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Abstract

Background: The anterior cruciate ligament (ACL) is responsible for braking forward movement of the tibia relative
to the femur and for tibial rotation. After ACL injury, this braking performance deteriorates, inducing abnormal joint
movement. The purpose of this study was to clarify the effects of controlled abnormal joint movement on the
molecular biological response in intra-articular tissues during the acute phase of ACL injury.

Methods: Eighty-four mature Wistar male rats were randomly assigned to a controlled abnormal movement (CAM)
group, an ACL-transection (ACL-T) group, a sham-operated group, or an intact group. The ACL was completely
transected at its midportion in the ACL-T and CAM groups, and a nylon suture was used to control abnormal tibial
translation in the CAM group. The sham-operated group underwent skin and joint capsule incisions and tibial
drilling without ACL transection. Animals were not restricted activity until sacrifice 1, 3, or 5 days after surgery for
histological and gene expression assessments. Acute-phase inflammation requires an important balance between
degenerative and biosynthetic processes and is controlled by the activities of matrix metalloproteinases (MMPs) and
tissue inhibitors of metalloproteinases (TIMPs). Both types of gene were analyzed in this study.

Results: The ACL-T and CAM groups exhibited cleavage of the ACL at all time points. However, for the CAM group,
the gap in the ligament stump was extremely small, and fibroblast proliferation was observed around the stump.
Relative to the ACL-T group, the CAM group demonstrated significantly lower expression of MMP-13 mRNA and a
lower MMP-13/TIMP-1 ratio on days 1 and 5 in the ACL, the medial meniscus and the lateral meniscus. The
expression of TIMP-1 mRNA was not significantly different between the ACL-T and CAM groups.

Conclusions: The study results suggested that controlling abnormal movement inhibited the inflammatory reaction
in intra-articular tissues after ACL injury. This reaction was down-regulated in intra-articular tissues in the CAM
group. Abnormal joint control caused prolonged inflammation and inhibited remodeling during the acute phase of
ACL rupture.
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Background

The anterior cruciate ligament (ACL) plays an important
role in controlling and stabilizing the knee joint; it is the
primary restraint against anterior tibial translation [1].
The prevalence of injury to the ACL is quite high, particu-
larly among athletes who perform pivoting activities [2, 3].
Furthermore, previous reported that female subjects signifi-
cantly higher risk of ACL injury than male subjects [4, 5].
Treatment after ACL injury often involves reconstructive
surgery, which is performed on more than half of ACL in-
jury patients [6, 7].

ACL deficiency can induce the degeneration of other
intra-articular tissues (i.e., cartilage and meniscus), which is
a risk factor for the development of osteoarthritis [8]. Previ-
ous studies have generally attributed injury-induced knee
degeneration to the long-term biomechanical changes in
the microenvironment of the knee joint and have primarily
focused on the long-term molecular kinetics in injured
ACLs [9, 10]. Consequently, many studies have shown that
meniscal damage and chondral degeneration occur with
chronic ACL deficiency [11-13]. Furthermore, previous
studies have reported that ACL blood supply is poor [14]
and he lack of a scaffold [15]. Therefore, ACL is recognized
as a ligament difficult to heal after injury.

Surgical reconstruction treatment is the standard treat-
ment after ACL rupture. ACL reconstruction is the best
choice for athletes and/or high-level activity patients.
However, conservative therapy after ACL injury is selected
for patients with low and/or moderate activity levels,
children, elderly people. Although the ACL is not
known to heal spontaneously in general [16], there are
many previous reports documenting spontaneous healing
of a ruptured ACL [15, 17-25]. Thara et al. reported that
3-month conservative treatment resulted in a well-defined,
normal-sized, straight band in 74% of patients with
complete ACL rupture [23]. Moreover, many studies have
experimentally demonstrated the functional healing re-
sponses of injured ACLs [15, 17-19]. Extra-articular liga-
ments such as the medial collateral ligament (MCL) exhibit
a well-described healing response after injury in the absence
of surgical procedures [26]. Nguyen et al. showed that the
human proximal 1/3 ACL has an intrinsic healing response
with typical histological characteristics similar to those of
the MCL [15]. Although these studies [15, 17-19] have re-
ported that the ACL remnant has some possible functional
healing responses that may induce spontaneous healing,
this theory has not been confirmed.

