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Abstract 

Background:  Obstructive sleep apnea (OSA), nocturnal hypoxemia and excessive daytime sleepiness (EDS) are com‑
mon comorbidities in people with cystic fibrosis (pwCF). Most of the data showing this originates from children and 
adolescents. The aim of this study was to collect data on sleep parameters, EDS and pulmonary function from a large 
cohort of adult pwCF.

Methods:  Full overnight polysomnography (PSG) was performed. EDS was determined using the Epworth Sleepiness 
Scale (ESS). Demographic and clinical data (body mass index [BMI], pulmonary function, capillary blood gases) were 
collected.

Results:  A total of 52 adult pwCF were included (mean age 30.7 ± 8.0 years, mean percent predicted forced expira‑
tory volume in 1 s [ppFEV1] of 52.1 ± 14.8). Overall AHI was in the normal range (4.5 ± 4.0/h); 21/52 pwCF (40%) had 
an apnea-hypopnea index > 5/h. Nocturnal hypoxemia was found in 25% of participants and this was associated with 
ppFEV1 (p = 0.014), awake oxygen saturation (SpO2; p = 0.021) and awake partial pressure of oxygen (pO2; p = 0.003); 
there were no significant differences in age, lung function and BMI were found for pwCF with versus without OSA (all 
p > 0.05). Eight pwCF (15%) had an ESS score > 10 (indicating EDS). OSA was best predicted by awake pO2 (area under 
the curve [AUC] 0.66, p = 0.048), while nocturnal hypoxemia was best predicted by ppFEV1 (AUC 0.74, p = 0.009), 
awake pO2 (AUC 0.76, p = 0.006) and awake SpO2 (AUC 0.71; p = 0.025).

Conclusion:  OSA, nocturnal hypoxemia and EDS were common in adult pwCF, but no strong predictors were identi‑
fied. Therefore, we suggest regular PSG and ESS scoring in adult pwCF, regardless of disease severity.
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Background
Cystic fibrosis (CF), an autosomal recessive mono-
genetic disorder, is caused by mutations in the CF 
transmembrane conductance regulator (CFTR) gene 
on chromosome 7 [1]. This results in disturbed anion 

transport (Cl− and HCO3
−) through epithelial cell 

membranes and therefore to the formation of highly 
viscous secretions in all exocrine organs. The organs 
that are primarily affected are the lungs and the gas-
tro-intestinal tract, leading to progressive lung dam-
age and malnutrition [2]. Mortality and morbidity are 
mainly caused by lung involvement with progressive 
obstructive lung disease, hyperinflation, impaired gas 
exchange and end-stage respiratory failure [3]. Due to 
advances in the treatment of people with cystic fibrosis 
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(pwCF), life expectancy has increased to more than 
50 years of age and the number of adults with CF now 
exceeds the number of children with the disease [4].

As with other chronic obstructive lung diseases, such 
as chronic obstructive pulmonary disease (COPD) and 
asthma [5, 6], pwCF of all ages may also have sleep-
disordered breathing (SDB), mainly obstructive sleep 
apnea (OSA) and nocturnal hypoxemia [7–9]. The gold 
standard technique for diagnosing SDB is overnight, 
in-laboratory polysomnography (PSG), as recom-
mended by the American Academy of Sleep Medi-
cine (AASM) [10]. An apnea-hypopnea index (AHI) 
of ≥ 5/h is required for diagnosis of OSA. The preva-
lence of OSA in the general population is up to 38%, 
with (overweight) males and elderly people most likely 
to be affected [11]. The reported prevalence of OSA in 
pwCF varies widely, being as high as 70% in children 
[12] and up to 3.9% in adults [13].

Nocturnal hypoxemia is also a common finding 
in pwCF [14–16]. Sleep studies in pwCF of all ages 
showed a direct correlation between the presence of 
nocturnal hypoxemia and lung disease severity [13, 
15, 17]. In addition, nocturnal hypoxemia may be pre-
sent even in children with mild lung disease [12]. Fur-
thermore, hypoventilation with hypercapnia requiring 
non-invasive ventilation is common in individuals with 
advanced CF [18, 19].

Poor subjective and objective sleep quality is a well-
known comorbidity in pwCF across all age groups [20–
22]. In addition to disease-specific causes of disturbed 
sleep, such as coughing or nocturnal PEG feeding, 
SDB is also likely to play an important role. Impaired 
sleep and SDB may have a variety of consequences in 
pwCF, including reduced health-related quality of life 
(HRQoL) [20, 23], increased daytime sleepiness [20, 
24], reduced neurocognitive function [24], develop-
ment of pulmonary hypertension [25], or reduced 
physical activity [26]. Despite the knowledge that SDB 
is a common comorbidity in pwCF and its negative 
impact on different aspects of the disease, most CF 
centers do not screen routinely for SDB [27]. Recent 
reviews highlighted the significant impact of SDB for 
pwCF. Further research with larger sample sizes was 
requested to better define SDB in pwCF and to avoid 
nonattention of this relevant comorbitiy.

