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Two microRNAs of plasma-derived small
extracellular vesicles as biomarkers
for metastatic non-small cell lung cancer

Nan Geng'", Yaopu Qi'", Wenwen Qin', Si Li', Hao Jin', Yifang Jiang', Xiuhuan Wang', Shanna Wei' and Ping Wang'"

Abstract

Background MicroRNAs (miRNAs) of plasma-derived small extracellular vesicles (sEVs) have been proven to be
associated with metastasis in several types of cancer. This study aimed to detect miRNAs of plasma-derived sEVs as
potential biomarkers for metastatic non-small cell lung cancer (NSCLC).

Methods We assessed the miRNA profiles of plasma-derived sEVs from healthy individuals as the control group (CT
group), NSCLC patients without distant organ metastasis as the NM-NSCLC group and patients with distant organ
metastasis as the M-NSCLC group. Next-generation sequencing (NGS) was performed on samples, and differentially
expressed miRNAs (DEMs) of the three groups were screened. Kyoto Encyclopedia of Genes and Genomes (KEGG) and
ClueGO were used to predict potential pathways of DEMs. MiIRNA enrichment analysis and annotation tool (miEAA)
was used to understand changes in the tumour microenvironment in NSCLC. Quantitative reverse transcription
polymerase chain reaction (QRT—-PCR) analysis was used to validate target miRNAs.

Result NGS was performed on 38 samples of miRNAs of plasma-derived sEVs, and DEMs were screened out between
the above three groups. Regarding the distribution of DEMs in the NM-NSCLC and M-NSCLC groups, KEGG pathway
analysis showed enrichment in focal adhesion and gap junctions and ClueGO in the Rap1 and Hippo signaling
pathways; miEAA found that fibroblasts were over-represented. From our screening, miRNA-200c-3p and miRNA-
4429 were found to be predictive DEMs among the CT, NM-NSCLC and M-NSCLC groups, and gRT—PCR was applied
to verify the results. Finally, it was revealed that expression levels of miR-200c-3p and miR-4429 were significantly
upregulated in M-NSCLC patients.

Conclusion This study identified miRNA-200c-3p and miRNA-4429 as potential biomarkers for NSCLC metastasis.
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Background

Lung cancer is the leading cause of cancer-related death
[1]. Approximately 85% of lung cancer cases are non-
small cell lung cancer (NSCLC), with histopathological
types typically consisting of adenocarcinoma, squamous
cell carcinoma, and large cell carcinoma [2]. In the
United States, the 5-year survival rate was 24% between
2008 and 2014 for all patients with NSCLC and 5.5% for
those with distant metastases [3]. Although early diagno-
sis and clinical treatment of lung cancer have advanced
remarkably, distant metastasis is still the main cause of
lung cancer-related mortality [4]. Scientists have con-
ducted several studies on metastatic lung cancer, but the
molecular mechanism underlying metastatic lung cancer
has not yet been fully clarified. Therefore, it is essential
to perform further research to elucidate the molecular
mechanism of NSCLC and to identify new therapeutic
targets for treating metastatic lung cancer.

MicroRNAs (miRNAs) are small noncoding RNAs
ranging in length from 18 to 24 nucleotides. miRNAs
regulate gene expression through sequence-specific bind-
ing to 3’-untranslated regions (3'-UTRs) [5], causing
mRNA degradation, cleavage, and translational activa-
tion or repression [6, 7]. Increasing evidence shows that
miRNAs participate in regulation of a variety of biologi-
cal and pathological processes, including the occurrence
and development of cancer [8]. Furthermore, multiple
studies have shown that miRNAs play a role in promoting
the invasion and metastasis of NSCLC [9]. However, the
specific functional molecular mechanisms of miRNAs in
mediating NSCLC are still elusive, and it is important to
explore the potential mechanism of miRNAs.

In recent vyears, extracellular vesicles (EVs) have
attracted much attention as important mediators of inter-
cellular communication [10]. On the basis of their size
and biological characteristics, EVs are divided into exo-
somes (also called small EVs), microvesicles (MVs), and
apoptotic bodies [11, 12]. Messenger RNAs (mRNAs),
miRNAs, proteins and lipids are complex and specific
components carried by EVs [13, 14]. Delivery of these
biomolecules can cause changes in gene expression in tar-
get cells. Thus, communication between cells within the
tumour microenvironment (TME) by small EVs (sEVs)
might play a key role in tumour occurrence, growth,
metastasis, and response to therapy [15-17]. Recently, it
was confirmed that miRNAs in plasma-derived sEVs are
more stable and accurate than miRNAs in plasma and
that they are promising biomarkers for metastasis [18].

