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Abstract 

Background:  Nintedanib is effective for treating idiopathic pulmonary fibrosis (IPF), but some patients may exhibit 
a suboptimal response and develop on-treatment acute exacerbation (AE-IPF), hepatic injury, or mortality. It remains 
unclear which patients are at risk for these adverse outcomes.

Methods:  We analysed the demographic and clinical data, baseline plasma levels of Krebs von den Lungen-6 (KL-6) 
and surfactant protein A (SPA), and longitudinal clinical courses of a real-world cohort of IPF patients who received 
nintedanib ≥ 14 days between March 2017 and December 2020. Cox proportional-hazards regression, subdistribution 
hazards regression, and sensitivity analyses were performed to investigate the association between baseline predic‑
tors and AE-IPF, mortality, and nintedanib-related hepatic injury. The relationship between baseline predictors and 
pulmonary function decline was determined.

Results:  Fifty-seven patients were included, of whom 24 (42%) developed hepatic injury, 20 (35%) had AE-IPF, and 
16 (28%) died on-treatment. A baseline plasma KL-6 level ≥ 2.5 ng/mL, and diffusion capacity for carbon monoxide 
(DLCO) < 55% predicted, were associated with increased risk of hepatic injury (adjusted hazard ratio [aHR] was 3.46; 
95% CI 1.13–10.60; p = 0.029 for KL-6, and 6.05; 95% CI 1.89–19.32; p = 0.002 for DLCO). Both factors also predicted 
severe and recurrent hepatic injury. Patients with baseline KL-6 ≥ 2.5 ng/mL also had a higher risk of AE-IPF (aHR 
4.52; 95% CI 1.63–12.55; p = 0.004). For on-treatment mortality, baseline KL-6 ≥ 3.5 ng/mL and SPA ≥ 600 pg/mL were 
significant predictors (aHR 5.39; 95% CI 1.16–24.97; p = 0.031 for KL-6, and aHR 12.28; 95% CI 2.06–73.05; p = 0.006 for 
SPA). Results from subdistribution hazard regression and sensitivity analyses supported these findings. Patients with 
elevated baseline plasma KL-6 levels also exhibited a trend towards faster pulmonary function decline.

Conclusions:  For patients with IPF who are receiving nintedanib, we have identified baseline predictors, in particular 
plasma KL-6 levels, for the risk of adverse outcomes. Patients with these predictors may require close monitoring for 
unfavourable responses during treatment. Our findings also support the prognostic role of molecular markers like 
KL-6 and may contribute to future formulation of more individualized therapeutic strategies for IPF.
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Introduction
Idiopathic pulmonary fibrosis (IPF) is a rare but pro-
gressive and devastating interstitial lung disease [1–3]. 
The median survival after diagnosis is around three 
years, worse than that of many cancers [2–4]. Patients 
with IPF are also at risk of developing acute exacerba-
tion, which is characterized by extensive alveolar injury 
and accelerated fibrosis, leading to rapid and severe 
respiratory deterioration and even death [2, 3, 5, 6]. 
The pathogenesis of IPF is not fully understood, but 
much progress has been achieved particularly over the 
last decade [3]. Two anti-fibrotic agents with proven 
efficacy, nintedanib and pirfenidone, have recently 
become available [7, 8]. Nintedanib is a competitive 
tyrosine kinase inhibitor, interrupting pathways down-
stream of profibrotic growth factors [3, 9]. Accumulat-
ing evidence reveals that nintedanib slows the decline 
in forced vital capacity and lowers the risk of acute 
exacerbation [4, 10]. Pooled data from the initial major 
trials even revealed a possible reduction in the risk of 
on-treatment mortality [10].

Despite this, in both trials and real-world experience 
from a range of countries and ethnic groups, the thera-
peutic efficacy of nintedanib has not been universal: 
some patients receiving nintedanib might still exhibit 
a rapid decline in the pulmonary functions or develop 
acute exacerbation and even died [11–32]. In addition, 
nintedanib causes adverse reactions, the most common 
of which are gastrointestinal complaints; hepatotoxic-
ity is also a concern. Hepatic injury during nintedanib 
therapy has been consistently described in clinical tri-
als [7, 10–14] and post-marketing reports [15–32]. 
Relatively high incidence rates of hepatitis have been 
reported particularly from East Asia [19, 20, 26–28]. 
Nintedanib-related hepatic injury potentially interrupts 
the therapy and compromises first-pass metabolism, 
increasing exposure to the drug and thus the risks of 
other adverse reactions [33–35].

