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Abstract 

Background:  Asthma is a heterogeneous disease and different phenotypes based on clinical parameters have been 
identified. However, the molecular subgroups of asthma defined by gene expression profiles of induced sputum have 
been rarely reported.

Methods:  We re-analyzed the asthma transcriptional profiles of the dataset of GSE45111. A deep bioinformatics anal-
ysis was performed. We classified 47 asthma cases into different subgroups using unsupervised consensus clustering 
analysis. Clinical features of the subgroups were characterized, and their biological function and immune status were 
analyzed using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and single sample Gene Set 
Enrichment Analysis (ssGSEA). Weighted gene co-expression network analysis (WGCNA) and protein–protein interac-
tion (PPI) network were performed to identify key gene modules and hub genes.

Results:  Unsupervised consensus clustering of gene expression profiles in asthma identified two distinct subgroups 
(Cluster I/II), which were significantly associated with eosinophilic asthma (EA) and paucigranulocytic asthma (PGA). 
The differentially expressed genes (DEGs) between the two subgroups were primarily enriched in immune response 
regulation and signal transduction. The ssGSEA suggested the different immune infiltration and function scores 
between the two clusters. The WGCNA and PPI analysis identified three hub genes: THBS1, CCL22 and CCR7. ROC 
analysis further suggested that the three hub genes had a good ability to differentiate the Cluster I from the Cluster II.

Conclusions:  Based on the gene expression profiles of the induced sputum, we identified two asthma subgroups, 
which revealed different clinical characteristics, gene expression patterns, biological functions and immune status. 
The transcriptional classification confirms the molecular heterogeneity of asthma and provides a framework for more 
in-depth research on the mechanisms of asthma.
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Background
Asthma is one of the most common chronic respiratory 
diseases affecting 300 million people worldwide, caus-
ing a significant global socioeconomic burden [1]. Yet 
‘asthma’ is a vague term that describes a collection of 
clinical symptoms with reversible airflow limitation or 
bronchial hyperresponsiveness [2]. It is currently consid-
ered as an umbrella diagnosis for several diseases encom-
passing multiple subgroups with distinct mechanisms, 
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as they are now termed, phenotypes [3]. The heteroge-
neities between the different phenotypes were reflected 
by patients-specific diverseness in natural history, risk 
factors, disease severity and response to therapies [4]. 
Several important asthma phenotypes based upon the 
combinations of certain clinical characteristics have been 
proposed, such as allergic asthma, early-onset asthma, 
elderly asthma, obese asthma, occupational asthma, 
aspirin-sensitive asthma and neuropsychological asthma 
[5, 6]. These classifications of clinical phenotypes provide 
the first step to the heterogeneity of asthma and have sig-
nificant implications for clinical practice.

However, it should be understood that phenotypes are 
based on certain observable characteristics, which are the 
downstream results of genetics and environment. They 
do not necessary reflect the unified molecular and cellu-
lar mechanisms of underlying disease [7]. Endotypes, on 
the other hand, are the subgroups based upon the distinct 
pathophysiological mechanisms. According to the endo-
types, treatment targeting specific pathways that may be 
disrupted within a given subgroup can be administrated. 
This is especially important because asthma responds 
to drugs with varying efficacy due to varying underly-
ing mechanisms [7]. The shift from phenotype to endo-
type is an advance from clinical to molecular approach, 
indicating a further understanding of the heterogene-
ity of asthma. Besides, the theoretical basis of endotyp-
ing corresponds to the current concept of individualized 
precision therapy [8], which will promote the successful 
development of personalized treatment for asthma.

With the development of microarrays, high-through-
put sequencing technologies and other omic approaches, 
a great opportunity to further understand the molecular 
subgroups (endotypes) of asthma has emerged. Wood-
ruff et al. identified two asthma phenotypes based on the 
expression of TH-2-related genes in bronchial epithe-
lial brushings using microarray [9]. Baines et al. defined 
three transcriptional asthma phenotypes using unbi-
ased hierarchic clustering [10]. Furthermore, Fitzpatrick 
et  al. reported classifications of children severe asthma 
by using protein arrays [11]. Similarly, Hastie et al. ana-
lyzed asthma severity phenotypes based on proteomic 
profiles of induced sputum [12]. These studies manifested 
the vital role of omic approaches in the study of disease 
heterogeneity and mechanisms. They have significantly 
enriched and expended the study of asthma heterogene-
ity, exerting important implications for the future clinical 
practice of asthma.