A previous study demonstrated the effects of controlled
abnormal joint motion on modifying the intra-articular mo-
lecular response of ACL-ruptured knees, which led to
spontaneous ACL healing [27]. Although that study dem-
onstrated a new mechanism of ACL healing, the molecular
biological responses of the intra-articular tissues during the
ACL healing process in the acute phase of injury remain
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unclear. It is thought that controlled abnormal joint move-
ment is an important factor for spontaneous ACL healing.
Many previous studies have reported the molecular
biological responses in the intra-articular tissues dur-
ing the acute phase [28-31]. However, to the best of
the authors’ knowledge, no reports have yet focused on the
effects of abnormal joint movement on intra-articular tis-
sues. The acute-phase inflammatory response plays an im-
portant role in the wound healing process, and the balance
between the degenerative and biosynthetic arms of this
process is controlled by the activities of matrix metallopro-
teinases (MMPs) and tissue inhibitors of metalloproteinases
(TIMPs) [32]. In the present study, we focused on MMPs
and TIMPs to determine the molecular biological response
in the intra-articular tissues during acute-phase ACL injury.

The objective of the present study was to elucidate the
effects of controlled abnormal joint movement on the
molecular biological response in intra-articular tissues
during the acute phase of ACL injury. We hypothesized that
controlling abnormal joint movement in a rat model would
decrease the inflammatory response in intra-articular tis-
sues after the ACL injury acute phase.

Methods

Experimental design

All experiments were approved by the Saitama prefectural
University Animal Experiment Ethics Committee (permit
no. 24-2), and performed in accordance with their Guide-
lines for the Care and Use of Laboratory Animals.
Eighty-four mature, 12-week-old Wistar male rats (body
weight, 380-428 g, Japan SLC, Shizuoka, Japan) were
housed individually on a 12-h light-dark cycle with free
access to food and water. The male rats were randomly
assigned to the controlled abnormal movement (CAM)
groups, ACL-transection (ACL-T), sham-operated (SO),
or intact (IN), (each group, n =21). The animals were not
restricted activity until sacrifice. The room temperature
was maintained at 23 °C + 2 °C. To determine the inflam-
matory response, the ACL and meniscus of the CAM
group were histologically compared with those of the
other groups 1, 3, and 5 days after surgery (for 2 rats from
each group); the inflammatory response was also com-
pared across groups at 1, 3, and 5 days after surgery (for 5
rats from each group) (Fig. 1).

Surgical procedure

Prior research showed that changing the joint kinematics
of a knee with complete ruptured ACL results in the
down-regulation of inflammatory responses [33] and
leads to spontaneous healing [27]. These previous studies
used the CAM model used for the purpose of controlling
abnormal knee joint movement without restricted knee
flexion (Fig. 2). Unlike casts, the CAM model restricts
only the anterior drawer of the tibia, therefore it does not
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Fig. 1 Flowchart showing the allocation of animals in the study. ACL-T, anterior cruciate ligament transection; CAM, controlled abnormal

inhibit the flexion of the knee joint. This model was de-
vised with reference to the brace used in previous study
[23]. These previous studies showed that controlling the
motion of the knee and minimizing abnormal sagittal de-
viations between the femur and tibia within the range of
motion appropriate for ACL injury treatment leads to
spontaneous healing [22, 23]. Therefore, in the present
study, this CAM model was used to determine the effect
of changing the intra-articular environment during the
acute phase of ACL injury.