To date, few studies have concentrated on systematic
screening of plasma-derived sEV miRNAs related to
metastatic NSCLC. In the present study, SEVs were iso-
lated from plasma, miRNA sequencing (miRNA-seq) was
performed, and differentially expressed miRNAs (DEMs)
of healthy controls and NM-NSCLC and M-NSCLC
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patients were analysed. Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) path-
way enrichment analyses, ClueGO enrichment analyses,
and miRNA enrichment analysis and annotation tool
(miRAA) were used to clarify the functions and signal-
ing pathways of DEMs, to predict target genes and to find
changes in the TME for metastatic NSCLC. These pro-
cesses are all shown in Fig. 1.

Based on screening, miRNA-200c-3p and miRNA-
4429 were selected as predictive DEMs and further vali-
dated in additional healthy controls and NM-NSCLC and
M-NSCLC patients using quantitative reverse transcrip-
tion polymerase chain reaction (QRT-PCR). The results
showed that these two miRNAs of plasma-derived sEVs
can be used as biomarkers for metastatic NSCLC. Subse-
quently, the miRNA-seq, overall survival (OS), and clini-
cal data for miRNA-200c-3p and miRNA-4429 in NSCLC
patients were downloaded from The Cancer Genome
Atlas (TCGA)-NSCLC, and a Kaplan-Meier curve for
the risk score model was used to evaluate the effect of the
two miRNAs on prognosis of NSCLC. Furthermore, data
for miRNA-200c-3p and miRNA-4429 were downloaded
from four websites, and target genes were analysed. The
intersecting genes of the four websites were selected
as target genes, and the literature on the functions and
pathways of target genes in NSCLC was reviewed.

In summary, this study was conducted to clarify the
role of plasma-derived sEV DEMs as potential biomark-
ers for metastatic NSCLC and to predict potential target
pathways for metastatic NSCLC.

Methods

Patient data and sample collection A total of 38 par-
ticipants, including 15 healthy controls, 10 patients with
NM-NSCLC, and 13 patients with M-NSCLC, were
enrolled in this study between August 2020 and June
2022 at the Fourth Hospital of Hebei Medical University
(Shijiazhuang, China). MiRNA-seq was performed for all
participants. Additionally, 8 healthy controls, 15 patients
with NM-NSCLC and 10 patients with M-NSCLC were
enrolled for qRT-PCR validation. Inclusion criteria for the
NSCLC patients were as follows: (1) initially diagnosed
with NSCLC pathologically; (2) no history of therapy; and
(3) agreed to participate in peripheral blood collection.
Patients with a history of other malignant diseases were
excluded. Staging of NSCLC was performed according to
the National Comprehensive Cancer Network (NCCN)
guidelines (version 1.2020) [19]. The healthy controls were
the health examiner of the same period. Inclusion criteria
for the healthy controls were as follows: (1) no history of
disease and (2) availability of peripheral blood samples.
All patients provided written informed consent to col-
lect plasma samples and use their pathological data in
this study. All experiments were performed in accordance
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Fig. 1 Flowchart of the study design. Abbreviations: CT, control; NM-NSCLC, nonmetastatic non-small cell lung cancer; M-NSCLC, metastatic non-small
cell lung cancer; seVs, small extracellular vesicles; miRNAs, microRNAs; DEM, differentially expressed miRNA; GO, Gene Ontology; KEGG, Kyoto Encyclope-
dia of Genes and Genomes; miEAA, miRNA enrichment analysis and annotation tool; AUC, area under the ROC curve; ROC, receiver operating character-
istic; TCGA, The Cancer Genome Atlas; gRT-PCR, quantitative reverse transcription polymerase chain reaction

with relevant guidelines and regulations. Blood samples
were collected in 4 mL vacutainer tubes with EDTA anti-
coagulant and stored at 4 °C for no more than 2 h. The
samples were centrifuged at 4 °C and 1500 x g for 10 min
and then at 4 °C and 3000 X g for 15 min, and the extracted
plasma was stored at — 80 °C before use.

Isolation of plasma sEVs In this study, size exclusion
chromatography (SEC) was used to isolate sEVs from
plasma [15]. According to the manufacturer’s instruc-
tions, 1 mL of 0.8 um-filtered plasma was diluted 1.5-fold
with phosphate-buffered saline (PBS) and purified with
an Exosupur chromatographic column (Echo Biotech Co.,
Ltd., Beijing, China). Then, the samples were eluted with
0.01 M PBS, 2 mL of eluent fractions were collected, and

the fractions were concentrated to 200 pL using an Ami-
con Ultra-15 centrifugal filter (Merck, Berlin, Germany).

Nanoparticle tracking analysis (NTA) The ZetaView
PMX 110 kit (Particle Metrix, Meerbusch, Germany)
equipped with a 405 nm laser was used to examine the
vesicle suspension at concentrations between 1x10”/mL
and 1x10°/mL. Then, the quantity and size of isolated
particles were determined. NTA software (ZetaView
8.02.28) was used to analyse particle motion and capture a
60 s video at a frame rate of 30 frames/s.

