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Abstract 

Background:  Lung adenocarcinoma accounts for approximately 40% of all primary lung cancers; however, the 
mortality rates remain high. Successfully predicting progression and overall (OS) time will provide clinicians with more 
options to manage this disease.

Methods:  We analyzed RNA sequencing data from 510 cases of lung adenocarcinoma from The Cancer Genome 
Atlas database using CIBERSORT, ImmuCellAI, and ESTIMATE algorithms. Through these data we constructed 6 
immune subtypes and then compared the difference of OS, immune infiltration level and gene expression between 
these immune subtypes. Also, all the subtypes and immune cells infiltration level were used to evaluate the relation-
ship with prognosis and we introduced lasso-cox method to constructe an immune-related prognosis model. Finally 
we validated this model in another independent cohort.

Results:  The C3 immune subtype of lung adenocarcinoma exhibited longer survival, whereas the C1 subtype was 
associated with a higher mutation rate of MUC17 and FLG genes compared with other subtypes. A multifactorial cor-
relation analysis revealed that immune cell infiltration was closely associated with overall survival. Using data from 510 
cases, we constructed a nomogram prediction model composed of clinicopathologic factors and immune signatures. 
This model produced a C-index of 0.73 and achieved a C-index of 0.844 using a validation set.

Conclusions:  Through this study we constructed an immune related prognosis model to instruct lung adenocarci-
noma’s OS and validated its value in another independent cohost. These results will be useful in guiding treatment for 
lung adenocarcinoma based on tumor immune profiles.
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Introduction
Lung cancer is the most common malignant tumor, the 
leading cause of cancer-related deaths in men, and the 

second leading cause in women. Lung adenocarcinoma 
(LUAD) is a subtype of non-small cell lung cancer which 
accounts for 30–40% of all lung cancers [1, 2]. The under-
lying molecular mechanisms of lung carcinogenesis have 
been investigated by studying mutations, chromosomal 
dislocation and loss, epigenetic modifications, signaling 
pathways, and therapeutic interventions [3–7]. How-
ever, it is difficult to determine which factors promote 
the onset and progression of the disease and which are 
downstream secondary events caused by the tumor.
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In recent decades, various metadata, including tran-
scriptome sequencing, whole exome sequencing, epi-
genetic modification, pathology, and imaging data from 
patients of different races, geographic regions, and tumor 
types, have become available in public databases. These 
data provide an opportunity for exploration of the molec-
ular mechanisms of tumorigenesis and development. 
Another important medical advancement has been the 
discovery of immune surveillance sites. Surveillance site-
related proteins such as programmed cell death protein 1 
(PD-1), programmed death-ligand 1 (PD-L1), and cyto-
toxic T-lymphocyte-associated protein 4 are described 
as modulators of immune function as they can transform 
the host immune response from immunosuppressive to 
an activated state by immunotherapy [8–10]. In 2019, Wu 
et al. reported that anti-PD-1 and anti-PD-L1 antibodies 
could benefit patients with non-small cell lung cancer, 
and that an anti-PD-1 monoclonal antibody combined 
with chemotherapy effectively prolonged disease-free 
survival (DFS) and overall survival (OS) provided that the 
PD-1/PD-L1 antibody positivity rate was > 1% [11–13]. 
As a result, these antibodies have been recommended 
as a first-line treatment for non-small cell lung cancer. 
Additionally, they were shown to provide a survival bene-
fit for patients with melanoma, renal cell carcinoma, and 
colorectal cancer [14–16].

