re-
ferred to as SIJ subluxation [4]. Pathological bone de-
struction and traumatic fracture and dislocation require
surgery [15–18], while SIJ pain without a specific cause
is usually treated with manipulations [19, 20].
There are several common manipulations, including

manipulation of hip and knee flexion (MHKF), manipu-
lation of oblique pulling (MOP), and manipulation of
lower limb hyperextension (MLLH). A large number of
studies have reported that manipulations have a good effect
on the treatment of SIJ subluxation [19–21]. Different types
of SIJ subluxation require different manipulations [22, 23].
Some authors have suggested that the manipulations re-
duce pain by pulling the subluxated SIJ back into place
[23–25]. Others have suggested that the SIJ is very stable
and that the pain relief is the result of relieving the spasms
of the ligaments and muscles around the SIJ [26, 27]. How-
ever, the mechanisms underlying the effect of manipula-
tions on SIJ subluxation are not clear at present. Is it
possible to pull the subluxated SIJ back into place with ma-
nipulations? Can manipulations cause ligament strain
around the joints? None of these issues have been studied.
In this study, the normal pelvic-femur finite element model
is used to investigate the specific mechanisms underlying
the effects of the three manipulations on the SIJ and its sur-
rounding ligaments.

Methods
Model construction
A 3D finite element model of the SIJ was developed.
Three-dimensional models of the sacrum, ilia and femurs
were reconstructed from the computed tomography (CT)
images of a healthy male volunteer (34 years old, 170 cm
in height, and 65 kg in weight) using Mimics 20.0 (Materi-
alise Company, Leuven, Belgium), and the cortical and
cancellous regions of the bones were distinguished. Axial
slices 0.5-mm thick spanning the entire pelvis were se-
lected for model construction. All surface models were
meshed using Geomagic 2013 (Raindrop Company, Mar-
ble Hill, USA). The SIJ is composed of cartilage and the
end-plate of the sacrum and the ilia, with their surround-
ing ligaments. The cartilage was reconstructed with a uni-
form thickness; the regions of the articular surfaces were
based on CT images, and the thicknesses of the cartilage
were acquired from the literature. The sacral and iliac car-
tilages had thicknesses of 2mm and 1mm, respectively.
The bone end-plate thicknesses of the sacral and iliac
parts of the cartilage were assumed to be 0.23mm and
0.36mm, respectively. The gap between the two cartilages
was set at 0.3 mm [12]. The material properties chosen
from previous studies [12, 28] are summarized in Table 1.
The anterior sacroiliac ligament (ASL), long posterior

sacroiliac ligament (LPSL), short posterior sacroiliac liga-
ment (SPSL), interosseous sacroiliac ligament (ISL),
sacrospinous ligament (SS), and sacrotuberous ligament
(ST) complexes were modelled as 3D tension-only truss
elements. The attachment regions were chosen according
to the literature [12]. Two fresh cadaver dissections were
used to observe the ligaments’ positions and orientations.
The ASL was made up of numerous thin bands that
spanned the ventral surface of the SIJ, connecting the lat-
eral aspect of the sacrum to the margin of the auricular
surface of the ilium. The LPSL extended from the poster-
ior superior iliac spine to the third and fourth transverse
tubercles of the back of the sacrum. The SPSL lay deep to
the LPSL and consisted of large fibres attaching the lateral
aspect of the dorsal sacral surface to the tuberosity of the
ilium. The ISL lay in the intra-articular space and was
composed of a series of short, strong fibres connecting the
tuberosities of the sacrum and ilium. The SS was a thin
triangular ligament that connected the ischial spine to the
lateral border of the sacrum. The ST was behind the
sacrospinous ligament, which attached the ischial tuberos-
ity to the lateral border of the sacrum. The material prop-
erties of each ligament were obtained from the literature
[28]. In total, the pelvic-femur model contained 727,474
elements and 275,399 nodes. Figure 1 shows the intact
model with ligamentous attachments.
Three common manipulations were selected based on