Although several subgroups or gene signatures of 
asthma have been identified with omic approaches, there 
are few studies that have utilized unsupervised consen-
sus clustering analysis to identify the asthma subgroups 
based on transcriptional profile of induced sputum 

(currently the best available noninvasive sample used for 
asthma airway inflammation assessment). In the present 
study, we hypothesized that the molecular subgroups 
of asthmatics could be defined according to the gene 
expression patterns of induced sputum samples. So we 
categorized the asthmatics into different subgroups based 
on the transcriptional profile differences (or similarities). 
Then we further characterized the candidate subgroups 
by analyzing their clinical features, biological functions, 
immune status and hub genes, hoping to identify molec-
ular subgroups related to endogenous mechanism and to 
provide implications for individualized management of 
asthma.

Methods
Data collection
Microarray RNA expression data of patients with asthma 
were downloaded from the dataset of GSE45111 in the 
Gene Expression Omnibus (GEO) [13]. It was gener-
ated based on the samples of induced sputum from 47 
patients with asthma. The asthmatics were grouped into 
different inflammatory phenotypes using sputum cell 
counts. The data was log-transformed, normalized and 
baseline-converted to the median of all samples. Apart 
from gene expression matrix, the dataset contains clini-
cal information including age, gender, smoking status and 
airway inflammation phenotypes (identified by sputum 
cell counts). The dataset was based on the platform of 
GPL6104 (Illumina human Ref-8 v2.0 expression bead-
chip, Illumina, Inc., San Diego, California, USA). More 
details about the dataset are available at: https://​www.​
ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE45​111.

Unsupervised consensus clustering
Consensus clustering was applied to classify the sam-
ples of GSE45111 into different subgroups according to 
the gene expression profiles. The clustering analysis was 
performed by K-means algorithm with the Spearman dis-
tance. The maximum cluster number was set to be eight. 
The final number of clusters was determined by the con-
sensus matrix and the cluster consensus score (> 0.8). 
Principal Component Analysis (PCA) and t-distributed 
stochastic neighbor embedding (t-SNE) were employed 
to evaluate the clustering effect [14, 15]. Consensus clus-
tering was performed using the “ConsensusClusterPlus” 
package in R [16]. PCA and t-SNE analysis were con-
ducted by the “stats” and “Rtsne” packages respectively 
[15]. The heatmap corresponding to the consensus clus-
tering was generated by the “pheatmap” R package.

Molecular subgroup‑specific gene allocation
After the consensus clustering analysis, samples with 
similar gene expression profiles were clustered together. 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45111
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45111
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Since asthmatics from different molecular subgroups 
exhibited specific molecular diversities, therefore, we 
compared the gene expression profiles of the identi-
fied clusters using NetworkAnalyst (https://​www.​netwo​
rkan alyst.ca/) [17]. Student’s t test was used to com-
pare the gene expression. The threshold of differentially 
expressed genes (DEGs) was defined as |log2-fold change| 
(log2FC) > 1 and false discovery rate (FDR) p-value < 0.05.

Biological function enrichment analysis
To investigate the biological functions of the molecular 
subgroup-specific genes, we conducted Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
enrichment analysis (KEGG) by the “clusterProfiler” R 
package [18–20]. The analyses were based on the cor-
rected Fisher’s exact test. A p-value < 0.05 was considered 
statistically significant. The results were visualized using 
the “ggplot” R package.

Immune infiltration analysis
Based on the gene expression profiles of the two identi-
fied subgroups, immune infiltration and related immuno-
logic functions were quantified by single-sample gene set 
enrichment analysis (ssGSEA), which calculated enrich-
ment scores that represents the immune cells infiltration 
level and the activity of immune related pathways [21]. 
Mann–Whitney test with p-values adjusted by Benjamini 
& Hochberg (BH) correction was used to compare the 
ssGSEA scores between the two subgroups. R package 
of the “gsva” was used to conduct the analysis. The anno-
tated gene set and definition of each immune term was 
provided in Additional file 1: Table S1.

Weighted gene co‑expression network analysis
According to the DEGs obtained from the identified 
clusters, weighted gene co-expression network analysis 
(WGCNA) was performed to identify potential func-
tional modules that could characterize the clinical fea-
tures of each subgroup [22]. The adjacency matrix was 
transformed into a topological overlap matrix (TOM) 
to estimate the distance between each gene pair. Then 
hierarchical clustering with the dynamic methods were 
employed to build the cluster tree and to classify the 
genes into different modules. The soft-threshold for the 
scale-free network was determined based upon the maxi-
mal R2 (power = 9). Correlation analyses between clinical 
features and gene modules were conducted and visual-
ized in the WGCNA. The “WGCNA” R package was used 
to perform the analysis.