The aims of this study were to determine the pres-
ence of OSA and nocturnal hypoxemia in a large 
cohort of adult pwCF, to assess the clinical characteris-
tics of pwCF with and without OSA, nocturnal hypox-
emia and excessive daytime sleepiness (EDS), and to 
evaluate possible clinical parameters for predicting 
OSA and nocturnal hypoxemia in pwCF.

Methods
Study design
This prospective, observational, and descriptive-analyt-
ical study included adult pwCF from the Adult Cystic 
Fibrosis Unit of the Ruhrlandklinik Essen, Germany, who 
were recruited between September and December 2020. 
The study was approved by the local ethics committee of 
the University Hospital Essen (19-8961-BO) and followed 
the Declaration of Helsinki Ethical Principles for Medical 
Research Involving Human Subjects. All pwCF provided 
written informed consent for participation in the study.

Participants
All participants were ≥ 18 years of age and had a diagno-
sis of CF based on the presence of two defining mutations 
in the CFTR gene. All participants were clinically stable 
without signs of respiratory exacerbation, on stable med-
ication and had a stable percent predicted forced expira-
tory volume in 1  s (ppFEV1) for a minimum of 4 weeks 
prior to the study assessments.

Polysomnography and Epworth Sleepiness Scale (ESS)
In-lab PSG was performed using a digital polygraph (Nox 
Medical, Iceland). Two electroencephalograms (EEG), 
two electrooculograms (EOG), submental and tibialis 
electromyogram (EMG), rib cage and abdominal induct-
ance pneumograms, pulse oximeter (Nonin, Minnesota, 
USA), nasal cannula (measurement of flow at a sample 
frequency of 20  Hz), and body position were recorded. 
Using the AASM standard [28], an apnea was defined as 
a flow cessation for ≥ 10 s, and a hypopnea was defined as 
a ≥ 50% reduction in flow amplitude or a ≥ 30% decrease 
in flow amplitude accompanied by a > 3% reduction in 
oxygen saturation lasting ≥ 10 s. Relevant oxygen desatu-
ration during sleep was defined as an oxygen saturation 
(SpO2) of < 90% for ≥ 5% of total sleep time (TST) with a 
nadir of at least 85%, as described elsewhere [16].

All signals were recorded automatically and subse-
quently analyzed blinded by the same German Sleep 
Society (DGSM) trained investigator (SDT) to prevent 
inter-rater variability. The AHI was defined as the num-
ber of apneas and hypopneas per hour of sleep. Depend-
ing on whether they occurred in rapid eye movement 
(REM) or non-REM (NREM) sleep phases, AHI was fur-
ther classified as AHI REM or AHI NREM.

After diagnostic PSG, participants were asked to 
answer the ESS questionnaire, a self-report instrument 
that addresses the possibility of falling asleep in daily life. 
The score consists of 8 items (0–3 points each) ranging 
from 0 to 24. A score of > 10 indicates daytime sleepiness 
[29].
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Pulmonary function testing (PFT) and body mass index
Calculation of the body mass index (BMI) and pulmo-
nary function testing (PFT) were performed on the day 
of, or one day after, the diagnostic sleep study. Forced 
vital capacity (FVC), forced expiratory volume in 1  s 
(FEV1) and residual volume (RV) were measured with a 
JAEGER MasterScreen Body (CareFusion, Hoechberg, 
Germany) according to ATS guidelines [30]. Global 
Lung Function Initiative reference values were used 
[31]. Arterialized ear lobe blood gas samplings were 
used to assess pH, partial pressure of oxygen (pO2), 
partial pressure of carbon dioxide (pCO2), base excess 
(BE), and bicarbonate (HCO3

-). This analysis was per-
formed before PFT.

Statistical analysis
Statistical analysis was performed using the SPSS sta-
tistics package version 27 (SPSS Inc., Chicago, USA). 
Data are presented as mean ± standard deviation. The 
Shapiro-Wilk test was used to evaluate the data for 
normal distribution. Student’s t-test or Mann-Whitney 
U-test were used to assess between-group differences, 
as appropriate. A p-value of < 0.05 was considered sta-
tistically significant.

Receiver operator characteristics (ROC) analysis was 
performed to identify predictors of OSA and nocturnal 
hypoxemia using ppFEV1, BMI, awake SpO2 and pO2, 
ESS score and age as variables. GraphPad Prism version 
9.3 (GraphPad Software, San Diego, USA) was used 
for plotting ROC curves and ROC analysis, including 
determination of the area under the ROC curve (AUC), 
specificity and sensitivity for the single variables.

Results
Study population
A total of 64 pwCF were recruited, all of whom under-
went full PSG. Twelve patients were excluded from 
statistical analysis due to having a TST < 180  min or 
an insufficient sleep data quality or missing PFT data. 
The remaining 52 pwCF were included in the analysis 
(Table  1). Two patients used nocturnal oxygen sup-
plementation, which was paused during the diagnostic 
night. No patient was using nocturnal continuous or 
bilevel positive airway pressure (CPAP/BiPAP) therapy.