Transmission electron microscopy (TEM) The sEV-
enriched supernatant (10 uL) was placed on a copper
mesh and incubated for 10 min at room temperature.
After washing with sterile distilled water, the sEVs were
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treated for 1 min with a uranyl acetate solution and dried
for 2 min under an incandescent lamp. Then, using trans-
mission electron microscope (H-7650; Hitachi, Tokyo,
Japan) to observed and photographed the sEVs.

Western blot analysis The sEV-enriched supernatant
was denatured in 5x sodium dodecyl sulfonate (SDS) buffer
and used for Western blotting (10% SDS-polyacrylamide
gel electrophoresis; 10-30 pg protein/well). Antibodies
against the following were used: CD63 (sc-5275; Santa
Cruz Biotechnology, Dallas, TX, USA), HSP70 (ab181606;
Abcam, England), TSG101 (ab125011; Abcam, England),
and calnexin (10427-2; Proteintech, Rosemont, IL, USA).
The wet rotation method was used, and the membrane
was completely immersed in 3% bovine serum albumin
(BSA)-TBST and gently shaken at room temperature
for 30 min. The primary antibody was diluted with 3%
bovine serum albumin (BSA)- Tris-buffered saline Tween
(TBST), incubated at room temperature for 10 min, and
placed at 4 °C overnight. On the next day, the membrane
was incubated at room temperature for 30 min, followed
by washing with TBST 5 times for 3 min each time, fol-
lowed by incubation with the secondary antibody. Elec-
trogenerated chemiluminescence reagents were added
to the membranes, and signals were detected by an auto-
matic chemiluminescence imaging system (Tanon 4600;
Tanon Co., Ltd., Shanghai, China).

RNA isolation and qRT-PCR According to the manu-
facturer’s protocol, total RNA was extracted from sEVs
using the miRNeasy Plasma Advanced kit (catalogue
number 217,204; Qiagen, Hilden, Germany). Then,
using the PrimeScript™ RT reagent kit (RR037A; Takara,
Shiga, Japan) to reverse transcribe total RNA to synthe-
size cDNA. qRT-PCR was used to measure target gene
expression, and 2 puL of cDNA was used for each PCR.
In addition, cel-39 was used as an outer reference, and
gene expression levels were calculated using the 2 ~24¢T
method. The sequences of the primers and probes are
shown in Table S1.

Library preparation and sequencing Using a total of
10 ng RNA of each sample as the input material to pre-
pare the small RNA library. According to the manufac-
turer’s instructions, used the QIAseq miRNA library kit
(Qiagen) to generate the sequencing library, and added
the index code to the attribute sequence of each sample.
Library quality was evaluated by Agilent 2100 Biological
Analyzer (Agilent, Technologies, Inc., Santa Clara, CA,
USA). According to the manufacturer’s instructions, used
TruSeq PE Cluster Kitv3 cBot HS suite (Illumina Inc., San
Diego, CA, USA) to cluster index-coding samples on the
acBot Cluster Generation system. The library prepara-
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tions were sequenced using the Illumina HiSeq platform
(Ilumina Inc.), and terminal reads were generated.

Quantification and differential expression analysis of
miRNAs Clean reads were filtered for small nuclear RNA
(snRNA), ribosomal RNA (rRNA), transfer RNA (tRNA),
small nucleolar RNA (snoRNA), and other ncRNA. Each
miRNA was readed from the mapping results and was cal-
culated the transcripts per kilobase million (TPM). Dif-
ferentially expressed miRNA was considered as log2|fold
change| > 0.58 and P<0.05 based on Edge R software
analysis, and the “pheatmap” R package was used to per-
form hierarchical clustering.

GO and KEGG pathway enrichment analyses miRanda
and RNAhybrid software were used to predict target
genes. The screening criteria for the miRanda database
were set to energy < -20 and score > 150, and those for the
RNAhybrid database were set to energy < -25 and P <0.05.
GO enrichment and KEGG pathway analyses were car-
ried out to analyse the key functions and pathways of tar-
get genes [20-22]. GO terms and KEGG pathways were
determined by Fisher’s exact test and the x? test, and the
threshold of significance was set as P <0.05.

ClueGO enrichment analysis ClueGO was applied to
analyse different pathways for different groups and present
data related to the localization of hub genes. The results
were automatically mapped on the network in different
visual styles [23]. With Benjamini-Hochberg correction,
the statistical significance for functional enrichment
analysis was set as P<0.045, and a kappa score of 0.5 was
considered in the bilateral hypergeometric test. The anal-
ysis was conducted using the DEMs of NM-NSCLC vs.
M-NSCLC.

miRNA enrichment analysis and annotation tool anal-
ysis The miRNA enrichment analysis and annotation
tool (miEAA) was used for analysis of human precursor
and mature miRNAs [24]. The tool is freely accessible at
https://www.ccb.uni-saarland.de/mieaa2. Either miRNA
or precursors from miRBase (version 2.0) were input for
miEAA. The overrepresentation analysis (ORA) method
was employed, the DEMs of the NM-NSCLC group ver-
sus the M-NSCLC group were imported. The categories
included cell-type specific (Atlas), immune cells, and
expression profiles of genes within different tissues (Tis-
sue Atlas). The significance threshold was set to P<0.1,
and the minimum hits per subcategory was equal to 1.