Protein–protein interaction network
The genes obtained from the WGCNA modules 
that showed the highest correlation with the airway 

inflammation of asthma were imported to STRING (ver-
sion 11.0) database (http://​string-​db.​org) [23] to perform 
the protein–protein interaction (PPI) network analy-
sis. The active interaction sources included text mining, 
experiments, databases, co-expression, neighborhood, 
gene fusion and co-occurrence. We set the minimum 
required interaction score as medium confidence (0.40) 
and a first-stages node degree ≥ 5 to screen hub genes. 
Cytoscape software version 3.4.0 and Cytohubba plugin 
were used for network visualization and node degree cal-
culation in the PPI network [24].

Validation of the identified clusters
To validate the identified subgroups based on the 
GSE45111, we used the dataset of GSE41863 as the vali-
dation dataset to repeat the consensus clustering analy-
sis. It contains the gene expression profiles of the induced 
sputum from 47 patients with asthma. It also provides 
the information of age, gender, and airway inflamma-
tion phenotypes. The dataset was based on the platform 
of GPL 570 (Affymetrix Human Genome U133 Plus 2.0 
Array, Affymetrix, Inc., Santa Clara, California, USA). 
More details about the dataset are available at: https://​
www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE41​
863. The results of the clustering analysis from the two 
datasets were compared.

Statistical analysis
The continuous variables were described as means ± SD 
or median (1st quartile, 3rd quartile; Q1, Q3) according 
to their distributions. Categorical data were presented 
as absolute numbers and percentages. The differences 
between the clusters were compared by Student’s t test or 
Mann–Whitney U test for continuous variables and Chi-
squared or Fisher’s exact test for categorical variables, 
respectively. Correlations between the identified clus-
ters and airway inflammation types of the patients with 
asthma were assessed by Cramer’s V coefficient. Receiver 
Operating Characteristic (ROC) curve analysis was per-
formed to determine the value of the hub genes for the 
identified subgroups. Two-tailed p-value < 0.05 was con-
sidered statistically significant. All the statistical analy-
ses were conducted by SPSS (version 22; IBM, Armonk, 
NY, USA), R software version 4.0.3 (The R Foundation 
for Statistical Computing, Vienna, Austria) and MedCalc 
(version 19.6, Ostend, Belgium).

Results
A total of 47 samples of patients with asthma from the 
GEO database (GSE45111) were analyzed. Our study was 
conducted following the workflows, including clustering 
analysis, features of the identified clusters, and hub genes 

https://www.networkan
https://www.networkan
http://string-db.org
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE41863
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE41863
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE41863
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identification. The flowchart of data collection and analy-
sis is presented in Fig. 1.

Unsupervised consensus clustering analysis
Consensus clustering of the 47 asthma samples was per-
formed to identify distinct molecular subgroups, in which 
two subgroups were yielded, with 17 cases in Cluster I 
and 30 cases Cluster II. The consensus matrix indicated 
the consensus for k = 2 and demonstrated a well-defined 
2-block structure. The gene expression patterns within 
each cluster showed a high consistency (Fig. 2a). The bar-
plot suggested that the cluster score of each subgroup 
was higher than 0.8 only in two subgroup classifications 

(Fig. 2b), which indicated that the classification was more 
stable than others. PCA and t-SNE analysis further indi-
cated that the patients in the two subgroups were distrib-
uted in two directions, confirming the robustness of the 
clustering results (Fig. 2c, d).