Mean age of the study population was 30.7 ± 8.0 
years with a mean ppFEV1 of 52.1 ± 14.8 (Table 1). BMI 
ranged from 15.6 to 31.2  kg/m2 (mean 21.5 ± 3.3) and 
15% of patients had a BMI > 25 kg/m2 (Table 1). The ESS 
score was 6.7 ± 3.8 overall, and 15% of patients had an 
ESS score of > 10 (Table 1).

Respiratory events and nocturnal gas exchange
Overall, the AHI was in the normal range (4.5 ± 4.0 
events/h), and was higher during REM sleep (Table 2). 
Awake capillary blood gas analysis revealed normal val-
ues. Mean and minimum nocturnal SpO2 values were 
92.1 ± 2.2% and 87.0 ± 3.8% respectively (Table  2). 
Thirteen patients (25%) had significant nocturnal 
hypoxemia (SpO2 < 90% for more than 5% of TST and 
a nadir of at least 85%), and mean sleep time spent 
with SpO2 < 90% was 41.3  min (maximum 321.3  min) 
(Table 2).

Sleep structure
Adult pwCF showed decreased sleep effi-
ciency 74.9 ± 10.2%) and increased sleep latency 
(69.6 ± 37.4  min) (Table  2). Sleep architecture was in 
the normal range for time spent in N1-3 and REM sleep 
(Table 2).

Profiles of pwCF with and without OSA
Twenty-one of 52 pwCF (40%) fulfilled polysomno-
graphic criteria for OSA (AHI > 5/h). There were no sig-
nificant differences between pwCF with and without 
OSA with respect to age, lung function, BMI, ESS score, 

Table 1  Patient clinical and demographic characteristics

Data are mean ± standard deviation (range) or number of patients (%)

CFTR, cystic fibrosis transmembrane conductance regulator; FEV1, forced 
expiratory volume in 1 s; FVC, forced vital capacity

Characteristics Patients (n = 52)

Age, years 30.7 ± 8.0 (20–49)

Female, n (%) 18 (35)

Genotype, n (%)

F508del homozygous 38 (73)

F508del heterozygous 14 (27)

CFTR modulator therapy, n (%)

None 16 (31)

Tezacaftor/ivacaftor 33 (63)

Lumacaftor/ivacaftor 3 (6)

Body mass index, kg/m2 21.5 ± 3.3 (15.6–31.2)

FEV1, L 2.1 ± 0.8 (1.0-4.8)

FEV1, % predicted 52.1 ± 14.8 (30.0–96.0)

FVC, L 3.4 ± 1.1 (1.5–6.2)

FVC, % predicted 69.5 ± 16.2 (37.0-105.0)

Residual volume, L 3.0 ± 0.9 (1.1–5.6)

Residual volume, % predicted 179.9 ± 41.9 (99.0-283.0)

Pancreatic insufficiency, n (%) 51 (98)

Pseudomonas aeruginosa positive, n (%) 28 (54)

Cystic fibrosis-related diabetes, n (%) 12 (23)

Oxygen supplementation, n (%) 2 (4)
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sleep architecture and sleep quality (Table 3). Those with 
versus without OSA had significantly lower nocturnal 
oxygen levels (Table  3). Respiratory rates did not differ 
between the two groups, whereas pwCF with OSA had 
a slightly higher nocturnal heart rate than those without 
OSA (p < 0.049) (Table 3). Only two of the 21 pwCF with 
OSA has an ESS score > 10 (Table 3).

Profiles of pwCF with and without nocturnal hypoxemia
Thirteen (25%) pwCF had relevant nocturnal hypoxemia 
with SpO2 < 90% for ≥ 5% of TST with a nadir of at least 
85%. Those with versus without nocturnal hypoxemia 
had significantly lower ppFEV1, ppFVC and markers of 

awake oxygenation, and significantly higher AHI, AHI 
REM and AHI NREM (Table  4). There were no signifi-
cant differences between patient groups in RV, age, BMI, 
ESS score, nocturnal respiratory and heart rates, awake 
pCO2, and sleep quality and architecture (Table 4). Only 
one of the thirteen patients with nocturnal hypoxemia 
had an ESS score > 10 (Table 4).

Profiles of pwCF with and without daytime 
sleepiness
The proportion of adult pwCF with an ESS score > 10, 
indicating EDS, was 15% (Table  5). The only significant 
difference between pwCF with and without EDS was for 
BMI (p = 0.040) (Table 5).

Prediction of OSA and sleep hypoxemia
ROC curves and ROC analysis (see Table  6) were per-
formed to compare the accuracy of ppFEV1, age, BMI, 
ESS score, awake pO2 and SpO2 to predict OSA (see 
Fig. 1) or nocturnal hypoxemia (see Fig. 2).