Validation of the prognostic risk score MiRNA expres-
sion profiles and clinical data were downloaded from
The Cancer Genome Atlas (TCGA)-NSCLC (http://tcga-
data.nci.nih.gov/tcga/findArchives.htm). Patients were
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divided into two groups using the median expression
level of miRNA-200c-3p and miRNA-4429 as the cut-off
value: a high-risk group with a higher expression level of
miRNA and a low-risk group with a lower expression level
of miRNA. The predictive values of the risk score were
assessed by survival curves, sorting scatter diagrams, and
distribution heat maps.

Predicting target genes of the two miRNAs Data for
miRNA-200c-3p and miRNA-4429 data were downloaded
from microRNA TargetScan (https://www.targetscan.
org/vert_72/), miRDB (http://mirdb.org/), microRNA
Data Integration Portal (mirDIP, http://ophid.utoronto.
ca/mirDIP/), and microRNA-target interactions data-
base (miRTarBase, https://mirtarbase.cuhk.edu.cn/).
We restricted our search by considering the microRNA
TargetScan prediction as the cumulative weighted con-
text++score < -0.3 points and miRDB of the selected tar-
get score>75 points; the mirDIP of the score class was
very high, and miRTarBase showed no score. The target
genes for miRNA-200c-3p and miRNA-4429 were consid-
ered the intersecting genes in the four websites.

Statistical and bioinformatics analyses Logistic regres-
sion analysis was used to assess the prognostic risk of
candidate miRNAs. The area under the curve (AUC)
was calculated from the receiver operating characteristic
(ROC) curve to evaluate performance. R 3.5.1 (www.R-
project. org) and GraphPad Prism (GraphPad Software
Inc., San Diego, CA, USA) software were used for sta-
tistical analysis. Application of single factor analysis of
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variance (ANOVA) for comparison between groups, and
P <0.05 was considered with statistically significant.

Results

Clinical characteristics of the control, NM-NSCLC,
and M-NSCLC groups In this study, 15 healthy controls
were enrolled and assigned to the control (CT) group, 10
patients without distant organ metastasis were assigned
to the NM-NSCLC group, and 13 patients with distant
organ metastasis were assigned to the M-NSCLC group.
Patients in the NM-NSCLC group were at I-III stages, and
those in the M-NSCLC group were at the IV stage. The
metastatic sites of M-NSCLC were the brain, bone, liver
and adrenal gland. The participants’ demographic and
clinical data, such as age, sex, smoking history, tumour
stage, pathological type, and metastatic site, are summa-
rized in Table 1 and Table S2. There were no significant
differences in age, sex, or smoking history among the
three groups.

Characterization of plasma-derived sEV-enriched
fractions by specific screening In this study, sEVs from
plasma samples of the CT, NM-NSCLC and M-NSCLC
groups were isolated using SEC and characterized by
TEM, NTA, and Western blotting. TEM images showed
that the sEVs of the different groups were small cup-
shaped membrane vesicles (Fig. 2a-c). The isolated sEVs
were highly enriched in HSP70, CD63 and TSG101 as
sEV-specific markers; however, as a negative SEV marker,
calnexin was not detected (Fig. 2d). NTA was applied to
detect size and concentration, which showed a sample for

Table 1 Clinical characterization of participants in the CT, NM- NSCLC and M- NSCLC groups

Characteristics Screening Verification
CT group NM-NSCLC group M-NSCLC group p CT group NM-NSCLC group M-NSCLC group p
(n=15) (n=10) (n=13) (n=8) (n=15) (n=10)
Sex P=0.931 P=0672
Male 5 7 5 12 8
Female 8 5 6 3 3 2
Age 63.1+£65 626+11.9 61.2+72 P=0842 568+85 649+6.0 564+152 P=0.054
Smoking history P=1.000 P=0.532
Yes 5 3 5
No 10 7 9 5
Stage
=11l - 10 - - 15 -
vV - - 13 - - 10
Pathological type P=0281 P=0.087
Adenocarcinoma - 7 12 - 3
Squamous cell carcinoma - 3 1 - 12 4
Metastatic site
Brain - - 6 - - 5
Liver - - 0 - - 2
Bone - - 4 - - 2
pleura - - 2 - - 0
adrenal gland - - 0 - - 1
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Fig. 2 sEV-enriched fractions isolated from participants'plasma. a-c. TEM images showing that sEVs are oval or bowl-shaped capsules without CT in the
NM-NSCLC and M-NSCLC groups. d. The sEV markers Tsg101, CD63, and HSP70 were all detected in the sEV-enriched fractions isolated from the plasma;
calnexin, as a negative marker of sEVs, was absent in our isolated sEV-enriched fraction samples. Abbreviation: CL, cell lysate. e. The NTA image shows a

sample for the mean diameter and concentration of sEVs.

the mean diameter and concentration of sEVs, as shown
in Fig. 2e.

