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Abstract 

Background  Maximal mid-expiratory flow (MMEF) is an earlier predictor of chronic obstructive pulmonary disease 
(COPD) development than forced expiratory volume in 1 s (FEV1). Changes of lung structure in patients with MMEF 
impairment only is still not clear. Therefore, this study aimed to investigate the structural features of patients with 
decreased MMEF by quantitative computed tomography (QCT) and develop a predictive model for predicting 
patients with reduced MMEF in normal lung function population.

Methods  In this study, 131 patients with normal spirometry results and available volumetric chest CT images were 
enrolled and divided into the reduced MMEF group (FEV1/forced expiratory vital capacity (FEV1/FVC) > 0.7, FEV1% 
predictive values (FEV1%pred) > 80%, MMEF%pred < 80%, n = 52) and the normal MMEF group (FEV1/FVC > 0.7, 
FEV1%pred > 80%, MMEF%pred ≥ 80%, n = 79). The emphysema, small airway disease and medium-size airway param-
eters were measured by a commercial software. The differences were investigated in clinical features, spirometrical 
parameters and QCT parameters between the two groups. A nomogram model was constructed based on the results 
of the multivariable logistic regression model. Spearman’s correlation coefficients were calculated between QCT 
measurements and spirometrical parameters.

Results  There were more males in reduced MMEF group than normal group (P < 0.05). Lung parenchyma parameter 
(PRMEmph) and airway-related parameters (functional small airway disease (PRMfSAD), luminal area of fifth- and sixth- 
generation airway (LA5, LA6) were significantly different between the reduced MMEF group and the normal group 
(20.2 ± 17.4 vs 9.4 ± 6.7, 3.4 ± 3.5 vs 1.9 ± 2.0, 12.2 ± 2.5 vs 13.7 ± 3.4, 7.7 ± 2.4 vs 8.9 ± 2.8, respectively, all P < 0.01). 
After multivariable logistical regression, only sex (odds ratio [OR]: 2.777; 95% confidence interval [CI]:1.123–3.867), 
PRMfSAD (OR:1.102, 95%CI:1.045–1.162) and LA6 (OR:0.650, 95%CI:0.528–0.799) had significant differences between the 
two groups (P < 0.05) and a model incorporating with the three indicators was constructed (area under curve, 0.836). 
Correlation analysis showed MMEF%pred had mild to moderate correlation with airway-related measurements.
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Conclusion  In normal lung function population, patients with reduced MMEF have potential medium-size and small 
airway changes, and MMEF%pred is significantly associated with airway-related CT parameters. The nomogram incor-
porating with sex, PRMfSAD and LA6 has good predictive value and offers more objective evidences in a group with 
reduced MMEF.

Keywords  COPD, Maximal mid-expiratory flow, Quantitative computed tomography

Background
Chronic obstructive pulmonary disease (COPD) is a type 
of progressively obstructive lung disease that is charac-
terized by persistent respiratory symptoms and airflow 
limitation due to airways and alveolar abnormalities 
[1–3]. Forced expiratory volume in 1  s (FEV1) to forced 
expiratory vital capacity (FVC) of less than 0.7 is the gold 
standard to confirm the diagnosis of COPD [4], and a 
decrease in FEV1 is considered to be a predictor of COPD 
development [5]. However, recent studies suggest that 
maximal mid-expiratory flow (MMEF) values has been 
shown to occur before a decrease in FEV1, and could be 
an indicator of early disease [6, 7]. MMEF, also referred 
to as FEF25-75, defined by the the American Thoracic 
Society (ATS) and European Respiratory Society (ERS) 
as the mean forced expiratory flow between the 25% and 
75% of the FVC [8], is widely accepted as a measure of 
small airways (diameter < 2  mm) obstruction. A 10-year 
follow-up study reported that MMEF is an earlier pre-
dictor of COPD development than FEV1 in normal lung 
function population [9]. Furthermore, a recent work 
reveals smokers with a decreased MMEF are approxi-
mately eight times more likely to develop COPD than 
patients with a normal MMEF, despite having FEV1% 
predicted (FEV1%pred) > 80% [10]. Indeed, MMEF rates 
have been considered a sensitive way to detect early 
stages of obstructive airway disease since the 1970s [11]. 
But MMEF has recently been found to be associated not 
only with small airway abnormalities, but also with lung 
parenchyma changes. Small airways abnormalities and 
destruction of lung parenchyma (emphysema) are major 
pathological hallmarks of COPD, which would contribute 
to airflow limitation via distinct mechanisms [12]. How-
ever, MMEF rates could not provide anatomic localiza-
tion and quantitative characteristics of either of the two 
major disease. Computed tomography (CT) can serve as 
a complementary tool for pulmonary function test (PFT) 
by providing anatomic localization, differentiating airway 
disease from emphysema and characterizing emphysema 
subtypes [13]. Small airway disease can be inferred from 
an indirect measure of air trapping on CT images, and 
emphysema are the voxels with CT attenuation less than 
-950 Hounsfield unit (HU) on inspiration.