Clinical characteristics of the identified molecular 
subgroups
To characterize the clinical features of the two molecu-
lar subgroups, age, gender, smoking status and airway 
inflammation phenotypes were investigated. The results 
showed that the Cluster I was older than Cluster II 
(p-value = 0.001). The Cluster I had a higher proportion 

Fig. 1  Flow chart of data collection and analysis
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of subjects with EA, while the proportion of PGA in 
Cluster II was higher (Table  1). Cramer’s V coefficient 
was used to evaluate the strength of association between 

the identified clusters and the airway inflammation types. 
The results showed that Cluster I was associated with 
EA (Cramer’s V coefficient = 0.355, p-value = 0.015) and 

Fig. 2  Consensus clustering of gene expression profiles for asthma cases based on the GSE45111. a The color-coded heatmap represents the 
consensus matrix with consensus k = 2, which was determined by the minimal consensus scores for subgroups (> 0.8). Color gradients represent 
consensus values from zero to1. White corresponds to 0 and dark blue to 1. b The bar-plot represents the consensus scores for subgroups with 
cluster count (k) ranging from 2 to 8. c PCA plot of the patients with asthma. d t-SNE analysis of the patients with asthma

Table 1  Baseline characteristics of the patients in different clusters

a Compared between Cluster I and Cluster II
b Asthma inflammatory phenotype was assigned based on a sputum eosinophil cutoff of greater than 2% and a sputum neutrophil cutoff of greater than 61%

Variables Total Cluster I Cluster II χ2/z/t P valuea

Number 47 17 30

Age, year, median (Q1, Q3) 60 (49, 68) 68 (63, 77) 56 (43, 63) − 3.369 0.001

Gender, n (%) 0.021 0.886

 Female 27 10 (58.8) 17 (56.7)

 Male 20 7 (41.2) 13 (43.3)

Smoking status, n (%) 0.221 0.638

 Never 27 9 (52.9) 18 (60)

 Former/current 20 8 (47.1) 12 (40)

Airway inflammation, n (%)b

 Eosinophilic 17 10 (58.8) 7 (23.3) 5.794 0.015

 Neutrophilic 12 7 (41.2) 5 (16.7) 3.365 0.067

 Paucigranulocytic 18 0 (0) 18 (60.0) 16.179 < 0.001

 Mixed Granulocytic 0 0 (0) 0 (0) 3.596 0.0579



Page 6 of 13Li et al. BMC Pulmonary Medicine           (2022) 22:29 

Cluster II was associated with PGA (Cramer’s V coeffi-
cient = 0.593, p-value < 0.001).

Screening of the DEGs between the two molecular 
subgroups
Based on the comparison between the two molecular 
subgroups, a total of 162 DEGs (148 up-regulated genes 
and 14 down-regulated genes) were identified with the 
threshold of |log2FC|> 1 and FDR < 0.05. The heatmap 
and volcano plot of the DEGs are shown in Fig.  3a and 
b. The results of correlation analysis are presented in 
Fig.  3c, which suggested that the DEGs were correlated 
with each other.

Functional analyses of the DEGs
As the DEGs were correlated with each other (Fig. 3c), we 
assumed that they could function together in certain bio-
logical processes. Therefore, biological function enrich-
ment analyses were performed based on the DEGs. By 
GO analysis, we found these genes were enriched in the 

items related to the immune response regulation and sig-
nal transduction, including regulation of T cell activation 
(GO:0050863), negative regulation of response to exter-
nal stimulus (GO:0032102) and regulation of inflamma-
tory response (GO:0050727). The top 15 GO enriched 
results are presented in Fig. 4a. In KEGG pathway anal-
ysis, several signal transduction items, like Cytokine-
cytokine receptor interaction (hsa04060), NF-kappa B 
signaling pathway (hsa04064), NOD-like receptor signal-
ing pathway (hsa04621) and Chemokine signaling path-
way (hsa04062) were enriched.. Figure  4b demonstrates 
the results of the KEGG pathway analysis.

We further investigated the immune cells infiltration 
status and related pathways or functions of the two sub-
groups using ssGSEA. As shown in Fig. 4c and d, 23 infil-
trating immune cells and 13 immune-related pathways 
or functions were obtained. In particular, the scores for 
immune cells associated with type-2 inflammation, such 
as eosinophils, Th2 cells and mast cells were higher in 
the Cluster I than in the Cluster II. Antigen presentation 

Fig. 3  Identification of the DEGs between the two molecular subgroups. a Heatmap demonstrated the top 50 significant DEGs. b Volcano plot of 
DEGs. c The correlation heatmap of the top 50 DEGs
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process (APC), including the scores of dendritic cells 
(DCs), APC co-stimulation and APC co-inhibition, were 
also higher in the Cluster I. Furthermore, the Cluster I 
showed increased scores of activated/immature B cells, 
Monocytes, chemokine receptors (CCR) and Type II IFN 
response.