Comparison of miRNA profiling and bioinformatic
analysis of sEV-derived miRNAs among the CT, NM-
NSCLC, and M-NSCLC groups Next-generation
sequencing (NGS) was performed on sEV-derived miR-
NAs from plasma. This revealed the presence of a total
of 1745 miRNAs, of which 1363 are known. We included
miRNAs with an average TPM > 10 for differential expres-

sion analysis to avoid bias induced by miRNAs with rela-
tively low expression levels. For the M-NSCLC group
compared with the CT group, a total of 55 DEMs had
a>1.5-fold change and P<0.05, of which 45 were upregu-
lated and 10 downregulated. In comparison between the
M-NSCLC group and the NM-NSCLC group, a total of 45
DEMs were identified, of which 19 DEMs were upregu-
lated and 26 downregulated. These data are depicted as
volcano plots (MA plots) in Fig. 3a, b. The merged heat-
map of DEMs for the CT group versus M-NSCLC group
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Fig. 3 Identification and functional enrichment analysis of differentially expressed sEV-derived miRNAs. a & b. Volcano plot of differentially expressed
sEV-derived miRNAs in the CT group versus M-NSCLC group and NM-NSCLC group versus M-NSCLC group. Each point represents a miRNA, red represents
upregulated miRNA, green represents downregulated miRNA, and grey represents nondifferentially expressed miRNA. The marked miRNAs are the inter-
secting DEMs of the CT group versus the M-NSCLC group and the NM-NSCLC group versus the M-NSCLC group. €. The merged heatmap of DEMs of the
CT group versus M-NSCLC group and NM-NSCLC group versus M-NSCLC group. Red indicates relatively high expression, and green indicates relatively low
expression. d. Venn diagram comparing differentially expressed sEV-derived miRNAs, and each circle represents the number of differentially expressed
sEV-derived miRNAs between two conditions. e & f. The AUC of the 7 DEMs for identifying the CT group versus the M-NSCLC group and the NM-NSCLC
group versus the M-NSCLC group in the plasma-derived sEV-enriched fraction miRNA dataset, as shown in ROC curves
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and NM-NSCLC group versus M-NSCLC group is shown
in Fig. 3c.

Venn diagrams were plotted to identify miRNAs of
plasma-derived sEVs that could be used for identification
of metastatic NSCLC (Fig. 3d). Among the 9 miRNAs
that were differentially expressed in the CT, NM-NSCLC,
and M-NSCLC groups, 7 miRNAs (miRNA-200b-3p,
miRNA-200c-3p, miRNA-320e, miRNA-320d, miRNA-
4429, miRNA-503-3p and miRNA-92b-3p) are known
and 2 (unconservative_20_ 265809 and unconservative_
3_65649) unknown. The specificity and sensitivity of
7 DEMs for the CT group versus the M-NSCLC group
and the NM-NSCLC group versus the M-NSCLC group
using the plasma-derived sEV-enriched fraction miRNA
dataset are shown by ROC curves in Fig. 3e, f. Expression
levels of 7 miRNAs were significantly upregulated in the
M-NSCLC group compared with the NM-NSCLC or CT
group (Table S3).

Functional annotation and identification of DEMs GO
and KEGG pathway enrichment analyses were conducted
to understand the biological characteristics of DEMs. GO
and KEGG pathway enrichment analyses were applied
to analyse 45 DEMs in the NM-NSCLC group versus
the M-NSCLC group. For biological processes, the most
significantly enriched terms were in cell development,
anatomical structure morphogenesis, and cell morpho-
genesis (P=3.34E-08, 1.27E-06, and 1.10E-05, respec-
tively). For cellular components, the most significantly
enriched terms were plasma membrane part, extracellular
matrix (ECM), and cell junction (P=1.03E-04, 0.0185, and
0.0233, respectively). For molecular function, the most
significantly enriched terms were ECM structural con-
stituent, guanyl-nucleotide exchange factor activity, and
enzyme binding (P=0.0054, 0.0061, and 0.0202, respec-
tively). The results of GO enrichment analysis are shown
in Fig. 4a-c. KEGG pathway analysis revealed significant
differences in pathways of focal adhesion, gap junctions,
protein digestion and absorption, and signaling pathways
regulating the pluripotency of stem cells (P=9.00E-06,
1.42E-05, 0.0054, and 0.0202, respectively), as shown in
Fig. 4d.