Therefore, the purpose of this study was to inves-
tigate the imaging features of patients with MMEF 

abnormalities and develop a predictive model for pre-
dicting patients with abnormal MMEF by CT images.

Methods
Study subjects
This prospective study was approved by the Ethics Com-
mittee of Huadong Hospital Affiliated to Fudan Uni-
versity (No. 2021K018), and informed consents were 
obtained from all patients. The study is based on a ret-
rospective interpretation of prospectively acquired data. 
From July 2020 to May 2021, 312 participants who came 
for annual health screening without respiratory symp-
toms at our hospital were enrolled in the study. Sub-
jects who met any of following criteria were considered 
for inclusion from the analysis with normal lung func-
tion results (FEV1/FVC > 0.7 and FEV1%pred > 80%), 
age > 40  years, no history of asthma or interstitial lung 
disease, and no history of lung surgery. Forty-one out of 
184 eligible subjects were excluded because of incomplete 
data or poor CT scan quality (CT image quality evalu-
ation detailed in CT examination). Finally, we remain 
131 patients with normal PFT results and grouped them 
according to the MMEF predictive values (Fig. 1).

Clinical parameters
Clinical parameters, included the body-mass index 
(BMI), age, gender and smoking status, were collected to 
estimate differences between the two groups. BMI was 
calculated by dividing weight by height squared (kg/m2). 
Smoking status was classified as current-smoker, former-
smoker and never-smoker according to the total number 
of smoked cigarettes, in accordance with previous stud-
ies [14, 15]. Current-smokers were considered to have 
smoked at least 100 cigarettes during their lifetime and 
currently smoked on a few days or every day. Former-
smoker had smoked at least 100 cigarettes, but is current 
non-smoker. Never-smoker had never smoked or smoked 
less than 100 cigarettes in their life.

PFTs
All spirometry tests were performed within 1  month 
before or after CT scanning. The procedures were con-
ducted on a Jaeger MasterScreen Pro lung function sys-
tem (Jaeger Ltd, Hochberg, Germany) according to the 
ATS/ERS standardization of spirometry [16]. Baseline 
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FEV1, FVC, FEV1/FVC, MMEF, residual volume (RV), 
total lung capacity (TLC), and RV/TCL values were 
obtained for the study. FEV1 and FVC were expressed as 
percentage of normal predicted values. In current study, 
to reduce the variability of MMEF and the influence 
of aging-related decline in lung function, MMEF was 
expressed as % predicted. Below 80% of predicted value 
was considered as MMEF abnormalities, as reported in 
previous studies [17, 18].

CT scanning
Prior to the examination, all patients had been previously 
instructed on how to perform the respiratory maneuvers 
while lying in the CT scanner acquisition bed. Patients 
underwent volumetric thin-section chest CT at both 
full inspiration and full expiration in the supine posi-
tion. Scans were performed with a dual-source CT sys-
tem (Somatom Definition Flash, Siemens Healthcare, 
Forchheim, Germany) in the caudocranial direction 
using the following parameters: tube voltage, 140 kVp; 
effective tube current, 100 mAs; slice thickness, 0.6 mm; 

picth, 1.0; and gantry rotation time, 0.5  s. The acquired 
data from the thoracic inlet to the lung base were recon-
structed using B30f kernel. All the images were subjec-
tively general evaluated by a radiologist (with 20  years 
of experience) according to the European Guidelines on 
Quality Criteria for Computed Tomography [19]. Diag-
nostic acceptability was evaluated with a four-point scale 
(1 = fully acceptable, 2 = probable acceptable, 3 = accept-
able only in limited conditions, 4 = diagnostically unac-
ceptable). Image noise was evaluated with a three-point 
scale (1 = too little or less than usual noise, 2 = accept-
able noise, 3 = excessive noise). Images with diagnostic 
acceptability or image noise scores of 3 and above will be 
excluded for software analysis.