The animals were anesthetized with pentobarbital
(10 mg/kg) via intraperitoneal injections. The right knee
underwent medial parapatellar arthrotomy, and the ACL
was horizontally and completely transected at the mid-
portion. After the ACL was transected, the joint capsule
and parapatellar fascia were closed with a running suture
using 4—0 Ethibond (Ethicon Endo-Surgery Japan, Tokyo,
Japan), and a bone tunnel was created in the medial aspect

_____

-
oS

ACL

Bone Hole

Fig. 2 Extra-articular braking model. In the CAM group, a 2-0 nylon
suture was passed through the tibial bone tunnel posterior to the
condyle of the distal end of the femur to control anterior tibial
translation and was then tied to the joint to prevent abnormal tibial
translation without restriction of knee flexion. ACL, anterior cruciate
ligament. CAM, controlled abnormal movement

of the tibial tuberosity in the mediolateral direction. Then,
the skin was closed only in the ACL-T group. In the CAM
group, a 2—0 nylon suture (Prolene, Ethicon Endo-Surgery
Japan) was passed through the tibial bone tunnel posterior
to the condyle of the distal end of the femur and was then
tied to the joint in order to prevent abnormal tibial trans-
lation, according to the same procedure as that used in
previous study [27]. The nylon suture provided a directed
traction force to resist the anterior motion of the tibia with-
out restricted knee flexion (Fig. 2). After extra-articular
braking, the skin was closed with running sutures. The SO
group underwent skin and joint capsule incisions and
tibial bone tunnel creation without ACL transection;
postoperatively, these rats were immediately allowed
unrestricted movement.

Histological examination

The intra-articular response in the acute phase of ACL
injury was evaluated histologically at 1, 3, and 5 days, ac-
cording to the same procedure as that used in previous
study [27]. Two animals (each group) were sacrificed by
exsanguination, and fixed in 4% paraformaldehyde after
anesthetized with pentobarbital (10 mg/kg) via intraper-
itoneal injections at 1, 3, and 5 days, and all tissues
were decalcified in a 10% ethylenediaminetetraacetic
acid-based solution (pH 7.4) at 4 °C for 5 to 6 weeks.
After decalcified, the all tissues were infiltrated with
phosphate buffered saline different containing sucrose
at 4 °C (10%; 4 h, 15%; 4 h, and 20%;12 h), and embed-
ded in an optimal cutting temperature compound
(O.C.T., Sakura Finetek Japan, Tokyo, Japan). Longitudinal
cryosections were cut along the sagittal plane with a
thickness of 14 pm using cryostat (Leica 3050 S, Leica
Microsystems AG, Wetzlar, Germany) and maintained
at -80 °C. The cryosections were stained with
hematoxylin and eosin (H&E) in order to observe the
microscopic morphological characteristics of the
intra-articular response in the acute phase of ACL
injury.
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Molecular biological evaluation

On postoperative days 1, 3, and 5, ACLs and menisci
were harvested from each group (n=5) and evaluated
gene expression related to the intra-articular reaction
using real-time reverse transcription polymerase chain
reaction (PCR). The tissue samples were homogenized,
and RNA was extracted using an Allprep DNA/RNA/
Protein mini kit (Qiagen, Hilden, Germany). Total RNA
from each sample was reverse transcribed into comple-
mentary DNA (cDNA) using a high-capacity RNA to
c¢DNA kit (Applied Biosystems, CA, USA), according to
the same procedure as that used in previous study [27].
Real-time PCR was performed using a Chrome 4 Real-Time
Detector (Bio-Rad Laboratories, Hercules, USA) with
TagMan Gene Expression Assay probe inflammatory
factors, matrix metalloproteinase-13 (MMP-13), and
tissue inhibitor of metalloproteinase-1 (TIMP-1), ac-
cording to the manufacturer’s instructions (Applied
Biosystems). Beta-actin was selected as the reference
gene. The primers used are listed in Table 1 (TagMan
Gene Expression Assay, Applied Biosystems).

Standard curves were established with standards pre-
pared from 1st standard cDNA (Genostaff, Tokyo, Japan)
for all primers. The transcript levels of the target genes
were normalized to beta-actin.