their popularity and validity. The point and orientation of
the applied forces were determined by previous studies
[29, 30]. In addition, the magnitudes of the forces were de-
termined by determining the manipulative power of five
therapists using a biomechanical testing machine. The de-
tailed loading and boundary conditions, as well as the x-,
y-, and z-axes, are described in Fig. 2. The compressive
stresses and displacements of the SIJ and the ligament
strains for the three manipulations were then investigated
using Abaqus 2018 (Dassault Systemes S. A Company,
Massachusetts, USA).
Manipulation of hip and knee flexion
The patient lay supine while the therapist flexed the pa-
tient’s hip and knee as much as possible with pronation.
Then, the therapist pushed down the knee, at which
point the left hip joint was assumed to be fully con-
strained. The most posterior regions of the sacrum and
the posterior superior iliac spine were fixed. The left hip
was flexed to 155° and was intorted to 35°. A compres-
sive (downward) force of 600 N along the ventral-dorsal



Table 1 Material properties of the sacrum, ilium, femur, pubic symphysis and endplate

Young’s modulus (MPa) Poisson’s ratio

Sacrum Cortical 12,000 0.3

Cancellous 100 0.2

Ilium Cortical 12,000 0.3

Cancellous 100 0.2

Femur Cortical 15,000 0.3

Cancellous 100 0.2

Pubic symphysis 5 0.45

Articular cartilage 100 0.3

Endplate 1000 0.4
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direction was simultaneously applied at the end of the
left femur.

Manipulation of oblique pulling
The patient was in the side-lying position, and the ther-
apist stood at the patient’s ventral side. The therapist
placed one hand on the dorsal side of the sacrum to fix
the patient’s position and placed the other hand on the
anterior superior spine, pushing the ilium towards the
back. Thus, most regions of the sacrum and the right
iliac crest were fixed. Then, a push force of 600 N along
the ventral-dorsal direction and parallel to the left SIJ
surface was applied to the left anterior superior spine.

Manipulation of lower limb hyperextension
The patient lay in a prone position, and the leg being
treated was hyperextended at the hip so that the anterior
superior spine could just lift off the bed. Then, the ther-
apist applied a downward force to the iliac crest being
treated. In this manner, the right lateral region of the
ilium and the right pubic tubercle were fixed. Then, a
push force of 600 N along the dorsal-ventral direction
Fig. 1 Ventral (left) and Dorsal (right) views of the finite element model. Li
each ligament complex (note the interosseous sacroiliac ligament is not vis
ligament; LPSL, long posterior sacroiliac ligament; SPSL, short posterior sacr
and parallel to the left SIJ surface was applied on the left
iliac crest. The point of the applied force was the mid-
point between the highest point of the iliac crest and the
posterior superior spine.

Mesh convergence study
To evaluate the degree of accuracy of our FE model, a de-
tailed mesh convergence study was conducted. Four FE
models were developed. The number of elements and
nodes for each mesh resolution is shown in Table 2. The
meshes shown in Fig. 3 were named as mesh 1, mesh 2,
mesh 3 and mesh 4, respectively. Following boundary con-
ditions and material properties, loads, and constraints de-
scribed in detail in the above sections, MHKF, MOP and
MLLH were applied to these meshes. The results of the
maximum stress and maximum displacement were nu-
merically estimated for each of the meshes.