Quantitative image analysis
All CT images were evaluated using a commercial soft-
ware (Aview, Coreline Soft, Seoul, Korea). Both lungs 
as well as each lung lobe were automatically segmented 
with manual edits as necessary by a professional radi-
ographer. Emphysema was quantitated using the 

Fig. 1  Flowchart of this study population
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percentage of low-attenuation units less than -950HU at 
maximal inspiration, and recorded as emphysema index 
(EI). Small airway disease was quantified by Parametric 
response mapping (PRM) which utilizes image match-
ing by deformed co-registered inspiratory and expira-
tory CT images and classifies based on a voxel-by-voxel 
comparison of lung attenuation changes: (1) functional 
small airway disease (PRMfSAD), are voxels greater than 
-950HU on inspiratory CT and less than -856HU on 
expiratory CT, (2) emphysema (PRMEmph), are voxels less 
than -950HU on inspiratory CT and less than -856HU on 
expiratory CT, (3) normal (PRMNormal), are voxels greater 
than -950HU on inspiratory CT and greater than -856HU 
on expiratory CT (Fig.  2). PRM data were expressed as 
percentage of total lung volume. Airways were automati-
cally segmented and airway level was detected, and the 
airway parameters were recorded in medium-size air-
ways, including Pi10, wall thickness (WT), airway wall 
area percent (%WA) and luminal area (LA). Pi 10 was the 
square root of the wall area of a hypothetical airway with 
10  mm internal perimeter, which was a useful measure 
of airway wall thickness obtained by calculating a regres-
sion line that was plotted from the square root of the wall 
area of internal perimeters of multiple airways at differ-
ent locations [20–22]. Wall thickness, airway wall area 

percent and luminal area were calculated from the aver-
age of whole lung fifth and sixth generation whole lung 
bronchial values. The software magnified the images 
tenfold to automatically detect airways lumens and to 
measure wall area and luminal area. The wall thickness 
was calculated using full-width-half-maximum (FWHM) 
measurement algorithm by detecting the inner and outer 
boundaries of the airway wall, as early study described 
[23]. Airway wall area percent was calculated as follows: 
WA / (WA + LA) *100.

Finally, the quantitative computed tomography (QCT) 
measurements used in this study included EI, PRM 
(PRMfSAD, PRMEmph, PRMNormal), Pi10, mean %WA of the 
5th and 6th generation bronchi, mean WT of the 5th and 
6th generation bronchi and LA of the 5th and 6th genera-
tion bronchi.

Statistical analysis
All statistical analyses were performed using R software 
(version 3.5.1; http://​www.​Rproj​ect) and MedCalc Soft-
ware (version 16.8.4, http://​www.​medca​lc.​org). Paramet-
ric data were expressed as mean ± standard deviation, 
and nonparametric data were expressed as numbers and 
percentages. Student’s t test was used for continuous 
variables, Pearson’s chi-squared test and Fisher’s exact 

Fig. 2  Images of lung parameters in two patients. Notes: The first column shows the distribution of emphysema (displayed in blue). The second 
and third columns illustrate the distribution of voxels corresponding to PRM class (PRMfSAD voxels in yellow, PRMEmph voxels in red, and normal 
voxels in green). The last column shows the tracheobronchial tree generated by three-dimensional reconstruction; a A 61-year old male with 
reduced MMEF (FEV1/FVC = 0.84, FEV1%pred = 91.6%, MMEF%pred = 67.0%). The emphysema index is 5%. PRMfSAD, PRMEmph and PRMNormal are 
16%, 4% and 78% respectively. The luminal area of the fifth- and sixth- bronchi   are 10.4 mm2 and 5.2 mm2 respectively; b A 58-year old female 
with normal pulmonary function (FEV1/FVC = 0.96, FEV1%pred = 99.0%, MMEF%pred = 121.1%). The emphysema index is 3%. PRMfSAD, PRMEmph and 
PRMNormal are 1%, 1% and 97% respectively. The luminal area of the fifth- and sixth- bronchi are 14.3 mm2 and 6.6 mm2 respectively. PRM, Parametric 
response mapping; PRMEmph, emphysema by PRM; RPMfSAD, functional small airway disease; PRMNormal, normal lung parenchyma by PRM