Statistical analysis

The experimental data are presented as the mean + stand-
ard deviation (SD). Before analysis, the normal distribu-
tion of the data was confirmed using the Shapiro-Wilk
test. Gene expression was analyzed using two-way
(group x time point) analysis of variance (ANOVA),
with subsequent post hoc comparisons (via Bonferroni
tests) used for comparisons among groups and time
points (i.e., days 1, 3, and 5). A p value of less than
0.05 was considered significant. Statistical analyses
were performed using JMP statistical software, ver. 12.0
(SAS Institute, Inc., Cary, NC, USA).

Results

Influence of intra-articular tissues after ACL transection
The ACL-T and CAM groups demonstrated cleavage of
the ACL at days 1, 3 and 5 (Fig. 3a—f). In the ACL-T
and CAM group, ACL cleavage could be confirmed in
all tissue (Fig. 3a—f and i). Five days after operation, hist-
ology showed widening of the gap of the ligament stump
in the ACL-T group (Fig. 3c). In the CAM group, the

Table 1 Gene expression assays used for real-time PCR

Gene Assay number
Matrix metalloproteinase-13 (MMP-13) Rn01448194
Tissue inhibitor of metalloproteinase-1 (TIMP-1) Rn00580432

Beta-actin Rn00667869_m1
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gap of the ligament stump decreased (Fig. 3f and i). In the
SO and IN groups, the ACL showed continuity based on
the arrangement of the collagen fibers (Fig. 3g and h).

Expression of MMP-13 and TIMP-1 mRNA in intra-articular
tissues after ACL injury

Significant differences in mRNA levels for MMP-13 in
the ACL and medial meniscus were observed during the
acute phase ACL injury between ACL-T and CAM groups
(p <0.0001, Fig. 4a, b). Furthermore, the all intra-articular
tissues showed a significantly higher expression on day 5
than day 1 in the ACL-T group (Fig. 4a—c). The CAM
group showed a significantly higher expression on day 5
than day 1 only medial meniscus. On the other hands,
there was no significant difference in TIMP-1 mRNA ex-
pression between the ACL-T group and the CAM group
(p=0.384, Fig. 4d—f). As with MMP-13 mRNA in the
MMP-13/TIMP-1 ratio, a significant difference was ob-
served in the ACL and medial meniscus between ACL-T
and CAM groups (p <0.01, Fig. 4g and h). In the lateral
meniscus, the MMP-13/TIMP-1 ratio was significantly
higher in the ACL-T group than that in the SO and IN
groups at each time point (p <0.001 for all comparisons,
Fig. 4i). The CAM group did not significantly differ from
the SO and IN groups with respect to the MMP-13/
TIMP-1 ratio at each time point. The SO and IN groups
showed significant differences in each gene expression in
any intra-articular tissues compared with the ACL-T and
CAM groups (except the medial meniscus at day 1 and 3,
the lateral meniscus at day 1in TIMP-1 mRNA, and lateral
meniscus at each time point in MMP-13/TIMP-1 ratio).

Discussion

The present study was to compare the intra-articular re-
sponse between the CAM and ACL-T groups during the
acute phase of ACL injury using histological and gene
expression method. The primary results of the present
study are the following: as compared with ACL-T group,
CAM group exhibited (1) the gap of the ligament stump
decreased, (2) significantly lower MMP-13/TIMP-1 ex-
pression ratios. These findings partially supported our hy-
pothesis; the inflammatory reaction in the intra-articular
tissues decreased in the CAM group, and joint control
was associated with the inflammatory reaction during the
acute phase of ACL injury.

Our previous study demonstrated the effects of controlled
abnormal joint motion on modifying the intra-articular
molecular response of ACL ruptured knees, which led to
spontaneous ACL healing [27]. Thus, our previous study
showed spontaneous ACL healing at 2 weeks postopera-
tive using the controlled abnormal joint motion proced-
ure. In the present study, a rat model of this spontaneous
healing was used to determine the effect of changing the
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Fig. 3 Histological evaluation in each group. These figures show longitudinal sections of the anterior cruciate ligament (ACL) stained with
hematoxylin and eosin: (a) ACL-T group at day 1; (b) ACL-T group at day 3; (c) ACL-T group at day 5; (d) CAM group at day 1; (e) CAM group at
day 3; (f, i) CAM group at day 5; (g) IN group; (h) SO group. The ACL-T and CAM groups demonstrated cleavage of the ACL at each time point
(a—f). However, the gap in the ligament stump in the CAM group became very small, and fibroblast proliferation was observed around the stump

(d—f, i). ACL-T, ACL-transection; CAM, controlled abnormal movement; IN, intact; SO, sham operated. Scale bars=1 mm

intra-articular environment in a CAM model during the
acute phase of ACL injury.