The only significant predictor of OSA was awake pO2 
(AUC 0.66, p = 0.048) (Fig.  1; Table 6). The best predic-
tors of nocturnal hypoxemia in this population were 
pFEV1, awake pO2 and SpO2 (Fig.  2; Table  6). BMI, age 
and ESS score were not good predictors of nocturnal 
hypoxemia (Fig. 2; Table 6).

The pO2 cut-off value with the greatest ROC for pre-
dicting AHI was < 78.5 mmHg with a sensitivity of 67% 
and specificity of 71%. For predicting nocturnal hypox-
emia, cut-off values were < 49.5 for ppFEV1 (sensitivity 
76.9%, specificity 66.7%), < 78.5 mmHg for awake pO2 
(sensitivity 76.9%, specificity 66.7%), and < 95.5% for 
awake SpO2 (sensitivity 61.5%, specificity 79.5%).

Discussion
To the best of our knowledge, this is one of the largest 
sleep studies evaluating adult pwCF. The main finding 
of our study is a high prevalence of OSA and nocturnal 
hypoxemia in this population, and that ability of clini-
cal markers to predict OSA is very limited, whereas the 
incidence of nocturnal hypoxemia is dependent on lung 
function parameters and awake oxygenation markers 
(SpO2 and pO2). EDS with an ESS score > 10 was also a 
common finding, SDB did not significantly influence the 
occurrence of EDS.

Although the AHI of the entire population in this study 
was normal, consistent with existing literature [13, 21, 
24, 32], there was a high prevalence of OSA (AHI ≥ 5/h). 
Comparing our data with the available literature is chal-
lenging, because study designs and patient selection are 
heterogenous with respect to age, lung function, BMI 
and sample size, and PSG studies examining an exclu-
sively adult CF population are rare [7, 33]. Published data 

Table 2  Polysomnographic data

Values are mean ± standard deviation (range) or number of patients (%)

AHI, apnea-hypopnea index; ESS, Epworth Sleepiness Scale; HCO3
−, bicarbonate; 

NREM, non-rapid eye movement sleep; ODI, oxygen desaturation index; pCO2, 
partial pressure of carbon dioxide pressure; pO2, partial pressure of oxygen; REM, 
rapid eye movement sleep; SpO2, oxygen saturation; TST, total sleep time; WASO, 
wake after sleep onset

Patients (n = 52)

AHI, events/h 4.5 ± 4.0 (0-15.5)

AHI > 5 events/h, n (%) 21 (40)

AHI REM, events/h 10.2 ± 10.2 (0-38.5)

AHI NREM, events/h 3.1 ± 3.4 (0-17.3)

Arousal index, events/h 18.8 ± 10.2 (0.5–46.4)

ESS score 6.7 ± 3.8 (0–22)

ESS score > 10, n (%) 8 (15)

TST, min 298.1 ± 43.8 (180–400)

Sleep efficiency, % 74.9 ± 10.2 (48.6–93.9)

Sleep latency, min 69.6 ± 37.4 (8.8-151.2)

WASO, min 33.3 ± 27.7 (0.5-145.5)

Sleep stages, % TST

N1 3.1 ± 1.8 (0.5-9.0)

N2 51.0 ± 7.9 (31.3–68.7)

N3 25.5 ± 8.9 (11.1–49.8)

REM 17.7 ± 6.6 (5.2–34.3)

ODI, events/h 4.2 ± 3.8 (0-15.5)

ODI REM, events/h 11.2 ± 13.8 (0–80.0)

ODI NREM, events/h 2.9 ± 3.1 (0-15.7)

Nocturnal mean SpO2, % 92.1 ± 2.2 (84–96)

Nocturnal minimum SpO2, % 87.0 ± 3.8 (77–92)

SpO2 < 90%, % TST 13.4 ± 27.3 (0.0-99.9)

SpO2 < 90%, min 41.3 ± 85.5 (0.0-321.3)

Nocturnal respiratory rate, breaths/min 21.4 ± 3.9 (15.0-31.2)

Nocturnal heart rate, beats/min 67.9 ± 12.5 (49.9-102.3)

Awake SpO2, % 95.8 ± 1.7 (91.0–98.0)

Awake pO2, mmHg 78.6 ± 9.4 (57.0–97.0)

Awake pCO2, mmHg 38.9 ± 2.9 (33.0–45.0)

Awake pH 7.4 ± 0.3 (7.29–7.50)

Awake HCO3
−, mmol/L 24.9 ± 2.0 (19.1–30.5)
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regarding the prevalence of OSA in adult pwCF report a 
prevalence of 3.2–3.9% [13, 32], substantially lower than 
the 40% in our study. However, our data are more in line 
with adult patients with non-CF-bronchiectasis, which 
showed a similarly high prevalence of OSA [34, 35]. Due 
to the diversity of studies and patient characteristics, 

it must be assumed that the prevalence of OSA is often 
underestimated, and further studies are needed to con-
firm our findings. This assumption is supported by the 
fact that the CF population is aging due to improved 
treatment options and obesity is an increasing problem 
[4, 36].