http://www.Rproject
http://www.medcalc.org
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test was used for categorical variables. Clinical and imag-
ing variables with a P value < 0.1 on univariable analysis 
were selected as input variables for multivariable logistic 
regression analysis with a backward stepwise selection 
mode. A nomogram model was constructed based on the 
results of the multivariable logistic regression model to 
make the result of this research feasible to clinicians. Cal-
ibration curve was plotted to assess the fitting efficiency 
of the nomogram.

The receiver operating characteristic (ROC) curve and 
area under the ROC curve (AUC) were used to evaluate 
the predictive nomogram. Spearman’s correlation coeffi-
cients were calculated between QCT measurements and 
pulmonary function parameters. Correlation coefficients 
were interpreted according to the following categories: 
r < 0.3, mild correlation; 0.3 < r < 0.7, moderate correla-
tion; and r > 0.7, strong correlation. Two-sided P-value 
less than 0.05 was considered statistically significant.

Results
Patients’ characteristics
The final cohort compromised 131 subjects with normal 
pulmonary function test and evaluable quantitative CT, 
and patients were divided into two groups based on the 
predictive MMEF%: 52 cases of the reduced MMEF group 
(FEV1/FVC > 0.7, FEV1%pred > 80%, MMEF%pred < 80%), 
79 cases of the normal MMEF group (FEV1/FVC > 0.7, 
FEV1%pred > 80%, MMEF%pred ≥ 80%). The clinical 
characteristics, pulmonary function results and QCT 
parameters are presented in Table 1. There was a greater 
proportion of males in reduced MMEF group than that 
in the normal group (63.5% vs 41.8%, P = 0.015). But the 
smoking status was not significantly different between 
the two groups (P = 0.085). Compared with PFT results 
between the two groups, FEV1%pred values in the reduced 
MMEF group were significantly lower than those in the 
normal MMEF group, while there was no significant dif-
ference in actual measurements of FEV1 between the two 
groups. Although FEV1/FVC was significantly different 
between the two groups, these values were all within the 
normal ranges. There was no significant difference in EI 
value between the reduced MMEF group and normal 
group (5.7 ± 5.5 vs 4.0 ± 4.1, P = 0.051). The average values 
of PRMfSAD, PRMEmph and PRMNormal were significantly 
different between the reduced MMEF group and the nor-
mal group (20.2 ± 17.4 vs 9.4 ± 6.7, 3.4 ± 3.5 vs 1.9 ± 2.0, 
73.8 ± 19.7 vs 85.3 ± 10.0, respectively, all P < 0.05). The 
average the luminal area of fifth generation bronchi (LA5) 
and the luminal area of sixth generation bronchi (LA6) 
value were significantly smaller in reduced MMEF group 
than that in normal MMEF group (12.2 ± 2.5 vs 13.7 ± 3.4, 
6.9 ± 2.0 vs 8.9 ± 2.8, respectively, all P < 0.05). Pi10, airway 
wall thickness and wall area percent showed no significant 

difference between reduced MMEF group and normal 
MMEF group (all P > 0.05).

Association of CT parameters with spirometrical results
The quantitative CT parameters with significant dif-
ferences were selected for the correlation analysis to 
evaluate the pulmonary function parameters, and the 
results are presented in Supplementary Table S1. Most 
of the quantitative CT parameters has significant cor-
relation with PFT results. MMEF %pred has significant 

Table 1  Demographics, lung functions and imaging parameters 
of patients

Data are expressed as number (percentage) or median ± standard deviation. * 
P < 0.05, ** P < 0.01, *** P < 0.001

Abbreviations: BMI body-mass index, FEV1 forced expiratory volume in 1 s, 
FVC forced vital capacity, MMEF maximal mid-expiratory flow, RV residual 
volume, TCL total lung capacity, EI emphysema index, LA luminal area, Pi10 
the square root of the wall area of a hypothetical airway with 10 mm internal 
perimeter, PRM parametric response mapping, PRMEmph emphysema by PRM, 
PRMfSAD functional small airway disease, PRMNormal normal lung parenchyma by 
PRM, %WA airway wall area percent, WT wall thickness