Furthermore, the biological characteristics of the 55
DEMs were compared between the M-NSCLC and CT
groups. The GO terms are shown in Fig. 4e-g. For bio-
logical process, the DEMs were enriched in regulation of
cellular process and plasma membrane-bounded cell pro-
jection organization (P=2.06E-10 and 3.52E-06, respec-
tively). For cellular component, the most significantly
enriched terms were cell junction and plasma membrane-
bounded cell projection part (P=1.74E-04 and 0.0217).
Regarding molecular function, the most significantly
enriched terms were transcription regulator activity and
protein serine/threonine kinase activity (P=8.29E-07 and
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1.36 E-04, respectively). KEGG pathway analysis showed
that the Rapl signaling pathway and Hippo signaling
pathway were significantly different (P=7.57 E-04 and
0.0157), as shown in Fig. 4h.

ClueGO enrichment analysis The ClueGO/CluePedia
plugin of Cytoscape software was employed to assess and
examine the functional annotation of the identified DEGs.
KEGG and Reactome pathways of DEMs were compared
between the NM-NSCLC and M-NSCLC groups. KEGG
pathways were significantly enriched in the Rapl signal-
ing pathway, Hippo signaling pathway, proteoglycans in
the cancer mTOR signaling pathway, and Wnt signaling
pathway (P <0.045), which are shown in Fig. 5a. Reac-
tome pathways were enriched in regulation of KIT signal-
ing, and MET was shown to activate the PTK2 signaling
pathway by PDGEF, which is shown in Fig. 5b. The results
of KEGG and Reactome pathway analyses are listed in
Tables S4 and 5.

MiRNA enrichment analysis and annotation tool
analysis miEAA was applied to compare enrichment
of DEMs to understand changes in cell type and cell tis-
sue origin from the occurrence of NSCLC to metastasis.
The DEMs in the NM-NSCLC group versus M-NSCLC
group were over-represented in fibroblasts (P=0.0854),
and were under-represented in CD3, CD19, and CD56
(P=0.0247, 0.0833, and 0.0857, respectively). The results
are shown in Table S6.

qRT-PCR validation and target gene prediction for
miRNAs In this study, 8 healthy controls were assigned
to the CT group, 15 patients without distant organ
metastasis were assigned to the NM-NSCLC group, and
10 patients with distant organ metastasis were assigned
to the M-NSCLC group. The participants’ demographic
and clinical data, such as age, sex, smoking history,
tumour stage, pathological type, and metastatic site, are
summarized in Table 1 and Table S1. Differential sEV-
derived miRNAs from 33 participants were verified and
compared among the CT, NM-NSCLC, and M-NSCLC
groups. On the basis of the screening of expression lev-
els and AUC results, miRNA-200c-3p and miRNA-4429
were selected as target miRNAs for further analysis; the
primer sequences used for gqRT-PCR are shown in Table
S1. Gene expression levels were calculated using the 2
~AACT method. The expression level of miRNA-200c-3p
was significantly upregulated in the M-NSCLC group
compared with the CT group and NM-NSCLC group
(CT group vs. NM-NSCLC group, P=0.8856; CT group
vs. M-NSCLC group, P=0.0196; NM-NSCLC group vs.
M-NSCLC group, P=0.0051) (Fig. 6a). The expression
level of miRNA- 4429 was significantly upregulated in
the M-NSCLC group compared with the CT group and
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NM-NSCLC group (CT group vs. NM-NSCLC group,
P=0.0825; CT group vs. M-NSCLC group, P=0.0044;
NM-NSCLC group vs. M-NSCLC group, P<0.0001)
(Fig. 6e). Furthermore, ROC curve analysis was per-
formed to calculate the diagnostic value of the two miR-
NAs. ROC curves of miRNA-200c-3p and miRNA-4429
were compared between the M-NSCLC and CT groups,
and higher values of specificity and sensitivity were
obtained (miRNA-200c-3p: AUC=0.85, specificity=0.9,
sensitivity=0.75; miRNA-4429: AUC=0.737, specific-
ity=0.875, sensitivity=0.7) (Fig. 6b, f). ROC curves of
miRNA- 200c-3p and miRNA-4429 were compared
between the M-NSCLC and NM-NSCLC groups, and
higher values of specificity and sensitivity were obtained
(miRNA-200c-3p: AUC=0.927, specificity=0.8, sensitiv-
ity=0.9; miRNA-4429: AUC=0.95, specificity=0.867,
sensitivity=0.9) (Fig. 6c, g). In addition, combined anal-
ysis of miRNA-200c-3p and miRNA-4429 resulted in
higher values of specificity and sensitivity compared
with M-NSCLC versus CT and M-NSCLC versus NM-
NSCLC (AUC=0.927, specificity=0.9, sensitivity=0.875;
AUC=0.95, specificity=0.9, sensitivity=1) (Fig. 6d, h).