WGCNA: identification of key modules
To uncover the transcriptomic differences between the 
two molecular subgroups, WGCNA was performed 
using the expression profiles of the 162 DEGs. We ana-
lyzed the soft threshold power of the network topology 
with threshold weights from 1 to 20 and determined the 
scale independence and mean connectivity. Finally, an 
optimal threshold of nine was selected and six modules 
containing genes with similar expression patterns were 
obtained. Six different colors (yellow, turquoise, brown, 
blue, green and grey) denote six different modules 

(Fig. 5a). The details of the genes in each module are pro-
vided in the Additional file 2: Table S2.

Then a heatmap demonstrating the association 
between the six WGCNA modules and clinical features 
was constructed. As shown in Fig.  5b, all the WGCNA 
modules were unrelated to gender and smoking status. 
The turquoise, brown, blue and grey modules were posi-
tively correlated with age (all p-value < 0.05). The yellow, 
turquoise, brown and grey modules were positively cor-
related with airway inflammation type (all p-value < 0.05). 
Therefore, we identified the four modules as the key 
modules that were associated with airway inflammation 
for further research.

Construction of PPI network and hub gene analysis
We constructed the PPI network based on the genes 
derived from the four WGCNA modules (yellow, tur-
quoise, brown and grey) to identify hub genes that were 

Fig. 4  a Representative results of GO enrichment in biological process terms. b Representative results of KEGG pathway analysis. c The ssGSEA score 
of 23 immune cells. d The ssGSEA score of 13 immune related functions or pathways. P values were presented as: *p < 0.05; **p < 0.01; ***p < 0.001
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involved in the regulation of airway inflammation within 
the two identified clusters. The PPI network was con-
structed based on the 143 genes in the STRING data-
base (Fig.  6a, b). Finally, three differentially expressed 
genes (|log2FC|> 1 and FDR < 0.05) with degree ≥ 5 were 

identified as hub genes. They were THBS1, CCL22 and 
CCR7.

We further investigated the predictive value of the hub 
genes for the identified clusters by ROC analysis. The 
results suggested that the three hub genes were able to 

Fig. 5  Construction of modules by weighted gene coexpression network analysis (WGCNA) in R. a Module clustering dendrogram. Each branch 
in the figure represents one gene, and every color below represents one coexpression module. b Correlation between the WGCNA modules and 
clinical features

Fig. 6  a The genes with first-stage degree ≥ 5. b Protein–protein interaction (PPI) network based on the WGCNA modules that associated with 
airway eosinophilic inflammation
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discriminate patients in the Cluster I from those in the 
Cluster II. The AUC were 0.761 for THBS1, 0.861 for 
CCL22, 0.904 for CCR7 and 0.922 for the combination of 
the three hub genes (Fig. 7).

Validation of the identified clusters
To validate the identified clusters, we repeated the con-
sensus clustering analysis in the validation dataset 
(GSE41863). Similarly, the bar-plot indicated that the 
cluster score of each subgroup was higher than 0.8 only 
in two subgroup classifications (Additional file 3: Fig. S1). 
The consensus matrix with the consensus of k = 2 (Addi-
tional file  3: Fig. S2) displayed a well-defined 2-block 
structure and a high consistency of gene expression. 

Therefore, two clusters were identified. Overall, the 
results of the clustering analysis based on the valida-
tion dataset (GSE41863) were remarkably similar to 
the molecular subgroups identified in the dataset of 
GSE45111. (Additional file 3: Table S3).

Discussion
In the present study, the transcriptional profiles were 
analyzed and the asthma cases were classified into two 
different molecular subgroups using unsupervised con-
sensus clustering analysis, which was validated in an 
independent dataset. The transcriptional classifica-
tion revealed subgroup-specific clinical characteris-
tics, biological functions and immune status. Here, we 

Fig. 7  ROC analysis of a THBS1, b CCL22, c CCR7 and d the combination of the three hub genes for the discrimination of the identified asthma 
clusters
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have identified two molecular subgroups that were sig-
nificantly associated with asthma airway inflammation. 
Furthermore, WGCNA was applied to determine the 
key gene modules and hub genes of the identified clus-
ters. The ROC analysis illustrated that the hub genes can 
effectively distinguish the two identified clusters. This 
study highlights the heterogeneity of asthma at transcrip-
tional level and provides the implication for mechanism 
research and disease management.