The response to immunotherapy primarily depends on 
immunomodulatory factors such as immune cell infil-
tration, mutation load, the tumor:mesenchyme ratio, 
tumor elasticity, and stiffness within the tumor micro-
environment. Therefore, neither the infiltration of a cer-
tain immune cell subset, nor the activation or inhibition 
of a particular signaling pathway alone is sufficient to 
evaluate the immune status or predict disease progres-
sion. In 2018, Chandra et al. incorporated transcriptome 
sequencing results from more than 11,000 cases repre-
senting 33 solid tumors, except for hematologic tumors, 
and proposed an immunological classification for dif-
ferent tumor types. This new method did not take into 
account the tissue origin or anatomical site of the tumor, 
but instead classified tumors into six immune sub-
types based on their immunological characteristics: C1 
(wound-healing type), C2 (interferon [IFN]-γ type), C3 
(infected type), C4 (immuno-deleted type), C5 (immuno-
resting type), and C6 (transforming growth factor [TGFβ] 
type) [17]. The results indicated that the immunophe-
notype could predict the risk of tumor recurrence and 
metastasis better than the traditional method of tumor–
node–metastasis (TNM) staging [18–20].

In the present study, immunotyping was performed for 
510 cases of LUAD together with transcriptome sequenc-
ing data from The Cancer Genome Atlas (TCGA) library. 
The data were analyzed with respect to differences 

in immune cell infiltration, mutation load, and the 
tumor:mesenchyme ratio of the different subtypes. A 
nomogram prediction model for OS was established with 
a C-index of 0.73 in the training group and a C-index of 
0.84 in the validation group. This model may enable phy-
sicians to predict the clinical outcome of patients with 
LUAD and to guide disease management.

Materials and methods
Immunophenotyping of LUAD cases using the CIBERSORT 
algorithm
Data for 510 LUAD patients together with RNA sequenc-
ing data and corresponding clinical information were 
obtained from the TCGA database (https://​www.​cbiop​
ortal.​org/). Then raw expression matrix data down-
loaded from cBioportal was uploaded to CRIiAtlas web-
site for immune subtype analysis (https://​isb-​cgc.​shiny​
apps.​io/​shiny-​iatlas/) [21], the online tool can identify 6 
immune subtypes across pan-cancer. Then, the log-rank 
test was performed to evaluate differences in DFS and OS 
between different subtypes of LUAD. Finally, differences 
in T, N, and M stages among diverse immune subtypes 
were analyzed by the Chi-square test in R [22].

Enrichment analysis of differentially expressed genes 
for different subtypes of LUAD
The DESeq2 algorithm (R package version 1.28.1) was 
used to analyze DEGs for different subtypes of LUAD 
using default parameters. Those with a false discovery 
rate ≤ 0.05 and log2FC > 1.5 were grouped as DEGs [23]. 
To investigate biological functions, the clusterProfiler 
module of the R package was used to perform gene ontol-
ogy enrichment analysis of the top 200 DEGs.

Analyzing differences in the mutation load of different 
immune subtypes of lung adenocarcinoma
Of the 510 available lung adenocarcinoma samples we 
can downloaded their transcriptome sequencing data, 
copy number aberation data, and clinical data, but there 
are only 227 samples had total exome sequencing data. 
Therefore, we analyzed the mutation load of these 227 
cases. We selected eight core genes (EGFR, ALK, KRAS, 
BRAF, MET, ERBB2, RET, and ROS1) associated with 
non-small cell lung cancer, as recommended by National 
Comprehensive Cancer Network guidelines [24], and 14 
genes exhibiting the highest mutation frequency in the 
227 LUAD cases for subsequent analysis. The types of 
mutations analyzed included point mutations (missense 
mutations), insertions or deletions (indels), early ter-
minations (stop-gain mutations), frameshift mutations 
(frameshifts), and alternative splicing mutations (splice 

https://www.cbioportal.org/
https://www.cbioportal.org/
https://isb-cgc.shinyapps.io/shiny-iatlas/
https://isb-cgc.shinyapps.io/shiny-iatlas/
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site mutations). The Chi-square test was used to analyze 
differences in mutation detection rates among the differ-
ent immune subtypes.