Model validation
To validate the developed models, two tests were per-
formed. For the pelvic model, the distribution of the
principal strain of the pelvis was compared with that
gaments are represented in color lines, with red arrows identifying
ible in anterior-posterior views). ASL indicates anterior sacroiliac
oiliac ligament; SS, sacrospinous ligament; ST, sacrotuberous ligament



Fig. 2 Loading and boundary conditions for the three manipulations. a The manipulation of hip and knee flexion (axial view); b The
manipulation of hip and knee flexion (lateral view); c The manipulation of oblique pulling; d The manipulation of lower limb hyperextension
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indicated in the study of Zhang [31]. Zhang et al. ana-
lyzed the distribution of principal strain on the cortical
bone of the pelvis for the single-legged stance. In this
model, the distribution of the principal strain of the
pelvis was investigated under the same loading and
boundary conditions.
For the sacrum model, the relationship between load

and displacement was compared to that reported in
cadaveric [32] and computational studies [12, 33]. In the
cadaveric experiment, the bilateral ilia were fixed. Five
translational forces (anterior, posterior, superior, inferior,
and mediolateral) of 294 N and three moments (flexion,
Table 2 Element and node numbers for four different mesh
resolutions

Element number Node number

Mesh 1 204,097 80,010

Mesh 2 378,211 140,844

Mesh 3 727,474 275,399

Mesh 4 1,603,938 669,044
extension, and axial rotation) of 42Nm were applied sep-
arately to the centre of the sacrum. The displacements of
a node lying in the mid-sagittal plane between the inferior
S1 and superior S2 vertebral endplates were calculated. In
this model, the displacement was estimated under the
same loading.

Results
Mesh convergence study
The results of the maximum stress and maximum dis-
placement on the left SIJ surface of sacrum were investi-
gated for each of the meshes, for MHKF, MOP and
MLLH, which can be seen in Fig. 4. The differences in
maximum stress and maximum displacement between
mesh 3 and mesh 4 in all three manipulations were less
than 5%, which was concluded as reasonably close
ranges. Based on this finding, mesh 3 with 727,474 ele-
ments was selected for further study.

Model validation
The principal stresses were distributed mainly in the
upper and posterior areas of the acetabulum and



Fig. 3 Four meshes for mesh convergence study
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extended to the iliac crest, the incisura ischiadica major,
and the rear acetabulum. The distribution and maximum
value of stress were consistent with those reported in a
previous study [31]. Figure 5 shows that the displacements
under eight loading conditions were in agreement not
only with those in an experimental study but also with
those in some computational studies [12, 32, 33].
The distribution of compressive stresses on the SIJ

surface of the sacrum is shown in Fig. 6. Higher stress
was observed on the left SIJ for the three manipulations.
Among them, MOP could produce the highest stress on
Fig. 4 a Maximum stress on the left SIJ surface of sacrum for different num
displacement on the left SIJ surface of sacrum for different number of mes
the left SIJ, at 6.6MPa, while MHKF could produce the
lowest stress on the right SIJ, at 1.5 MPa.
In MHKF, the displacements of the left SIJ were 0.120,

0.033, and 0.043 mm in the superior-inferior (SI),
anterior-posterior (AP), and medial-lateral (MI) direc-
tions, respectively. In MOP, the displacements were
0.048, 0.962, and 0.117 mm in the SI, AP, and MI direc-
tions, respectively. In MLLH, the displacements were
0.013, 0.114, and 0.060 mm in the SI, AP, and MI direc-
tions, respectively. MOP produced the largest displace-
ment in the AP and MI directions, while MHKF
ber of mesh elements, for MHKF, MOP and MLLH. b Maximum
h elements, for MHKF, MOP and MLLH



Fig. 5 Comparison of sacral displacements under eight loadings comparable to those in previous experimental and computational studies

Xu et al. BMC Musculoskeletal Disorders          (2020) 21:709 Page 6 of 10
produced the largest displacement in the SI direction.
The displacements of the left SIJ are shown in Fig. 7.
The strains of six ligaments for the three manipula-

tions are shown in Fig. 8. For most of the ligaments, the
strain of the left ligament was greater than that of the
right ligament under the three manipulations. In MHKF,
the left SS, ASL and ST had the highest strain values,
which were 1.6, 1.1 and 0.7%, respectively. MLLH pro-
duced the lowest strains of ligaments, while MOP pro-
duced the highest strains of ligaments. The left ISL and
LPSL had the highest strain values (0.8 and 0.3%, re-
spectively) in MLLH. In MOP, the left SS, ASL, and ST
had the greatest strain values, which were 3.1, 1.6, and
1.1%, respectively.