Analysis of differential gene expression in our study 
suggested that there were 148 up-regulated genes and 
14 down-regulated genes in the Cluster I compared with 
the Cluster II, indicating the different gene expression 
patterns between the two subgroups. In Go enrichment 
analysis, the DEGs were mainly enriched in the items 
of immune response regulation and signal transduc-
tion, which indicated that differences in these biological 
processes may have existed between the two identified 
clusters. The following ssGSEA confirmed the results of 
biological function analyses. Compared with the Clus-
ter II, the Cluster I had higher levels of immune infil-
tration, including eosinophils, Th2 cells and mast cells. 
These cells are major effector cells for Th2 or eosinophilic 
inflammation [25]. The difference in immune infiltration 
could explain the tight association between the Cluster I 
and eosinophilic inflammation. Apart from immune cells 
related to eosinophilic inflammation, the Cluster II also 
showed a low degree of immune cell infiltration of other 
immune cells, such as activated dendritic cells, nature 
killer T cells and immature B cells. As for immune pro-
cesses, the Cluster II showed decreased scores in several 
immune processes, such as APC, type II IFN response 
and CCR. Overall, the ssGESA scores of the immune cell 
infiltration and immune processes tend to be lower in the 
Cluster II, indicating that the immunoreactivity of the 
Cluster II may not be as high as those in the Cluster I. In 
our study, we found the proportion of PGA was higher in 
Cluster II and a significant association between them was 
detected. Previous studies have indicated that PGA are 
most likely to represent a “benign” phenotype of asthma 
[26]. It may display a low-grade airway and systemic 
inflammation [27]. The “benign” traits and low degree of 
inflammation of PGA may partly explain the low immune 
scores of the Cluster II.

In our study, THBS1, CCL22 and CCR7 were identi-
fied as hub genes based on the combined analyses of 
WGCNA, PPI and gene expression analysis. THBS1 is 
an adhesive glycoprotein that mediates cell-to-cell and 
cell-to-matrix interactions. It plays an important role 
in the formation of thrombosis. It is secreted by plate-
lets, macrophages, mononuclear cells, vascular mus-
cle cells, fibroblasts and endothelial cells following the 
onset of inflammation [28]. Previous studies have found 

that platelet activation is a significant determinant of the 
severity of allergic asthma. It is positively associated with 
eosinophil activation [29]. Activated platelets can induce 
pulmonary inflammation and enhance the Th2 immune 
response by releasing the platelet δ, α and λ granules 
[30] and THBS1 is proved to be a vital marker of plate-
lets activation. Therefore the association between Th2 
inflammation in asthma and THBS1 may be connected 
via activation of platelets. In addition, THBS1 can induce 
chemotaxis of the macrophagocytes and induce a proin-
flammatory response [31]. Its direct role in inflammation 
response remains to be further clarified.

CCL22 is a kind of chemokine for several immune cells, 
including monocytes, dendritic cells, natural killer cells 
and activated T lymphocytes. It plays a role in the traf-
ficking of activated T lymphocytes to inflammatory sites 
[32]. Yamamoto et  al. reported that CCL2 could induce 
selective migration of Th2 but not Th1 cells through 
binding to chemokine receptor CCR4, which was pref-
erentially expressed by Th2 cells [33]. The mechanism 
could explain why Th2 cells migrate to asthma airways 
as T cells in bronchial mucosal or bronchoalveolar lavage 
fluid (BALF) of allergic asthma express CCR4, and mean-
while the levels of CCL22 in BALF but not Th1-selective 
chemokines are increased upon allergen challenge to the 
lung [34–37]. Apart from migration, Hirata et  al. found 
that CCL22 could promote Th2 cell differentiation from 
accelerate helper T cell differentiation to Th2 cells and 
it could augment the proliferation of differentiating Th2 
cells, which may potentiate Th2 immune response and 
contribute to eosinophilic airway inflammation [37].

CCR7 is one of the most important chemokine recep-
tors for adaptive immune cell migration. It is mainly 
expressed in lymphoid tissues and several immune cells. 
CCR7 and its ligands CCL19 and CCL21 regulate emigra-
tion of T cells and DCs to areas of lymph nodes where T 
cell priming and initiation of adaptive immune response 
occurs [38–40]. Wang et  al. found that the binding of 
CCR7 expressed in the eosinophils to CCL19 was an 
important chemotaxis signal that triggers airway eosino-
phils traffic from the airway lumen into lung-draining 
paratracheal lymph nodes in the mouse model of aller-
gic asthma. Another inflammatory cytokine, leukot-
riene C4, was highly involved in the process [41]. Mozza 
et  al. found that compared with non-allergic asthmatic 
patients, the percentages of CCR7+ memory CD4+ T 
cells were significantly higher in allergic asthma, which 
is characterized by elevated levels of Th2 cytokines and 
eosinophilic inflammation [42]. And the proportion of 
CCR7+ memory CD4+ T cell was negatively correlated 
with improved pulmonary tests and significantly associ-
ated with disease severity scores and IgE levels, showing 
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significant clinical implications in asthma and eosino-
philic inflammation [43].