Prognostic risk of miRNA-200c-3p and miRNA-4429
in NSCLC based on TCGA data MiRNA-seq and sur-
vival data of NSCLC patients were downloaded from
TCGA to further validate the effects of miRNA-200c-3p
and miRNA-4429 on NSCLC development. In total, 301
patients were divided into two groups on the basis of the
median value of the risk score used for predicting miRNA
expression levels in NSCLC patients (150 high-risk
patients and 151 low-risk patients). The survival curve
revealed that the miRNA-200c-3p expression level was
not associated with a significantly different OS between
the high-risk group and the low-risk group (P=0.88), as
shown in Fig. 7a-c. However, upregulated miRNA-4429
in the high-risk group was significantly associated with
poorer OS than that in the low-risk group (P=2.29E-06),
as illustrated in Fig. 7d-f.

Target genes of the two miRNAs MiRNA-200c-3p
and miRNA-4429 data were downloaded from the Tar-
getScan, miRDB, mirDIP, and miRTarBase databases.
The intersecting genes of the four websites were selected
as target genes, which are shown as Venn diagrams in
Fig. 8a, b. Moreover, ZEB1, CFL2, ZFPM2, RASSES,
ZEB2, and other genes were selected as target genes for
miRNA-200c-3p or miRNA-4429, and the pathways and
references are summarized in Table S7.

Discussion

Metastasis, a process of cancer cells spreading from the
primary tumour to distant organs, is the primary cause
of cancer mortality. It is estimated that metastasis is
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responsible for 90% of cancer-related deaths [25]. Lung
cancer is the leading cause of cancer-related death world-
wide and has a propensity for distant metastasis. A better
understanding of the molecular events that regulate the
development of metastatic lung cancer and biomarkers
that predict which patients may experience metastasis is
suggested to improve survival rates [26]. In recent years,
multiple studies have shown that sEVs are abundantly
secreted into the circulation by several cells and contain
proteins from the plasma and endosomal membranes, as
well as proteins, RNAs, and DNAs that reflect the phe-
notypic state of their cells of origin [27]. Furthermore,
DEMs of sEVs derived from plasma have been reported
to play an essential role in progression of various types
of cancer, including NSCLC, by regulating expression
levels of multiple target genes involved in progression
and metastasis [28, 29]. Thus, identification of specific
miRNAs of plasma-sEVs and their targets involved in
carcinogenesis would provide valuable insights into the
diagnosis and therapy of patients with malignancies.

In the present study, miRNAs from plasma-sEVs of 38
samples were isolated, including healthy controls, NM-
NSCLC and M-NSCLC patients, and differences in miR-
NAs were compared among the three groups. By GO and
KEGG pathway enrichment analyses, we found that for
biological process, M-NSCLC showed enrichment in cell
junction, regulation of signal transduction, and multicel-
lular organism development, with the Rapl and Hippo
pathways being enriched, confirming that the DEMs
from plasma sEVs are involved in metastatic NSCLC.
Furthermore, we analysed DEMs between NM-NSCLC
and M-NSCLC patients through ClueGO enrichment
analyses and found that the Rapl and Hippo signaling
pathways are important for metastatic NSCLC. Several
studies have confirmed that the Rapl and Hippo signal-
ing pathways play a key role in tumour cell proliferation
and apoptosis, which might be related to tumour growth
[30, 31]. Rapl is a small GTPase belonging to the Ras
family, marking the malignant expression of fibroblasts
transformed by KRAS [32]. The Ras family regulates the
biological behaviours of various tumours, such as cytoad-
hesion, growth, migration, and gene mutations, causing
the occurrence of malignant tumours [33]. A high expres-
sion level of Rapl can impair cell adhesion or enhance
cell-matrix adhesion, which can promote tumour cell
migration and invasion [34]. The Hippo signaling path-
way, initially identified by a Drosophila mosaic screen
for an overgrowth phenotype, has been proven to play
an important role in different types of human cancer,
acting as either a tumour suppressor or a tumour pro-
moter [35-37]. In our study, we predicted that the Rapl
and Hippo signaling pathways are of great importance to
metastatic NSCLC, and the results provide a theoretical
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basis for further research on sEV-derived miRNAs from
plasma samples and associated pathways.

It is generally accepted that progression and metas-
tasis of cancer are controlled by the TME, not only by
autonomous defects in cancer cells [38]. The tumour
stroma is composed of immune cells, the basement
membrane, capillaries, activated fibroblasts and the
extracellular matrix (ECM) around cancer cells [39]. SEVs
can be mediators of intercellular communication. Thus,
we used miRNAs to determine the TME of M-NSCLC
patients. As immune cells, the DEMs of NM-NSCLC ver-
sus M-NSCLC were enriched in CD3, CD19, and CD56