Analyzing the correlation between 24 immune cell 
infiltrations with OS and DFS using the ImmuneCellAI 
algorithm
ImmuCellAI (website tool http://​bioin​fo.​life.​hust.​edu.​
cn/​ImmuC​ellAI#​!/), a deconvolution algorithm was 
used to estimate the percentage of different immune 
cell subsets in each sample [25]. This deconvolution 
algorithm was used to simultaneously determine the 
composition of 24 cell subsets in each sample using 
RNAseq data [25]. The cells included 17 T cell subsets: 
CD4+ T cells, CD8+ T cells, naïve CD4+ T cells, naïve 
CD8+ T cells, central memory T cells, effector memory 
T cells, regulatory T cells (induced regulatory T cells 
and natural regulatory T cells), mucosal-associated 
invariant T cells (which function in both the inflam-
matory response and in maintaining homeostasis), T 
regulatory type 1 cells (Tr1 cells, which down-modulate 
immune responses through production of the immu-
nosuppressive cytokines interleukin-10 and TGF-β), T 
helper (Th)1 cells, Th2 cells, Th17 cells, follicular aux-
iliary T cells (which play a key role in T cell-dependent 
B cell responses), cytotoxic T cells, exhausted T cells, 
γδT cells, and natural killer T cells. There were also six 
important effector B cells: macrophages, monocytes, 
neutrophils, dendritic cells, and natural killer (NK) 
cells.

We classified the samples into high- and low-level 
expressing groups according to their median score. Sam-
ples with values above the median were considered high 
expressors, and those with values below were identified as 
low expressors. We analyzed the correlation between the 
immune cell infiltrate and the DFS and OS with the log-
rank test, with p < 0.05 considered statistically significant. 
The Wilcoxon test was used to analyze the characteristics 
of immune cell distribution among different immune cell 
subtypes. Cox multifactorial regression analysis was used 
to evaluate the correlation between infiltrating immune 
cells and OS in patients with LUAD.

Analyzing differences in the tumor: mesenchyme ratio 
of different subtypes of LUAD using the ESTIMATE 
algorithm
According to the ESTIMATE algorithm, they defined a 
signature containing 141 genes which represented mes-
enchyme cell characteristics and using single sample 
gene enrichment analysis (ssGSEA) to determine the 
enrichment of mesenchyme cells in tumor samples [26]. 
The expression profiles of these genes were analyzed 

in its R package (version 0.30.0) and we got two score 
of mesenchyme content and tumor purity of each 
sample. Larger scores representing a higher mesen-
chyme content and lower tumor purity. Finally, the log-
rank test was used to analyze the correlation between 
tumor:mesenchyme ratio scoring and DFS and OS.

Establishing and verifying the OS prediction model 
for LUAD
Initially, LUAD cases in the TCGA database were 
regarded as the training group. Step-wise regression 
was introduced for feature selection, then we con-
structed a prognosis model using the coxph func-
tion in the R survival package (version 3.2.7). Next, 
we established the nomogram OS evaluation model, 
which required a C-index of 0.7 or higher. The model 
was calibrated using the dataset of studies published 
on top of the cell as a validation set (GSE140343) [27]. 
The standard curves for 1-, 3-, and 5-year survival were 
plotted separately and analyzed to determine whether 
the nomogram assessment model was consistent with 
the actual survival time. Subsequently, we divided the 
training and validation data into low- (score < 0) and 

Table 1  Clinicopathologic features of patients with LUAD in the 
TCGA​

Early means stage I/II and Late means stage III /IV, NA means no information 
available, NX and MX not evaluated N and M

Characteristic Varl Freq

Gender Female 274 (53.73)
Male 236 (46.27)

Stage Early 465 (91.18)
Late 37 (7.25)
NA 8 (1.57)

Smoke NO 423 (82.94)
YES 87 (17.06)

Tstage T1 167 (32.75)
T2 275 (53.92)
T3 46 (9.02)
T4 19 (3.73)
NA 3 (0.59)

Nstage N0 1 (0.2)
N1 328 (64.31)
N2 96 (18.82)
N3 73 (14.31)
NX 2 (0.39)

Mstage M0 361 (70.78)

M1 10 (1.96)
MX 5 (0.98)
NA 140 (27.45)

http://bioinfo.life.hust.edu.cn/ImmuCellAI#!/
http://bioinfo.life.hust.edu.cn/ImmuCellAI#!/
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high-risk (score > 0) groups based on the nomogram 
model. Finally, the log-rank test was used to deter-
mine whether there was a significant difference in OS 
between the two groups.