Table 3  Comparison of clinical characteristics and polysomnographic data in people with cystic fibrosis with and without obstructive 
sleep apnea

Values are mean ± standard deviation

AHI, apnea-hypopnea index; ESS, Epworth Sleepiness Scale; BMI, body mass index; HCO3
−, bicarbonate; NREM, non-rapid eye movement sleep; pCO2, partial pressure 

of carbon dioxide pressure; pO2, partial pressure of oxygen; ppFEV1, percent predicted forced expiratory volume in 1 s; ppFVC, percent predicted forced vital capacity; 
ODI, oxygen desaturation index; OSA, obstructive sleep apnea; REM, rapid eye movement sleep; RV, residual volume; SpO2, oxygen saturation; TST, total sleep time; 
WASO, wake after sleep onset

Bold values denote statistical significance at the p < 0.05 level

OSA (n = 21) No OSA (n = 31) p value

Age, years 32.6 ± 9.6 29.4 ± 6.5 0.318

AHI, events/h 8.6 ± 3.4 1.9 ± 1.3 0.000
AHI REM, events/h 18.3 ± 11.2 5.2 ± 4.7 0.000
AHI NREM, events/h 6.0 ± 3.8 1.2 ± 1.0 0.000
ODI, events/h 8.4 ± 3.6 1.9 ± 1.1 0.000
ODI REM, events/h 25.5 ± 30.1 5.5 ± 4.8 0.000
ODI NREM, events/h 5.8 ± 4.0 1.2 ± 0.9 0.000
Arousal index, events/h 22.4 ± 9.8 16.4 ± 10.1 0.039
ESS score 6.8 ± 4.3 6.7 ± 3.6 0.888

TST, min 302.5 ± 35.5 298.5 ± 48.4 0.621

Sleep efficiency, % 76.3 ± 9.3 74.5 ± 10.9 0.539

Sleep latency, min 61.5 ± 32.9 72.7 ± 39.5 0.520

WASO, min 34.2 ± 17.9 33.6 ± 33.4 0.176

Sleep stages, % TST

N1 3.0 ± 1.9 3.1 ± 1.7 0.608

 N2 49.4 ± 6.2 51.9 ± 8.7 0.261

 N3 25.2 ± 7.4 25.1 ± 9.8 0.668

REM 19.8 ± 5.4 17.1 ± 6.9 0.134

Nocturnal mean SpO2, % 91.0 ± 2.8 92.8 ± 1.5 0.025
Nocturnal minimum SpO2, % 83.8 ± 3.6 89.1 ± 2.1 0.000
spO2 < 90%, % TST 30.6 ± 36.7 1.7 ± 4.4 0.000
spO2 < 90%, min 94.9 ± 115.6 5.0 ± 11.8 0.000
Nocturnal respiratory rate, breaths/min 21.0 ± 4.3 21.6 ± 3.8 0.613

Nocturnal heart rate, beats/min 71.8 ± 12.9 64.4 ± 10.2 0.049
BMI, kg/m2 21.9 ± 3.7 21.2 ± 3.0 0.737

FEV1, L 2.0 ± 0.8 2.1 ± 0.8 0.608

FEV1, % predicted 49.1 ± 14.8 54.2 ± 14.7 0.233

FVC, L 3.3 ± 1.1 3.4 ± 1.0 0.920

FVC, % predicted 66.4 ± 17.9 71.7 ± 14.9 0.252

RV, L 3.2 ± 0.9 2.9 ± 0.8 0.303

RV, % predicted 179.9 ± 37.7 180.0 ± 45.1 0.996

Awake SpO2, % 95.4 ± 1.8 96.0 ± 1.5 0.136

Awake pO2, mmHg 75.7 ± 8.9 80.9 ± 8.4 0.048
Awake pCO2, mmHg 39.5 ± 2.7 38.5 ± 2.8 0.256

Awake pH 7.42 ± 0.02 7.40 ± 0.03 0.023
Awake HCO3

−, mmol/L 25.6 ± 1.6 24.1 ± 1.7 0.003
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Outside the field of CF, the co-existence of OSA and 
chronic obstructive airflow limitation (OSA-COPD over-
lap syndrome) has received increasing attention in recent 
years. The prevalence of OSA-COPD overlap is 10–65%, 
depending on study design and patient selection [6]. 
There is growing evidence that patients with OSA-COPD 
overlap experience more pulmonary exacerbations and 
have a higher mortality than patients with COPD alone 

[37, 38]. In addition, patients with OSA-COPD and con-
comitant bronchiectasis had higher AHI and lower noc-
turnal oxygen levels than patients with OSA or COPD 
alone [39]. Comparable data do not exist for pwCF. 
Whether this knowledge can be transferred to pwCF 
should be investigated in further longitudinal studies.