Discussion
SIJ pain is a common disease that affects 90% of adults
throughout their lives [2]. Manipulations have a good ef-
fect on SIJ pain with no specific cause. However, the
mechanism underlying the effects of manipulations on
the SIJ and the ligaments are not yet clear. In this study,
a 3D finite element model was used to quantitatively
analyze the effects of three manipulations on the dis-
placements of the SIJ and the strains of surrounding
ligaments, thus providing a theoretical basis for the indi-
cations for manipulations.
In this study, we found that higher stress was observed

on the left SIJ, which may be related to the manipulative
force applied to the left SIJ. MOP applied force to the
iliac directly, and MHKF applied force to the femur in-
directly. Therefore, MOP produced the maximum force
on the left SIJ, and MHKF produced the minimum force
on the right SIJ.
The anterior part of the SIJ is the synovium, which

can move slightly, and the posterior part is the interosse-
ous ligament, which mainly plays a role in maintaining
the stability of the joint. Walker et al. [34] found that
the SIJ had a displacement range of motion of less than
3 mm and a rotation of no more than 2° in a standing or
sitting position. Some researchers found that the slip of
the SIJ did not even exceed 1mm [35]. In this study, it
was found that MOP could produce the maximum dis-
placement of the SIJ among the three manipulations,
with a value of 0.962 mm, while MLLH could cause the
minimum displacement of the SIJ, with a value of 0.114
mm. The displacements of the SIJ under the three ma-
nipulations were all less than 1 mm, which is consistent
with previous studies [34, 35].
In MLLH, both the sacrum and iliac bone were unfixed

directly. As a result, they moved simultaneously during
the process. Therefore, the relative displacement of the
joint surface was small. The displacement produced by
MHKF was also small, which might be related to the point
of force at the distal femur. The displacement produced
by MOP was the largest, considering that the point of
force was on the pelvis, and the direction of force was
medial-lateral. MOP produced the largest displacement in
the AP and MI directions, and MHKF produced the lar-
gest displacement in the SI direction. The biomechanical
properties of manipulations can provide a theoretical basis
for selecting a manual therapy technique.
Ligaments play an important role in maintaining the

stability of the pelvis. Sichting et al. [36] found that liga-
ments serve as the mechanical stabilization device of the
pelvis. Bohme et al. [37] observed that the ASL and ST
had the greatest load, with 80 and 17% of the total load,
respectively, in anteroposterior compression pelvic injur-
ies and that the SS played an important role in the verti-
cal stability of the pelvis. Eichenseer et al. [33] suggested
that the ligaments around the SIJ could limit its move-
ment and reduce its stress. This study found that the
three manipulations could cause different degrees of
strain on the ligaments around the SIJ. In MOP, the pa-
tient’s sacrum was relatively fixed, the point of force was
on the anterior superior iliac spine, and the force was in
the MI direction. Therefore, MOP caused the greatest
strain on the ligaments among the three manipulations.
The ligament strains produced by MLLH and MHKF
were smaller, a finding that might be related to the point
and direction of manipulative force as well as the style



Fig. 6 Distribution of compressive stresses on the SIJ surface of sacrum for the three manipulations
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Fig. 7 The left sacroiliac joint displacements for the three manipulations. MHKF: The manipulation of hip and knee flexion; MOP: The
manipulation of oblique pulling; MLLH: The manipulation of lower limb hyperextension. AP: Anterior-posterior direction; SI: Superior-inferior
direction; MI: Medial-lateral direction
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of pelvic fixation. These results indicate that SS, ASL
and ISL experienced the greatest strain under the three
manipulations, which was consistent with previous
studies [12, 33].
In MLLH, the displacements were the smallest, and