Results
Immunotyping of LUAD using the CIBERSORT algorithm
The clinicopathological characteristics of the 510 LUAD 
cases from the TCGA database are provided in Table 1. 
The CIBERSORT algorithm was used to immunopheno-
type the transcriptome sequencing data of these cases. 
As shown in Fig. 1A, the C1 subtype accounted for 20% 
(trauma repair type, 101/510), the C2 subtype for 35.7% 
(IFNγ type, 182/510), the C3 subtype for 36.6% (infec-
tious type, 187/510), the C4 subtype for 1.17% (lymph 
node deletion type, 6/510), and the C5 subtype for 5.6% 
(TGFβ-dominant type). From this analysis, the propor-
tions of C2 and C3 subtypes were highest, with both 
exceeding 35% of the total, whereas the C4 subtype exhib-
ited only a small fraction and the C5 subtype was not 
represented. Log-rank test analysis of the differences in 
DFS and OS among the different subtypes indicated that 
the C3 subtype was associated with a significantly higher 
OS than other subtypes, whereas there was no significant 

difference in DFS between subtypes (Fig. 1B). As the C1, 
C2, and C3 subtypes accounted for 92.3% of the total, 
we next focused on the differences in mutation load, 
immune cell infiltration, and the tumor:mesenchyme 
ratio among these subtypes.

Analyzing clinicopathological factors and gene enrichment 
differences in different subtypes of LUAD
The correlation between clinicopathological factors 
and immune subtypes was analyzed by Fisher’s test. As 
shown in Fig.  1C, the proportion of T1 and N0 stages 
was significantly higher in the C3 subtype compared 
with C1 and C2 subtypes. We also observed a signifi-
cantly greater distribution of T1 and N0 stages in the 
C2 subtype compared with the C1 subtype, whereas 
smoking was significantly correlated with occurrence of 
the C6 subtype.

Differential gene expression between C1/C3 sub-
types and C2/C3 subtypes was analyzed by the 
DESeq2 algorithm, with a false discovery rate ≤ 0.05 
and log2FC > 1.5 as screening criteria. More than 1000 
DEGs were identified, of which 500 were upregulated 
and downregulated simultaneously. Enrichment analy-
sis of the 200 genes exhibiting the most significant 

Fig. 1  Immunoclassification of patients with lung adenocarcinoma (LUAD) in TCGA. A Based on RNAseq data, the immune subtypes of 510 patients 
with LUAD data were analyzed using the CIBERSORT algorithm in TCGA. The percentage of different immune subtypes is shown in the pie chart. B 
Kaplan–Meier analysis of overall survival in LUAD patients with different immune subtypes. C Analysis of the differences between TNM stage and 
immune subtypes by Fisher’s test
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differences in expression indicated that genes differ-
entially expressed between C1 and C3 subtypes were 
mainly associated with extracellular signal‑regulated 
protein kinase (ERK)1, ERK2, and mitogen-activated 
protein kinase (MAPK) signaling pathways, epidermal 
genesis, and steroid metabolism (Fig.  2A). Genes dif-
ferentially expressed between C2 and C3 subtypes were 
primarily associated with chromatin segregation and 
cell cycle transition (Fig. 2B).