cells for under-represented. The CD3 component of the
T-cell receptor complex CD19 is an antigen marker of
B cells, and most CD5 antigens are expressed in natural
killer (NK) cells [40—42]. These results demonstrate that
immune cells are involved in metastatic NSCLC. Immune
checkpoint inhibitors are widely used in the clinic, and
they have revolutionized treatment of different types of
cancer [43]; however, the biomarkers for immune check-
point inhibitors are unclear, and CD3, CD19, and CD56
cells will become new immunotherapeutic targets.
Fibroblasts are a dominant component of the tumour
stroma, and several studies have suggested a prominent
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functional role of these cells in cancer progression and
metastasis [44, 45]. Fibroblasts associated with cancer
have been termed cancer-associated fibroblasts (CAFs),
tumour-associated fibroblasts, activated fibroblasts or
activated myofibroblasts, which may include cancer-
related mesenchymal stem cells. CAFs are one of the
most abundant stromal cells in the TME [46], and they
can establish and reshape the structure of the ECM,
facilitate tumour cells invading blood vessels, interact
with tumour cells or other stromal cells, and promote
tumour progression by secreting cytokines, growth fac-
tors and chemokines [47, 48]. Due to the high heteroge-
neity of CAFs and the lack of specific markers for their
origin, classification and biological function, the role of
CAFs has not been comprehensively evaluated, and there
are still some disputes. In the study of miRNAs, DEMs
were enriched in fibroblasts and had high activities in
metastatic NSCLC patients, which indicates that fibro-
blasts may play an important role in metastatic NSCLC
and TME changes at different tumour stages.

It is well known that the miR-200 family (miR-200a,
miR-200b, miR-200c, miR-429, and miR-141) plays an
important role in the epithelial-mesenchymal transi-
tion (EMT), which is important for tumour metastasis
[49, 50]. Numerous studies on NSCLC have provided
evidence for a critical role of miR-200c in regulating the
EMT, ubiquitin-specific peptidase 25 (USP25), cathep-
sin L (CTSL), and hypoxia-inducible factor-1a (HIF-1a),
which are prerequisites for the formation of metastases
and the primary cause of cancer mortality [51-53]. In this
study, the expression level of miRNA-200c-3p derived
from sEVs of plasma samples was significantly upregu-
lated in M-NSCLC patients, accompanied by higher sen-
sitivity and specificity. It was previously reported that
miRNA-4429 was detected in the plasma of patients with
acute ischaemic stroke, and it was found that the expres-
sion level of miRNA-4429 was significantly reduced in

acute ischaemic stroke patients [54]. Studies confirmed
that miR-4429 is dysregulated in cancer cells, and it was
demonstrated to play an important role in diverse types
of cancer. For instance, the role of miR-4429 includes
targeting METTL3 to inhibit m6A-induced stabiliza-
tion, targeting RAD51, targeting distal-less homeobox 1,
and inactivating the Wnt/B-catenin pathway [55-57]. In
this study, the expression level of miRNA-4429 derived
from plasma-sEVs was significantly upregulated in
M-NSCLC patients, accompanied by higher specificity
and sensitivity.

In addition, miRNA-seq and survival data for miRNA-
200c-3p and miRNA- 4429 of NSCLC patients were
downloaded from TCGA, and miRNA-4429 correlated
with the prognosis of NSCLC patients, though this find-
ing was not confirmed for miRNA-200c-3p. However,
the data obtained from TCGA are expression levels in
NSCLC patient tissues, which could be different from
the expression data of miRNA in plasma-sEVs. Although
our results were slightly different from those of TCGA,
miRNAs of plasma-sEVs can well reflect the TME state.
Hence, it was confirmed that these two genes can be
used as prognostic genes for NSCLC patients, especially
miRNA-4429.

TargetScan, miRDB, mirDIP, and miRTarBase are
common gene databases, and we used them to iden-
tify target genes for miRNA-200c-3p and miRNA-4429.
Through analysis, it was confirmed that ZEB1, JUN,
ETS1, ERRFI1, and DUSP1 are target genes of miRNA-
200c-3p; the target genes of miRNA-4429 are predicted
to be COPS2, PBX3, RASA1, and TRIAP1. These genes
promote tumour growth and metastasis by acting on
multiple pathways and were reported in tumour-related
studies [58—68]. We found that several studies on ZEB1
have been conducted but that few studies have focused
on CFL2, ELAVL2, and MSN. Therefore, prediction of
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these target genes indicates the direction for our future
research.

This study has several limitations. First, the num-
ber of participating patients was small. If the sample
size can be expanded, more reliable conclusions may be
drawn. However, several patients in our department had
already been treated in other hospitals, and the number
of patients without uncomplications treated for the first
time was also limited. Second, this was an exploratory
study on the mechanism of tumour metastasis, and the
patients benefited less from short-term therapy, leading
to the participation of fewer patients. Third, we predicted
target genes, and further evidence is required to confirm
them. However, this research is very meaningful, and
the results provide a promising theoretical basis for the
mechanism of metastatic NSCLC. Further study is essen-
tial to verify our predicted target genes.

Conclusions

In summary, this study confirmed that miRNA-200c-3p
and miRNA-4429 derived from plasma-sEVs can be used
as potential biomarkers for metastatic NSCLC and pre-
dict the potential target pathway for metastatic NSCLC.
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