Parameters reduced MMEF 
group (n = 52)

normal MMEF 
group (n = 79)

P value

Age, years 61.7 ± 9.2 60.6 ± 11.4 0.547

Sex, male (%) 33(63.5%) 33(41.8%) 0.015*

Smoking status 0.081

  never-smoker (%) 27(51.9%) 55(69.6%)

  current-smoker (%) 22(42.3%) 19(24.1%)

  Former-smoker (%) 3(5.8%) 5(6.3%)

BMI 23.7 ± 3.1 24.5 ± 3.3 0.169

FEV1 (L) 2.2 ± 0.5 2.4 ± 0.6 0.164

FEV1 (% predicted) 92.2 ± 8.2 106.5 ± 14.4 < 0.001***

FVC (L) 2.7 ± 0.6 2.6 ± 0.6 0.411

FVC (% predicted) 89.2 ± 11.0 93.9 ± 14.7 0.053

FEV1/FVC 83.2 ± 7.5 91.3 ± 6.0 < 0.001***

MMEF (% predicted) 65.5 ± 11.7 110.3 ± 21.9 < 0.001***

RV (L) 2.6 ± 2.4 2.2 ± 0.5 0.130

TCL (L) 4.7 ± 0.9 4.7 ± 0.9 0.768

RV/TLC (%) 48.4 ± 6.3 47.0 ± 6.9 0.239

EI 5.7 ± 5.5 4.0 ± 4.1 0.051

PRM

  PRMfSAD 20.2 ± 17.4 9.4 ± 6.7 < 0.001***

  PRMEmph 3.4 ± 3.5 1.9 ± 2.0 0.006**

  PRMNormal 73.8 ± 19.7 85.3 ± 10.0 < 0.001***

Pi10 3.3 ± 0.6 3.1 ± 0.7 0.089

WT5 1.4 ± 0.3 1.3 ± 0.3 0.427

%WA5 61.0 ± 8.8 59.8 ± 9.6 0.468

LA5 12.2 ± 2.5 13.7 ± 3.4 0.008**

WT6 0.9 ± 0.3 0.8 ± 0.2 0.187

%WA6 55.3 ± 9.6 53.1 ± 10.3 0.239

LA6 6.9 ± 2.0 8.9 ± 2.8  < 0.001***
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correlation with small airway parameter (PRMfSAD), 
medium airway parameters (LA5, LA6), with stronger 
correlation with LA6 than other QCT parameters 
(r = 0.338, P < 0.001). FEV1%pred was significantly corre-
lated with the luminal area of the 6th generation bronchi 
only and not correlated with luminal area of the 5th gen-
eration bronchi.

Nomogram and calibration curve
Sex, smoking status, EI, PRM parameters, Pi10, LA5 
and LA6 were used as input variables for the multi-
variable regression analysis. Sex, PRMfSAD and LA6 
remained significantly different between the two groups 
after multivariable regression analysis, and other 
parameters showed no significance (all P > 0.05). Sub-
sequently, the three parameters were selected to estab-
lish the model (Table  2), and nomogram of the model 
shows in Fig.  3A. Calibration plots were used to visu-
alize the performance of the nomogram (Fig.  3B). To 
demonstrate the clinical advantages of the nomogram, 
we compared the receiver operating characteristic 
(ROC) curves of the single variables against the model 
(Fig.  4). It was revealed that the area under the curve 
(AUC) values of sex, PRMfSAD and LA6 were 0.608 (95% 
confidence interval (CI):0.519–0.693), 0.709 (95% CI: 

0.624–0.785) and 0.705 (95% CI: 0.619–0.782) respec-
tively, while the AUC value of nomogram was 0.836 
(95% CI: 0.762–0.895). DeLong’s test was used to com-
pare the difference in the ROC curves and showed that 
the nomogram performed better than sex, PRMfSAD 
and LA6 alone (all P < 0.05).

Discussion
In the present study, we investigated the CT image char-
acteristics of patients with decreased MMEF in a nor-
mal lung function population, analyzed the correlations 
between the quantitative CT parameters and lung func-
tion parameters, and developed a predictive model for 
predicting patients with reduced MMEF.