Compared to the original study for GSE45111 [13], our 
study was different in many aspects. Firstly, the purpose 
of the original study was to identify gene signatures or 
biomarkers that could discriminate asthma inflammatory 
phenotypes to assist asthma management. They mainly 
focused on the genes that were differentially expressed 
between the three asthma inflammatory phenotypes and 
their diagnostic value for discrimination of the asthma 
inflammatory phenotypes. While in our study, we aimed 
to investigate the heterogeneity of asthma at gene expres-
sion level. We intended to identify molecular subtypes of 
asthma based on the transcriptional profiles. The clini-
cal features, biological functions, immune status and hub 
genes of the molecular subtypes were also investigated. 
Moreover, the study methods were also different within 
the two studies. The original study conducted logis-
tic regression and ROC analysis to test and evaluate the 
performance of the gene biomarkers. They did not per-
form bioinformatics analysis to study the gene expression 
profiles. While in our study, comprehensive bioinfor-
matic analyses, such as enrichment analysis, WGCNA, 
ssGSEA, to analyze the features of the identified clusters. 
Therefore, the two studies were totally different.

It should be noted that our study is a re-analysis of 
dataset of GSE45111. Although Baines et al. also per-
formed clustering analysis based on the dataset [10], our 
study was different from this one. Firstly, the methods 
of clustering analysis were different. Baines et al. used 
hierarchical clustering to analyze the microarray data 
while consensus clustering was used in our study. Usu-
ally, microarray data contains a relatively small sample 
size compounded by the high dimensionality of the gene 
expression data, making the clustering results especially 
sensitive to noise and are susceptible to over-fitting [43]. 
In fact, hierarchical clustering is unable to deal with noise 
and high dimensionality associated with the microarray 
gene expression data. Compared with hierarchical clus-
tering, consensus clustering improves the robustness and 
quality of clustering analysis to gene expression datasets 
[44]. Besides, the identified subgroups were not validated 
in Baines et  al.’s study. In our study, we applied differ-
ent methods to test the stability of identified subgroups, 
including PCA and t-SNE. We further used another 
dataset to validate the clustering results. Therefore, from 
methodological perspective, our results are stable. Fur-
thermore, Baines et al. focused on the clinical features of 
the identified clusters and provided more clinical infor-
mation, while our study went into more depth on bio-
informatics analysis. For example, we performed KEGG 
and ssGSEA analysis to characterize biological function 

and immune status of the identified subgroups. WGCNA 
and PPI were used to identify gene modules and hub 
genes that were associated with airway inflammation 
types. The results support the molecular heterogeneity of 
asthma and provide potential targets and framework to 
investigate asthma molecular mechanisms. These analy-
ses were not performed in Baines et al.’s study. In short, 
the two studies focused on different aspects and provided 
different implications for future study.

The present study had several limitations. Firstly, 
we identified the subgroups of asthma based upon the 
gene expression profiles in stable adult asthmatics. 
Therefore, whether it could be applied to patients with 
exacerbation or children still requires further investiga-
tion. Secondly, more important clinical characteristics 
of the asthma molecular subgroups, such as treatment 
response or exacerbation risk, could not be investigated 
due to data limitation. Thirdly, the different expression 
patterns in our subgroups still need to be prospectively 
validated in other populations.

In summary, the two identified clusters based on the 
transcriptional profiles revealed different clinical char-
acteristics, gene expression patterns, biological func-
tions and immune status. One of them (the Cluster I) 
showed a tight association with EA, which may have 
significant implication for individualized asthma man-
agement. The three hub genes, THBS1, CCL22 and 
CCR7, were likely to play an essential role in the Clus-
ter I and might prove to be potential therapeutic targets 
for newly developed treatments. Our study supports 
the molecular heterogeneity of asthma and may pro-
vide potential therapeutic targets for newly developed 
treatments and may develop a framework for a more 
in-depth study of the mechanisms of asthma.
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