Analyzing differences in mutation load of the different 
subtypes of LUAD
We next analyzed mutations in eight non-small cell lung 
cancer core genes recommended by National Compre-
hensive Cancer Network guidelines and 14 genes with the 
highest mutation frequency in 510 LUAD cases for which 
exome sequencing, RNA sequencing, and copy number 
data were available. The top five most frequently mutated 
genes were TTN (47.1%), TP53 (46.7%), MUC16 (40.0%), 
RYR2 (36.1%), and CSMD3 (35.7%; Fig.  2C). Addition-
ally, we found that the mutation detection rate of FLG 
and MUC17 genes in the C1 subtype was significantly 
higher than in other subtypes (Fig.  2D). Therefore, the 
higher mutation load and the activation of ERK1, ERK2, 
and MAPK signaling pathways were considered poten-
tial contributors to the poor prognosis associated with 
the C1 subtype. The lowest mutation rate was observed 
for TP53 in the C3 subtype (Fig. 2D), which is consistent 
with its better prognosis.

Analyzing the relationship between immune cell 
infiltration and OS and DFS of LUAD
Using the log-rank test, we found that the infiltration of 
immune cell subsets was significantly positively corre-
lated with OS (p < 0.05), whereas the infiltration of mono-
cytes was significantly negatively correlated (p < 0.0001; 
Fig.  3). Additionally, monocyte infiltration was signifi-
cantly associated with DFS (p = 0.0024) (Attached Fig. 1). 
Cox multifactorial regression analysis revealed that naïve 
CD4+ T cells, naïve CD8+ T cells, B cells, neutrophils, 
and γδ T cell subsets were significantly correlated with 
OS (p = 0.019, 0.012, 0.011, 0.029, and 0.048, respectively; 
Fig. 4).

Next, we determined whether the distribution of 
immune cell subsets varied among the different subtypes 
of LUAD. As shown in Fig. 5 and Additional file 1: Fig. 3, 
the infiltration of naïve CD4+ T cells, CD8+ T cells, 
CD4+ T cells, NK cells, follicular auxiliary T cells, Tr1 
cells, and mucosal-associated invariant T cells in the C3 
subtype was significantly higher compared with the other 
subtypes, while the infiltration of natural regulatory T 
cells and monocytes was significantly lower compared 
with that in other subtypes. In summary, the distribu-
tion characteristics of the immune cells of subtype C3 are 
empirically consistent with its survival advantage.

Analyzing differences in the tumor: mesenchyme ratio 
between different immune subtypes of tumor cells
The ESTIMATE algorithm was used to evaluate the 
tumor:mesenchyme ratio in different subtypes of LUAD, 
with scoring ranging from 0.000 to 0.2397. The log-rank 
test revealed that the OS of the highest scoring group was 
significantly longer than that of the lowest scoring group 
(p = 0.045), and that there was a significant difference 
between the tumor:mesenchyme ratio and DFS (Fig. 6A). 
The Wilcoxon test confirmed that the C4 subtype with 
poor prognosis had the lowest tumor:mesenchyme ratio 
and the C6 subtype the highest, and that the C3 subtype 
had a significantly higher tumor:mesenchyme ratio than 
C2 and C4 subtypes (Fig. 6B). Correlation analysis of the 
association between the tumor:mesenchyme ratio and 
immune cell infiltrate found no significant correlation 
(correlation coefficient < 0.5; Additional file  1: Fig.  2). In 
summary, significant correlation was detected between 
the tumor:mesenchyme ratio and OS of LUAD.

Establishing a nomogram model to predict OS for LUAD
The nomogram model was established to analyze the OS 
of LUAD. The covariates of this model consisted of age, 
immunological scoring, T/N staging, and immune cells 
such as Tr1 cells, Th1 cells, and induced regulatory T 
cells (Fig. 7A). The C-index of the training group, which 
was composed of TCGA data, reached 0.730. Next, we 
validated the nomogram model using RNAseq data from 
51 lung adenocarcinoma cases described in a recent 
publication whose clinicopathological characteristics 