Another poorly discussed question regarding OSA in 
adult pwCF is the role of the upper airways. CF results 

Table 4  Comparison of clinical characteristics and polysomnographic data in people with cystic fibrosis with and without nocturnal 
hypoxemia

Values are mean ± standard deviation

AHI, apnea-hypopnea index; ESS, Epworth Sleepiness Scale; BMI, body mass index; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; HCO3
−, 

bicarbonate; NREM, non-rapid eye movement sleep; ODI, oxygen desaturation index; pCO2, partial pressure of carbon dioxide pressure; pO2, partial pressure of 
oxygen; RDI, respiratory disturbance index; REM, rapid eye movement sleep; RV, residual volume; SpO2, oxygen saturation; TST, total sleep time; WASO, wake after 
sleep onset

Bold values denote statistical significance at the p < 0.05 level

Hypoxemia (n = 13) No hypoxemia (n = 39) p value

Age, years 34.4 ± 10.2 29.4 ± 6.8 0.120

AHI, events/h 8.8 ± 3.8 3.2 ± 3.1 0.000
AHI REM, events/h 20.3 ± 11.8 7.2 ± 7.3 0.001
AHI NREM, events/h 5.8 ± 4.3 2.3 ± 2.6 0.000
ODI, events/h 9.0 ± 4.0 3.1 ± 2.9 0.000
ODI REM, events/h 21.5 ± 10.6 7.4 ± 7.3 0.000
ODI NREM, events/h 6.1 ± 4.8 2.1 ± 2.4 0.000
Arousal index, events/h 20.9 ± 9.8 18.1 ± 10.5 0.409

ESS score 5.9 ± 3.0 6.8 ± 4.1 0.400

TST, min 308.3 ± 21.5 297.3 ± 48.4 0.575

Sleep efficiency, % 78.0 ± 7.6 74.4 ± 10.9 0.279

Sleep latency, min 59.9 ± 27.2 70.9 ± 39.7 0.634

WASO, min 36.8 ± 17.0 32.8 ± 30.9 0.139

Sleep stages, % TST

 N1 3.1 ± 1.9 3.1 ± 1.7 0.916

 N2 48.2 ± 5.3 51.7 ± 8.4 0.159

 N3 26.9 ± 6.3 24.6 ± 9.5 0.148

REM 19.1 ± 5.7 17.9 ± 6.7 0.565

Nocturnal mean SpO2, % 89.6 ± 2.6 92.9 ± 1.5 0.000
Nocturnal minimum SpO2, % 81.4 ± 2.2 88.8 ± 2.0 0.000
Nocturnal respiratory rate, breaths/min 22.7 ± 4.6 20.1 ± 3.7 0.172

Nocturnal heart rate, beats/min 72.9 ± 13.0 65.5 ± 11.0 0.064

BMI, kg/m2 21.8 ± 3.9 21.4 ± 3.1 0.983

FEV1, L 1.7 ± 0.6 2.2 ± 0.8 0.014
FEV1, % predicted 43.5 ± 13.0 55.0 ± 14.4 0.014
FVC, L 2.9 ± 0.1 3.5 ± 1.0 0.046
FVC, % predicted 60.8 ± 16.1 72.5 ± 15.2 0.023
RV, L 3.4 ± 1.0 2.9 ± 0.8 0.068

RV, % predicted 196.9 ± 43.2 174.3 ± 40.5 0.092

Awake SpO2, % 95.0 ± 1.8 96.1 ± 1.6 0.021
Awake pO2, mmHg 72.5 ± 8.4 80.8 ± 8.2 0.003
Awake pCO2, mmHg 40.2 ± 2.5 38.4 ± 2.7 0.051

Awake pH 7.42 ± 0.02 7.41 ± 0.03 0.175

Awake HCO3
−, mmol/L 25.7 ± 1.7 24.4 ± 1.7 0.017



Page 7 of 12Welsner et al. BMC Pulmonary Medicine          (2022) 22:446 	

in impaired mucociliary clearance in the upper respira-
tory tract as well as the lungs, which may lead to the 
development of chronic rhinosinusitis (CRS) [40]. CRS 
may narrow the upper airways and impair breathing 
through the nose especially during sleep. Combining 
questionnaires and standard otolaryngology examina-
tion, alterations of the upper airways in children and 

adolescents with CF due to nasal polyposis and chronic 
infection are related to the development of OSA syn-
drome [41]. However, radiologic staging of upper air-
way patency is poorly standardized. In a study by 
Veronezi et  al. [37], the Lund-Mackay score was used 
to assess upper airways in adolescents and young adults 
with CF. In their analysis, there was no association 

Table 5  Comparison of clinical characteristics and polysomnographic data in people with cystic fibrosis with or without daytime 
sleepiness (Epworth Sleepiness Scale score > 10 versus ≤ 10)