Table 2  Logistic regression analysis for prediction of patients 
with decreased MMEF

Abbreviations: CI Confidence Interval, OR Odds Ratio, LA6 luminal area 6th 
generation of bronchi, RPMfSAD, functional small airway disease, MMEF maximal 
mid-expiratory flow

Variables OR (95% CI) P value

Sex 2.777 (1.123, 3.867) 0.027

PRMfSAD 1.102 (1.045, 1.162)  < 0.001

LA6 0.650 (0.528, 0.799)  < 0.001

Fig. 3  Construction of the nomogram. Notes: 1 for female, 0 for male. a Nomogram predicting MMEF reduction; b Calibration curves for the 
nomogram. fSAD, functional small airway disease; L6, luminal area of 6th-genneration bronchi

Fig. 4  The ROC curves of the nomogram and the single variables. 
Notes: Combined was the model incorporating with sex, fSAD 
and LA6. fSAD, functional small airway disease; LA6, luminal area of 
6th-genneration bronchi
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A study found that patients with reduced MMEF had a 
greater proportion of males than normal subjects but it is 
not clear whether sex is a risk factor for MMEF reduction 
[9]. Stockly et al. [18] analyzed a cohort of α1-antitrypsin 
deficiency (AATD) non-smokers and found that most of 
the patients in whom MMEF decreased were females. 
The population of the present study differs from that of 
the Stockly et  al.’s study and includes both smokers and 
nonsmokers without AATD. In this study, there was a sig-
nificant difference in sex between reduced MMEF group 
and normal group and sex was found to be a predictor 
for distinguishing between the two groups. Additionally, 
no significant difference in EI was found between the 
reduced MMEF group and normal group, while differ-
ence in PRMEmph was found between the two groups. 
Both the emphysema parameters, EI and PRMEmph, 
which reflect pulmonary parenchyma destruction, were 
less than 6%, indicates that there was no emphysema in 
the reduced MMEF group, since the Fleischner Society 
guidelines define emphysema as present only when pix-
els less than -950HU at quantitative CT are more than 6% 
[24]. This result is in line with previous studies [18, 25]. 
Besides, Burgel [26] suggested the key factor leading to 
airflow limitation in early COPD is small airway disease 
rather than emphysema. However, changes in the small 
airways cannot be visualized with current CT capabili-
ties. Investigators have explored measuring air trapping 
to quantify small airway disease in CT, including meas-
urements of LAA-856exp (lung voxels with CT attenuation 
less than or equal to -856 HU measured on expiratory CT 
scan), E/I (ratio of mean lung attenuation on expiratory 
and inspiratory scans) and PRM [27–29]. However, E/I is 
not able to provide spatial information related to disease 
distribution and LAA-856exp do not discriminate between 
air trapping as a result from emphysema or air trapping 
as a result from small airway disease. PRM uses digitally 
co-registered inspiratory and expiratory CT scans to 
compare individual voxel lung attenuation changes allow-
ing differentiation of emphysematous from non-emphy-
sematous air trapping within the lung parenchyma [30]. 
This non-emphysematous air trapping could reflect the 
functional changes of small airways, so it is called "func-
tional small airway disease (PRMfSAD)". Vasilescu and col-
leagues [31] performed CT and micro-CT examinations 
of lung tissue and have confirmed the PRMfSAD correlated 
well with pathological small airway disease. Lu et al. [32] 
showed that among patient with abnormal lung function 
(FEV1predicted % < 80% or FEV1/FVC < 0.70), air trap-
ping on CT images in patients with reduced MMEF was 
more severe in than subjects without MMEF reduction, 
a result is similar to that of Arakawa and colleagues [33]. 
However, in the studies by Lu et  al. and Arakawa et  al., 
they all used air trapping as a proxy for small airway 

disease, which may exaggerate the extent of small airway 
disease in patients with decreased MMEF owing to the 
effects of emphysematous air trapping and overestimate 
the correlation between MMEF and small airways over-
estimate the correlation between MMEF and small air-
ways. In this paper, small airway disease was assessed by 
using PRMfSAD from dual gas phase CT image analysis, 
which may be more helpful in accurately evaluating the 
relationship between MMEF impairment and small air-
way disease. Additionally, the current study found that 
functional small airway disease, which is a prominent 
predictor of the model, was significantly higher in MMEF 
impairment group than in normal group. PRM param-
eters have been found to be strongly correlated with 
MMEF%pred, but PRMfSAD was more strongly associated 
with MMEF%pred than the other two PRM parameters. 
The result is similar to a smoker study from SPIROMICS 
cohort [34] in which an increase in PRMfSAD is signifi-
cantly associated with lower MMEF%pred even adjusted 
FEV1%pred and FVC%pred. Therefore, our analysis sup-
ports that patients with MMEF%pred reduction have no 
destruction to lung parenchyma but changes in small 
airways, and PRMfSAD also has a good differentiation for 
normal and reduced MMEF.