In the present study, controlled abnormal tibial trans-
lation led to a decrease in the regression of the ligament
stump and a decrease in the inflammatory reaction in
the intra-articular tissues during acute-phase ACL in-
jury. In contrast, the ACL-T group showed degeneration
of the ligament remnant. The difference between the
ACL-T and CAM groups is the presence or absence of
controlling abnormal joint movement. In general, failing
to control abnormal joint movement prevents healing
after ACL injury. A previous study reported that partial
ACL injuries cause 42% of patients to develop complete
ACL insufficiency [34]. Consequently, abnormal joint
movement was degenerative for the ACL remnant. Fur-
thermore, the poor healing capacity of the ACL has been
noted both experimentally and clinically (e.g., there are

issues with vascular supply [14], the lack of a scaffold
[15], and the lack of blood clot formation [35]). A previ-
ous study showed that complete rupture of the ACL,
showing a “mop end” of the remnant in the inflammatory
phase, led to gradual retraction of the ligament remnant
[18]. These previous findings are in accordance with the
results of the present study showing that the ACL-T group
exhibited retraction of the ligament remnant. However,
Ihara et al. showed that spontaneous healing of the ACL
occurs upon conservative treatment with early protective
mobilization after complete ACL rupture [22, 23]. Further-
more, another previous studies reported that conservative
therapy (e.g., using specific brace) showed a significant im-
provement of anterior knee laxity comparable to patients
treated with ACL reconstruction [21, 25]. These previous
studies pointed out that it is important to move articulation
closer to normal and move it for protecting from early
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Fig. 4 Gene expression at days 1, 3, and 5 after surgery. Expression levels of matrix metalloproteinase-13 (MMP-13) in the anterior cruciate
ligament (ACL, a), medial meniscus (b), and lateral meniscus (c). MMP-13 expression in the ACL and medial meniscus differed significantly
between the ACL-T and CAM groups. The expression levels of tissue inhibitor of metalloproteinase-1 (TIMP-1) in the ACL (d), medial meniscus (e),
and lateral meniscus (f). TIMP-1 in all intra-articular tissues was not significantly different between the ACL-T and CAM groups. MMP-13/TIMP-1
ratios in the ACL (g), the medial meniscus (h), and the lateral meniscus (i). The ACL-T and CAM groups significantly differed with respect to the
MMP-13/TIMP-1 ratio in the ACL and the medial meniscus on days 1 and 5 after surgery. On the other hand, in the lateral meniscus, the
MMP-13/TIMP-1 ratio was significantly higher for the ACL-T group than for the other groups, with no significant difference between the CAM
group and the SO and IN groups. ACL-T, ACL-transection; CAM, controlled abnormal movement; SO, sham operated, * p < 0.001 compared with
day 1, T p<0.001 compared with the ACL-T and CAM groups. Data showed mean + standard deviation

phase after injury. In addition, previous studies have
shown that controlling abnormal joint movement in a
completely ruptured ACL results in the down-regulation
of inflammatory responses [33] and leads to spontaneous
healing [27]. Furthermore, importance of weight-bearing
has been pointed out in previous study [36]. The results of
the present study also showed that an ACL remnant could
be maintained by controlling abnormal joint movement.
Therefore, controlling abnormal joint movement and
weight-bearing may contribute to a spontaneous healing
response of the ACL. Furthermore, in the case of ACL re-
construction, the remnant is a very important factor. Pre-
vious studies found that the preservation of the remnant
tissue improved revascularization and remodeling of the
graft and enhanced the biomechanical properties of the
graft [37-41]. Consequently, controlling abnormal joint
movement and weight-bearing after ACL injury is import-
ant not only for conservative therapy but also for patients
who undergo ACL reconstruction.