Values are mean ± standard deviation

AHI, apnea-hypopnea index; ESS, Epworth Sleepiness Scale; BMI, body mass index; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; HCO3
−, 

bicarbonate; NREM, non-rapid eye movement sleep; ODI, oxygen desaturation index; pCO2, partial pressure of carbon dioxide pressure; pO2, partial pressure of 
oxygen; RDI, respiratory disturbance index; REM, rapid eye movement sleep; RV, residual volume; SpO2, oxygen saturation; TST, total sleep time; WASO, wake after 
sleep onset

Bold values denote statistical significance at the p < 0.05 level

ESS score ≥ 10 (n = 8) ESS score < 10 (n = 44) p value

Age, years 28.9 ± 4.8 31.0 ± 8.4 0.718

AHI, events/h 4.1 ± 3.2 4.7 ± 4.2 0.833

AHI REM, events/h 7.7 ± 5.4 11.0 ± 10.9 0.970

AHI NREM, events/h 3.2 ± 3.5 3.2 ± 3.5 0.872

ODI, events/h 3.7 ± 2.7 4.7 ± 4.2 0.891

ODI REM, events/h 7.6 ± 5.4 14.4 ± 23.7 0.694

ODI NREM, events/h 2.7 ± 2.8 3.1 ± 3.6 0.911

Arousal index, events/h 22.4 ± 8.2 18.1 ± 10.6 0.292

TST, min 313.4 ± 29.0 297.7 ± 45.3 0.276

Sleep efficiency, % 79.2 ± 8.4 74.6 ± 10.4 0.245

Sleep latency, min 51.3 ± 20.7 71.2 ± 38.7 0.155

WASO, min 30.8 ± 21.5 34.4 ± 29.2 0.813

Sleep stages, % TST

 N1 2.8 ± 0.9 3.1 ± 1.9 0.970

 N2 54.4 ± 5.4 50.2 ± 8.1 0.167

 N3 21.9 ± 4.6 25.8 ± 9.3 0.375

REM 18.6 ± 5.6 18.1 ± 6.6 0.833

Nocturnal mean SpO2, % 92.4 ± 1.9 92.0 ± 2.4 0.718

Nocturnal minimum SpO2, % 88.4 ± 3.0 86.7 ± 3.9 0.187

SpO2 < 90%, % TST 7.9 ± 21.0 14.4 ± 28.3 0.133

SpO2 < 90, min 23.0 ± 60.2 44.6 ± 89.5 0.097

Nocturnal respiratory rate, breaths/min 20.5 ± 3.2 21.6 ± 4.1 0.478

Nocturnal heart rate, beats/min 60.9 ± 7.0 68.5 ± 12.2 0.108

BMI, kg/m2 23.4 ± 2.6 21.1 ± 3.1 0.040
FEV1, L 2.1 ± 0.8 2.1 ± 0.8 0.990

FEV1, % predicted 52.0 ± 15.3 52.2 ± 14.9 0.978

FVC, L 3.4 ± 1.2 3.4 ± 1.0 0.897

FVC, % predicted 70.9 ± 18.8 69.3 ± 15.9 0.803

RV, L 2.7 ± 0.6 3.1 ± 0.9 0.329

RV, % predicted 172.8 ± 40.5 181.3 ± 42.5 0.603

Awake SpO2, % 96.4 ± 1.1 95.7 ± 1.7 0.276

Awake pO2, mmHg 78.0 ± 6.1 78.9 ± 9.4 0.789

Awake pCO2, mmHg 38.4 ± 2.9 29.0 ± 2.8 0.591

Awake pH 7.4 ± 0.02 7.4 ± 0.03 0.335

Awake HCO3
−, mmol/L 25.1 ± 1.3 24.6 ± 1.9 0.543
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between the involvement of upper airways and AHI. 
Corresponding data for adult pwCF are lacking. The 
presence of CRS seems does not affect the AHI [42], 
but patients with CRS objectively report poor sleep 
quality [43]. Prevalence data on the co-occurrence of 
CRS and OSA in non-CF patients vary widely, between 
15% and 64.7% [44, 45].

Our ROC analysis showed that classical clinical mark-
ers such as ppFEV1, BMI, age, and awake pO2 and SpO2 
were poor predictors of the AHI. This is another area 
where data in adult pwCF are rare. In a significantly 
younger and less affected CF patient group, Veronezi 
et al. showed that nutritional status, awake SpO2 and day-
time sleepiness were closely associated with the presence 
of OSA [46]. We were not able to confirm these findings 

in our analysis because we found only a weak association 
between awake pO2 and the presence of OSA. All other 
factors, including ESS score, BMI, ppFEV1 and awake 
SpO2 were not significantly associated with the presence 
of OSA in adult pwCF in the ROC analysis.