(See figure on next page.)
Fig. 2  Differentially expressed genes (DEGs) identified in C1 and C3, or C2 and C3 subtypes of LUAD. A Volcano map of DEGs for C1 and C3 
subtypes. DEGs were obtained by the DESeq2 algorithm (false discovery rate ≤ 0.05 and log2 fc > 1.5). Red dots indicate upregulated genes and 
blue dots indicate downregulated genes (left). Functional and pathway analyses were performed using the R-package clusterProfiler module 
(right). B Enrichment analysis of DEGs in C2 and C3 subtypes. C The mutation load among different immune subtypes in LUAD as analyzed by the 
Chi-square test. Rows represent genes, and columns represent samples. The intersection represents the sample mutation, the color represents the 
mutation type, and the color at the bottom represents immune typing. D Analysis of differences in FLG, MUC17, and p53 mutations among different 
subtypes of LUAD



Page 6 of 13Sun et al. BMC Pulmonary Medicine          (2022) 22:114 

Fig. 2  (See legend on previous page.)
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are shown in Table 2 [27]. The C-index of the validation 
group reached 0.844 (Fig. 7B) and the survival curves at 
1, 3, and 5  years after treatment confirmed that the OS 
values measured by the nomogram model were consist-
ent with the actual OS (Fig.  7C). Finally, we scored the 
nomogram for the training and validation sets, which was 
used as a basis to divide the cases into low-risk (score < 0) 
and high-risk (score > 0) groups. Median OS values were 
32.1  months versus 76.2  months for the training group 
and 38  months versus “not reached” for the validation 
group. The difference in OS between low- and high-
risk groups was significant (p < 0.0001 and p = 0.00038; 
Fig. 7D).

Discussion
The tumor microenvironment acts to nurture 
and promote tumorigenesis. Factors such as the 
immune infiltrate, surveillance-related proteins, the 
tumor:mesenchyme ratio, and trophoblastic vessels 
determine whether this microenvironment inhibits or 
promotes tumor growth. In recent years, the applica-
tion of multidisciplinary techniques to medical research 
has yielded profound results. In the present study, LUAD 
cases were classified according to their immunological 
signatures and analyzed with respect to clinicopathologi-
cal characteristics for the different subtypes. We found 
that the C3 subtype was associated with an earlier T and 
N stage, whereas a positive smoking status was more 

Fig. 3  Analysis of the correlation between immune cell infiltration and OS in patients with LUAD. LUAD cases were divided into high and low 
expression groups based on the median value of immune cell infiltration. The log-rank test assessed the correlation between immune cell 
infiltration and OS



Page 8 of 13Sun et al. BMC Pulmonary Medicine          (2022) 22:114 

likely to be seen in patients with the C6 subtype. Gene 
enrichment analysis revealed a significant association 
with ERK and MAPK signaling pathways for the C1 sub-
type and dysregulation of gene expression associated with 
chromatin segregation and cell cycle transition for the C2 

subtype. These results provide novel insights into LUAD 
that may be applicable for new treatment strategies. 
These may include targeting ERK or MAPK signaling 
pathways to treat C1 subtype LUAD, or using inhibitors 
of cell proliferation for the C2 subtype. Therefore, the 

Fig. 4  Multifactorial regression analysis evaluating the correlation between immune cell infiltration and OS in patients with LUAD
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results obtained from our analyses of metadata are valu-
able for future in vitro and in vivo studies.

Previous research has largely focused on the influ-
ence of chemical factors on tumor growth, such as 
the activation of signaling pathways and the expres-
sion of chemokines. However, the effect of physical fac-
tors on tumor progression should not be overlooked. 
For example, fibroblasts in the tumor mesenchyme can 
produce large quantities of elastic fibers and fibrino-
gen. The resulting sticky and dense mesenchyme may 
block immune cells from congregating around the tumor 

and inhibit the migration of immune cells to the tumor 
bed, despite the persistence of chemotactic signals 
[28–30]. Histopathological analyses have indicated that 
a tumor:mesenchyme ratio approximating 1:1 is associ-
ated with an improved prognosis compared with other 
ratios [31, 32]. In this study, we found that the C6 subtype 
exhibited the highest tumor:mesenchyme ratio, whereas 
the lowest ratio was seen in the C4 subtype, which had 
the worst prognosis. However, all tumor:mesenchyme 
ratios were low in this study, which could be explained by 
the early entry criteria set by the TCGA, which requires 