Recent studies have focused on inflammation of the
intra-articular tissues after ACL injury [17, 31]. The co-
ordinated expression of MMP-13 in intra-articular tis-
sues and its accumulation in the synovial fluid may lead
to excessive matrix degeneration [31]. Moreover, in-
creased MMP-13 expression has been implicated in
osteoarthritis and rheumatoid arthritis [42]. Previous
studies have also reported that TIMP-1 specifically in-
hibits MMP-13 [43, 44], and the MMP-13/TIMP-1 ratio
is very important for tissue structure. In normal tissues,
the stoichiometric MMP-13/TIMP-1 ratio is 1:1 [32]. An
increase in MMP-13 is associated with the progression
of tissue destruction, and an increase of TIMP-1 is associ-
ated with the progression of tissue fibrosis [45]. Compared
to the IN and SO groups, the ACL-T and CAM groups
showed significantly higher expression levels of MMP-13
and TIMP-1 mRNA and a higher MMP-13/TIMP-1 ratio
in all intra-articular tissues. Furthermore, the ACL-T group
showed significantly higher MMP-13 mRNA expression
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compared with the CAM group. Thus, the results suggest
that controlling abnormal joint movement after ACL injury
inhibited MMP-13 mRNA expression in the intra-articular
tissues. Tang et al. reported that MMP-13 mRNA is
expressed in the ACL and the intra-articular tissues during
the acute phase of ACL injury [31]. The present study simi-
larly showed that the MMP-13 mRNA expression levels
were significantly higher in the intra-articular tissues after
the acute phase of ACL injury. The ACL is located within
the articular capsule, and after injury, the ACL is exposed
to synovial fluid containing inflammatory substances that
inhibit healing [46]. Previous studies have also reported that
the expression of MMP-13 mRNA significantly increases in
the cartilage and synovium after ACL injury [31, 47, 48].
Therefore, it is thought that MMP-13 is expressed coopera-
tively by other intra-articular tissues, accumulates in the
synovial fluid, and may promote ACL degeneration after in-
jury. Accordingly, inhibiting the expression of MMP-13 in
the intra-articular tissues is considered an important factor
in inhibiting the degeneration of articular tissue.

The CAM group showed significantly lower MMP-13
mRNA expression in the intra-articular tissues than did
the ACL-T group. The differences in these groups was
the use suppression of abnormal movement of the tibia
relative to the femur after ACL injury affected our re-
sults. Moreover, we showed that the mRNA expression
levels of TIMP-1, an inhibitor of MMP-13, increase as
the levels of MMP-13 mRNA increase, thereby inhibiting
the activity of MMP-13 [49]. Because the expression of
TIMP-1 mRNA in the intra-articular tissues was not sig-
nificantly different between the ACL-T and CAM
groups, the ACL-T group showed a significantly higher
MMP-13/TIMP-1 ratio than the CAM group on day 5.
Thus, MMP-13 and TIMP-1 were not balanced in the
ACL-T group. Moreover, a previous study also indicated
that degeneration, such as osseous tissue deterioration,
results from the increased expression of MMP relative
to that of TIMP [50]. Therefore, more tissue degener-
ation was assumed to have occurred in the ACL-T group
than in the CAM group based on the dynamics of
MMP-13 and TIMP-1.