Nocturnal hypoxia is a common finding in pwCF. As 
with in other sleep studies in pwCF [16, 17, 47, 48], our 
work also showed a correlation between the severity 
of lung involvement in CF and the occurrence of noc-
turnal hypoxia. Detection and correction of nocturnal 
hypoxia can have a major impact on disease progression 
and the person’s well-being. Chronic nocturnal hypoxia 
can cause of sleep disturbance, impaired glucose regula-
tion, decreased quality of life, development of pulmonary 
hypertension, impaired neurocognitive function, and 
daytime sleepiness [24, 49, 50]. Therefore, early detection 
of nocturnal hypoxemia is important. Our data support 
the findings by others that l awake oxygenation (SpO2 and 
pO2) seem to be the most important clinical predictors of 
nocturnal hypoxemia in adult pwCF, whereas ppFEV1 has 
been shown to be a good predictor of nocturnal hypox-
emia in children with CF [13, 15, 48, 51].

Most current data regarding sleep quality and sleep 
architecture in pwCF come from studies in children and 
adolescents. Consistent with existing literature in adult 
pwCF [22, 24, 52, 53], we confirmed that these patients 
have reduced sleep quality (total sleep time, sleep effi-
ciency) and increased sleep latency and wake after 
sleep onset. There are multiple potential contributors to 
impaired subjective and objective sleep in pwCF, includ-
ing nocturnal coughing, pain, chronic rhinosinusitis, CF-
related diabetes, and PEG-feeding [54]. However, sleep 
architecture (N1, N2, N3 and REM stages) was preserved 
despite reduced sleep quality. These findings are consist-
ent with data from other studies in children and adult 
pwCF [13, 19, 23, 53].

Although EDS is one of the main symptoms of OSA, 
the relationship between AHI and EDS in individuals 
without CF is inconsistent [55]. This is in line with our 
findings showing that the overall ESS score was in the 
normal range even though the prevalence of OSA and 
nocturnal hypoxia was high. In a study by Bouka et  al., 
clinically stable adult pwCF showed elevated ESS scores 
compared with healthy individuals, indicating a higher 
level of daytime sleepiness [20]. In their study, nearly 20% 
of the examined adult pwCF had an ESS score of > 10, 
similar to the 15% in our study. In addition, both our 
study and the one by Bouka et al. reported that the over-
all ESS score was in the normal range.

In our study, there were no differences between 
patients with high vs. low ESS scores in terms of SDB, 
sleep architecture, sleep quality or respiratory mark-
ers. This suggests that there must be other factors that 

Fig. 1  Receiver operating characteristic (ROC) curves for prediction 
of obstructive sleep apnea using percent predicted forced expiratory 
volume in 1 s (ppFEV1), body mass index (BMI), age, awake oxygen 
saturation (SpO2), awake partial pressure of oxygen (pO2) and 
Epworth Sleepiness Scale (ESS) score

Fig. 2  Receiver operating characteristic (ROC) curves for prediction 
of nocturnal hypoxemia using percent predicted forced expiratory 
volume in 1 s (ppFEV1), body mass index (BMI), age, awake oxygen 
saturation (SpO2), awake partial pressure of oxygen (pO2) and 
Epworth Sleepiness Scale (ESS) score
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influence daytime sleepiness besides sleep and respira-
tory markers. Depression and anxiety are well known 
comorbidities in pwCF [56], and these can impact on 
sleep quality [24, 54]. We can only speculate that there is 
an association between daytime sleepiness and depres-
sion/anxiety in pwCF. However, data from individuals 
without CF show that the presence of daytime sleepiness 
is more associated with depression than with SDB [55].

Our study has a number of strengths, including a large 
number of patients with a wide range of disease severity, 
but there are also some limitations to note. The main lim-
itation is that we do not have data on nocturnal hypoven-
tilation to provide a complete picture of SDB in adult 
pwCF. With progression of the disease and a further 
decline in lung function, nocturnal hypoventilation with 
consecutive hypercapnia is detectable with possible need 
for noninvasive ventilation [57]. In this context, noctur-
nal carbon dioxide levels, preferably measured transcu-
taneously, are part of a comprehensive sleep assessment. 
Furthermore, as we know from numerous other stud-
ies, there is an association between sleep and HRQoL 
[49, 54]. However, we did not have HRQoL data for our 
patients and were therefore unable to investigate associa-
tions between HRQoL and objective sleep parameters.

Conclusion
In summary, our data show a high prevalence of OSA, 
nocturnal hypoxemia and EDS in adult pwCF. OSA and 
nocturnal hypoxemia were mainly detected in REM 
sleep. There was no difference between patients with 
and without OSA (AHI ≥ 5/h) did not differ significantly 
with respect to age, lung function and weight, but had 
significantly lower awake oxygen levels. The occurrence 
and duration of nocturnal hypoxemia were dependent on 
lung function and awake oxygenation. None of the clini-
cal markers assessed was a significant predictor of OSA, 
whereas ppFEV1, awake SpO2 and pO2 were good predic-
tors of the occurrence of nocturnal hypoxemia. Neither 
the presence of OSA nor nocturnal hypoxemia had any 
influence on the ESS score. Based on our data, we sug-
gest regular PSG screening to detect OSA and nocturnal 
hypoxemia in adult pwCF, regardless of disease severity. 
This could help to prevent medical deterioration due to 
undetected SDB in pwCF.
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