Fig. 5  Analysis of the differences in immune cell infiltration in different immune subtypes of LUAD by ImmuCellAI. The Wilcoxon test analyzed the 
differences between immune cell infiltration and immune subtypes, *means p < 0.05, **means p < 0.01, ****means p < 0.0001
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more than 70–80% of tumor tissue to be confirmed by 
pathology. Hence, our observed correlation between the 
immune cell infiltrate and tumor:mesenchyme ratio may 
be biased compared with the actual disease profile.

We used ImmuCellAI bioinformatics analysis to show 
that the infiltration of naïve CD4+ T cells, Tr1 cells, nat-
ural regulatory T cells, follicular auxiliary T cells, effec-
tor memory T cells, NK cells, CD8+ T cells, and B cells 
was significantly correlated with OS. In the C3 subtype 
exhibiting the best prognosis, cell subsets contributing 
positively to an immune response included CD8+, CD4+, 
and naïve CD4+ T cells, as well as B cells, which were 
detected at significantly higher levels compared with 
other subsets. Because there have been some inconsist-
encies regarding the correlation of NK cells with OS in 
LUAD and whether it has a positive impact, additional 

histological experiments will be needed to resolve this 
issue. Recently, Helmink et al. confirmed from single-cell 
sequencing data that the proportion of B cells infiltrating 
tertiary lymphoid tissues in melanoma and renal cell car-
cinoma was significantly associated with the efficacy of 
immunotherapy [33]. This is consistent with the positive 
correlation that we observed between B cell infiltration 
and OS in LUAD.

When establishing the nomogram model, we ini-
tially included many factors such as mutation and 
tumor:mesenchyme ratio to obtain a good C-index, but 
the area under the curve values for the validation group 
were not satisfactory. Therefore, we included immuno-
logical factors as the main covariates and subsequently 
obtained an improved nomogram model which resulted 
in a satisfactory validation outcome for a small number 

Fig. 6  Analysis of the differences in interstitial scores of LUAD using the ESTIMATE algorithm. A LUAD cases were divided into high and low stromal 
groups according to the median value of interstitial scores. The log-rank test assessed the correlation between stromal scores, DFS, and OS. B The 
Wilcoxon test analyzed the differences between interstitial scores in different LUAD immune subtypes
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(n = 53) of cases. The predicted 1- and 3-year survival 
times for LUAD were also consistent with actual sur-
vival times, and the difference in OS between low- and 
high-risk groups was significant (p < 0.0001). Therefore, 
these results suggest the possibility of predicting OS 

for patients diagnosed with early-stage LUAD based on 
their clinicopathological and immunological profiles. 
Our study could provide clinicians with a new method 
for predicting OS in LUAD and help guide treatment 
decisions for patients based on tumor immune profiles.

Fig. 7  Construction and evaluation of immune-related nomogram model to predict overall survival of patients with LUAD. A Using stepwise 
regression, nine prognostic factors associated with clinical factors, immune subtypes, and immune cell infiltration were included in the nomogram 
model. B The C-index of training set was 0.73 and the C-index of testing group was 0.84. C The calibration curve of the nomogram in the training 
and testing cohort. The estimated by the nomogram is shown on the x-axis, whereas actual survival is shown on the y-axis. The one-year OS (left), 
three-year OS (middle), five-year OS (right) are shown. D The training and testing cohorts are presented as nomogram score. Kaplan–Meier curves 
were generated to analyze the difference in OS between high- and low-risk groups (with zero as the cut-off point)
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