Previous studies have reported that meniscus injury
can occur due to mechanical stress from abnormal
movement of the tibia after ACL injury [2, 50]. Allen et
al. reported increases in the front drawer of the tibia and
the amount of the load response to the medial meniscus
after ACL injury [51]. Levy et al. reported that the med-
ial meniscus contributes to the braking of the tibial front
drawer after ACL injury [52]. Therefore, mechanical
stress to the medial meniscus increases after ACL injury.
The lateral meniscus is an important component in the
braking of the tibial front drawer. Musahl et al. reported
that the amount of forward displacement significantly
increased compared to the amount of displacement prior
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to excision of the lateral meniscus [53]. Therefore, both
the medial meniscus and the lateral meniscus have the
ability to brake the tibial front drawer. However, the med-
ial and lateral menisci repeatedly receive mechanical stress
from abnormal joint movement after ACL injury. Degen-
eration of the medial and lateral menisci occurs after an
ACL injury due to this repeated secondary mechanical
stress. In the present study, the MMP-13 mRNA expres-
sion of the medial meniscus and lateral meniscus was
higher in the ACL-T group than in the CAM group due to
this secondary mechanical stress.

The ACL is responsible for braking the forward move-
ment of the tibia relative to the femur and for tibial rotation.
After ACL injury, this braking performance deteriorates,
and the loss of this braking capacity in ACL injury patients
causes repeated damage to the articular cartilage and
meniscus. A previous study reported that more than
half of patients with an ACL injury suffer from second-
ary knee OA [54]. The results of the present study sug-
gested that the expression of MMP-13 mRNA in the
acute phase of ACL injury was inhibited by controlling
abnormal joint motion. This finding indicates a possible
prevention strategy for joint degeneration after ACL in-
jury. A previous study reported that the occurrence of
additional knee injuries increased over time after ACL
injury, and the risk of additional meniscus injuries in-
creased substantially 6 months after ACL injury [55].
ACL reconstruction surgery is therefore recommended
within 6 months after injury, but our findings suggest that
degeneration of the joint has already occurred during the
acute phase of ACL injury. Consequently, joint control
during the acute phase is very important for patients with
reconstruction therapy after ACL injury.

The present study has several limitations. First, the in-
vestigation was a small animal study, which limits the
generalizability of the results. The anatomical compo-
nents of humans and rats are similar; however, the joint
function of the knee and weight-bearing conditions are
different. These differences affect the joint kinematics of
the knee after ACL injury. Thus, the effect of controlled
abnormal joint movement in the early phase of complete
ACL rupture may differ between humans and rats. Further-
more, although we already performed the same surgical
procedure in rabbit ACL, we cannot confirm for healing
ACL in the rabbit. We considered that the difference in
walking style between rabbits and rats is affecting. Although
rats walk for four legs, walk alternately like humans. On the
other hands, rabbit moves forward by kicking the ground
with both legs. Therefore, it is necessary to select animals
with four leg walking (e.g., pig and/or dog) in future
research. Second, we studied the healing process of a
completely injured ACL only during the early phase
(i.e., until post-injury day 5). Third, this study was per-
formed a small sample. Therefore, statistical differences
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could not be considered in histologic examination. In the
future, it is necessary to quantitatively present the narrow-
ing of the ACL stump by increasing the number of sam-
ples. Fourth, in the molecular biology evaluation of the
present study, we examined only MMP-13 and TIMP-1.
Research has shown that inflammatory factors such as
cytokines (e.g., interleukin (IL)-6 and IL-8) are present
at elevated levels in synovial fluid during the acute
phase of ACL injury [28]. Therefore, it will be ideal to
evaluate inflammatory factors in addition to MMPs and
TIMPs. Finally, our method for rupturing the ACL was
unlike the common mechanism of ACL injury in humans.
Further long-term studies using different animals, other
inflammatory factors, and another method of ACL rup-
ture are needed to clearly understand the mechanism of
spontaneous ACL healing.

Conclusion

We investigated the effects of changes in the intra-articular
environment on the spontaneous healing of an ACL injury
during the acute phase using a spontaneously healing rat
model. The present study showed the following: (1) after
cleavage of the ligament tissue in the CAM group, de-
generation of the ligament was not observed compared
with the ACL-T group, and (2) the CAM group showed
significant reductions in MMP-13 mRNA expression
and the MMP-13/TIMP-1 ratio compared with that in
he ACL-T group on day 5. These results suggest that con-
trolling abnormal movement inhibits the inflammatory re-
action in the intra-articular tissues after ACL injury.
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