the ligament strains were also the smallest. In MOP, the
displacements and the ligament strains were both the
largest. The displacements of SIJ and the ligament
strains remain consistent under the three manipulations.
These results also prove the reliability and effectiveness
Fig. 8 Ligament strains for the three manipulations. MHKF: The manipulatio
MLLH: The manipulation of lower limb hyperextension; L: Left; R: Right; ASL
Sacrospinous ligament; ST: Sacrotuberous ligament; LPSL: long posterior sa
of the model. According to these results, it can be found
that MOP is the manipulation that causes the greatest
changes in the environment around the SIJ. These re-
sults were based on the condition that the manipulations
acted on the normal SIJs. However, manipulations were
applied on the patients with SIJ subluxation, so these re-
sults may have certain errors. In theory, if manipulations
can produce the displacement of normal SIJ or the liga-
ment strain, it can also lead to the movement of sub-
luxated SIJ or the change of ligament strain.
n of hip and knee flexion; MOP: The manipulation of oblique pulling;
: Anterior sacroiliac ligament; ISL: Interosseous sacroiliac ligament; SS:
croiliac ligament; SPSL: Short posterior sacroiliac ligament



Xu et al. BMC Musculoskeletal Disorders          (2020) 21:709 Page 9 of 10
Szadek et al. [38] found that there were substance P
and calcitonin gene-related peptide-positive nerve fibres
in the SIJ cartilage and surrounding ligaments, indicating
that the source of SIJ pain might be cartilage and liga-
ment tissues. Is it then possible to reduce pain by pulling
the subluxated SIJ back or by alleviating spasms of the
surrounding ligaments? Chen et al. [39] suggested that
manipulations are unlikely to pull the SIJ back. The
clicking sound and the sense of movement during the
manipulative process are likely due to movement of at-
tachment of the SIJ or L5/S1 facet joints. Tullberg et al.
[26] argued that manipulations cannot change the pos-
ition of the SIJ and that the pain relief was related to
changes in the soft tissues around the joints. Ivanov
et al. [40] also suggested that the ligaments around the
SIJ contained a considerable amount of nerve tissue and
that even a small strain would cause pain. Based on the
results of this study, the displacements of the SIJ were
less than 1 mm for all three manipulations. In fact, be-
cause there are many muscles and other soft tissues
around the SIJ in the human body, it can be assumed
that any displacement will be small and that it is difficult
to pull the SIJ back with manipulations. However, the
manipulations did cause different degrees of strain on
the surrounding ligaments. Although the degree of liga-
ment strain was small, it could still relieve the spasm of
the surrounding ligaments and reduce pain.
There are some limitations of this study. First, our fi-

nite element model is based on the geometric and ma-
terial properties of individual pelvic bones and ligaments
in a single male case. However, it is well known that the
anatomical structures of the pelvis differ greatly among
individuals. This factor must be considered when draw-
ing conclusions in clinical studies. Second, muscles and
other soft tissues are most likely to participate in main-
taining pelvic stability, and manipulative forces were ap-
plied on soft tissues, not directly on bony structures.
These factors with muscles and soft tissues were not
considered in this model. Third, the ligaments’ charac-
teristics are regarded as linear. Fourth, there is currently
no unified standard for manipulations. Therefore, the
specific processes of manipulations were simulated and
simplified based on the experience of many physicians.
Fifth, manipulations are used to treat SIJ subluxation,
but the mechanisms of manipulations were investigated
with normal SIJ in this study. Therefore, these results
may not fully reflect the effect of manipulations. The
model of SIJ subluxation and ligament spasm is difficult
to establish, and we also plan to do further research in
the future.

Conclusions
This study was the first to analyze the effects of three
manipulations on the stresses and displacements of the
SIJ and the strains of the surrounding ligaments. The re-
sults showed that the displacements of the SIJ produced
by the three manipulations were small, but the three ma-
nipulations could produce different degrees of ligament
strains, which might explain how the manipulations re-
lieve SIJ pain. MOP produced the largest displacement
and the greatest ligament strains.
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