In addition, the medium-size airway measurement 
parameters also need to be noted. We found no evi-
dence for differences in airway wall thickness measure-
ments, including Pi10 and WT, between subjects with 
and without MMEF reduction. Nambu et  al. [35] con-
cluded that CT images of patients with reduced MMEF 
showed thicker airway walls, which is inconsistent with 
our results. However, their research included all COPD 
patients and not adjusted for the effects of airway remod-
eling due to other apparently abnormal spirometri-
cal parameters. Airway wall thickening could be due to 
airflow obstruction [36], whereas none of the patients 
enrolled in this study had evidence of respiratory airflow 
obstruction. Qin and colleagues [25] studies smokers and 
found there was no difference in percentage of the third-, 
fifth- and ninth-generation bronchial wall area between 
normal subjects and patients with MMEF reduction. 
Similarly, in the study, through the analysis of normal and 
decreased MMEF populations, we found no significant 
difference in fifth- and sixth-generation bronchial wall 
area percent between the two groups. Nevertheless, the 
CT scan lumen area in fifth- and sixth-generation air-
ways was significantly reduced in patients with reduced 
MMEF compared with health controls and reduced 
luminal area in fifth- and sixth-generation airway was 
associated with a reduced MMEF%pred. Previous study 
of asthmatics has also shown that the smaller airway 
lumen in patient with decreased MMEF%pred, which 
the researchers believe that may the mucus accumulation 
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reduce the airway luminal area [37], the but it needs to be 
further studied.

In the current study, we performed a quantitative 
analysis on patients with MMEF reduction, and found 
no lung parenchyma destruction but potential medium 
and small airway changes in these patients compared to 
subjects without decrease MMEF. Furthermore, a pre-
dictive model was developed based on sex, PRMfSAD and 
LA6 for predicting patients with MMEF impairment with 
AUC of 0.836. Besides, correlation analysis revealed a 
strong correlation between MMEF and airway-related 
CT parameters. MMEF impairment has been commonly 
reported to be associated with some respiratory cdisease, 
such as allergic rhinitis, asthma and bronchiolitis oblit-
erans [38–40], and other systemic disease associated with 
decreased MMEF has been rarely reported [41, 42]. This 
article only discusses the structural lung abnormalities 
associated with decreased MMEF, but does not explore 
whether other systemic abnormalities are also correlated 
with decreased MMEF, which will require further study 
in the future.

This study also has some limitations. First, parametric 
response mapping analysis needs dual-phase CT scan-
ning which increase the expose of radiation dose. Second, 
due to the limited resolution of CT, the wall thickness of 
airway with diameter less than 2  mm may be overesti-
mated and luminal area can be underestimated. However, 
an optical coherence tomography study revealed airways 
with diameter less than 2 mm located at the seventh (or 
higher) airway generation [43]. Therefore, resolution has 
little influence on the evaluation accuracy of direct air-
way parameters from 5th- and 6th-genneration bron-
chi in the current study. Third, the correlation between 
pulmonary function test results and CT parameters are 
not as strong as previous studies, possibly due to the rel-
atively small sample size. Last, the study is a cross-sec-
tional research about patients with MMEF reduction and 
it is unclear whether these patients will develop COPD 
later in life. Further studies will enroll more subjects and 
follow them longitudinally to observe if they will develop 
COPD.

Conclusions
In summary, our study shows that in normal lung func-
tion population, patients with reduced MMEF have 
potential medium-size and small airway changes, and 
MMEF is significantly associated with airway-related 
CT parameters. The nomogram incorporating with sex, 
PRMfSAD and LA6 can has good predictive value. The 
present study offers new insight into the pathologic 
changes captured by CT scan in a group with reduced 
MMEF and potentially assists clinicians to take early 
interventions in these patients.
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