Pulmonary function parameters and radiographic 
features on computed tomography images are currently 
important determinants for the diagnosis and sever-
ity and prognosis assessment for IPF. However, accu-
mulating evidence shows that blood levels of certain 
lung-specific macro-molecules, such as Krebs von den 
Lungen-6 (KL-6, also known as mucin-1, a glycopro-
tein expressed on the cell membrane of type 2 alveo-
lar cells) and surfactant protein A (SPA, also secreted 
by type 2 alveolar cells), are also correlated with the 

severity of fibrosis and may serve as biomarkers for 
determining the clinical aspects of IPF [36–40]. While 
pulmonary function parameters are commonly used to 
assess the efficacy of antifibrotic treatment, the utility 
of these, as well as clinical and bio-chemical, character-
istics for predicting therapeutic response and adverse 
outcomes during antifibrotic treatment remains to be 
investigated. In this study, we hypothesized that base-
line characteristics, including blood levels of KL-6 and 
SPA, of patients with IPF could predict the risk of three 
important adverse outcomes (on-treatment acute exac-
erbation, mortality, and hepatic injury) during nint-
edanib treatment.

Methods
Study design and population
This retrospective cohort study involved patients 
with IPF at National Cheng Kung University Hospital 
(NCKUH) who had been treated with nintedanib and 
received regular follow-ups from 1 March, 2017, until 31 
December, 2020. The study was approved by the NCKUH 
institutional review board (B-ER-105-390 and A-ER-107-
193). The inclusion criteria for this study were as follows: 
naïve to anti-fibrotic therapy, aged > 50 years, diagnosed 
with IPF according to the international guidelines [41, 
42] and based on a multi-disciplinary approach, and 
received uninterrupted nintedanib therapy for ≥ 14 days. 
We followed the patients until death or 31 December, 
2020. Drug compliance was assessed upon each return 
visit. The electronic medical records of every patient 
were carefully reviewed and the following data were col-
lected: baseline demographics, comorbidities (which also 
included the echocardiographic evidence of pulmonary 
hypertension, and factors necessary for the calculation of 
the Charlson comorbidity index), serial pulmonary func-
tion parameters (recorded at least eight weeks apart), 
gender-age-physiology (GAP) stages, and pertinent clini-
cal data (including all medications of which the patient 
took at least three doses concurrently with nintedanib 
treatment within two weeks before each blood test for 
hepatic enzymes). We also checked the baseline plasma 
levels of KL-6 and SPA shortly before nintedanib treat-
ment began, via sandwich enzyme-linked immunosorb-
ent assay (ELISA), using specialized kits from Fine Test 
(Wuhan Fine Biotech, Wuhan City, China). The protocols 
for specimen processing and the ELISA are available in 
Additional file 1: Appendix A.

Keywords:  Nintedanib, Krebs von den Lungen-6, Surfactant protein A, Diffusion capacity for carbon monoxide, 
Acute exacerbation, Mortality
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Important definitions
We focused on three major on-treatment adverse out-
comes: acute exacerbation, mortality, and nintedanib-
related hepatic injury. The index date was the date when 
the first dose of nintedanib was taken. “On-treatment” 
refers to the period between the index date and either 
day 28 after the last dose of nintedanib [7] (for those who 
prematurely discontinued the therapy) or 31 December, 
2020 (for those who continued the therapy). Patients on 
the “full dose” took 150  mg of nintedanib twice daily, 
while patients on the “reduced dose” (for managing 
drug-related adverse effects) took 100 mg daily, 150 mg 
daily, or 100 mg twice daily, at the discretion of the treat-
ing pulmonologist. Acute exacerbation of IPF (AE-IPF) 
was defined according to the recent international work-
ing group report, which specifically excludes events 
with identifiable infectious or non-infectious causes of 
acute deterioration [6]. We defined “mortality” as all-
cause mortality. Nintedanib-related hepatitis injury was 
strictly defined as a blood alanine transaminase (ALT) 
level above the upper limit of normal (ULN, < 50 IU/L at 
NCKUH), with or without associated hyperbilirubine-
mia or symptoms, that could not be attributed to any 
other aetiology, which occurred while the patient was 
still receiving nintedanib treatment [26, 27, 43]. Severe 
hepatic injury was defined as an increase in blood ALT 
level to ≥ 3 × ULN. Patients were defined as having 
recurrent hepatic injury if they had already experienced 
nintedanib-related hepatic injury and recovered after 
temporary discontinuation or dose reduction of nint-
edanib, but then again developed unexplained ALT ele-
vation above the ULN upon resumption of nintedanib 
treatment. Echocardiographic evidence of pulmonary 
hypertension was defined as an estimated systolic pulmo-
nary arterial pressure (which was derived from tricuspid 
regurgitation jet velocity) ≥ 35 mmHg [44]. Serial differ-
ences in pulmonary function parameters were standard-
ized into 24-week and annual (52-week) rates of change 
using the following formulae:

24-week rate of change:

Annual (52-week) rate of change:

where FVC represents forced vital capacity and DLCO 
represents diffusion capacity of the lung for carbon 
monoxide. The subscript “first” indicates measure-
ments that were closest in time before the initiation of 
nintedanib treatment, and the subscript “last” indicates 

[(FVClast−FVCbaseline)/(time interval inweeks)]× 24

[(DLCO last−DLCObaseline)/(time interval inweeks)]× 24

[(FVClast−FVCbaseline)/(time interval inweeks)]× 52

[(DLCO last−DLCObaseline)/(time interval inweeks)]× 52

measurements that were closest in time before the last 
dose of nintedanib (for patients who prematurely discon-
tinued the therapy) or 31 December, 2020 (for patients 
who continued the therapy).

Statistical analysis
Categorical data are presented as counts and percentages, 
and continuous variables are presented as mean (stand-
ard deviation) or median (interquartile range [IQR]) if 
not normally distributed. No imputation of missing data 
was made. Variables were compared between patient 
groups using Fischer’s exact test or the Mann–Whitney 
U test, whichever was more appropriate. The optimal 
cut-off value of a continuous variable was determined 
using receiver operating characteristic (ROC) curve, 
based on the combined consideration of the area under 
the curve, accuracy, and Youden’s index. The assumption 
of proportional hazards was checked using the Shoenfeld 
test. Cox proportional-hazards regression models were 
constructed to assess the performance of candidate risk 
factors in longitudinally predicting the risks of adverse 
outcomes. When we conducted multi-variable regres-
sion analyses, in addition to including the candidate 
predictors, we routinely adjusted for the baseline GAP 
stage, Charlson comorbidity index, and duration of nin-
tedanib treatment. For acute exacerbation and hepatic 
injury, the competing risk of on-treatment mortality was 
further controlled for by subdistribution hazard regres-
sion. Sensitivity analyses were performed to assess the 
robustness of all the multi-variable models constructed. 
All tests were two-tailed, and a p-value < 0.05 was con-
sidered statistically significant. Statistical analyses were 
performed using R (Version 3.6.1) and SPSS (Version 22, 
SPSS, USA). Graphs were plotted using MedCal (Version 
16.8.4, MedCal Software, Belgium).

Results
Sixty patients received nintedanib treatment and were 
followed-up at NCKUH from 1 March, 2017, until 31 
December, 2020. Three patients were excluded due to 
incomplete follow-ups; the remaining 57 were included 
in this study. Figure 1 shows the inclusion and exclusion 
flowchart for this study.

Table  1 summarizes the baseline characteristics and 
adverse outcomes of all the included patients. The 
study cohort was predominantly male and had a mean 
age of 75.4 ± 9.4  years. Fifteen (26%) patients exhibited 
sonographic evidence of fatty liver before they began 
receiving nintedanib, but none had cirrhosis, and all 
had normal levels of hepatic enzymes at baseline. The 
median duration of nintedanib treatment was 345  days 
(IQR, 91–706  days). Overall, 24 (42%) patients devel-
oped hepatic injury, manifesting as an asymptomatic 
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elevation in the blood ALT level without concurrent 
hyperbilirubinemia. Eight patients had severe injury 
(ALT ≥ 3 × ULN). All the hepatic injury events were 
nonfatal and spontaneously resolved following transient 
reduction of the nintedanib dosage or temporary with-
drawal of nintedanib, although 14 patients developed 
recurrent hepatic injury after resumption of nintedanib 
treatment. Twenty (35%) patients had on-treatment AE-
IPF, and 16 (28%) patients died on treatment. Regarding 
the timing of the first onset of these adverse outcomes, 
all hepatic injury occurred within one year of the com-
mencement of treatment, and in all cases the onset of AE-
IPF occurred within three years of the commencement of 
treatment. Of the patients who died on-treatment, six 
(38%) did so within the first year. All the on-treatment 
mortality events occurred within four years of the com-
mencement of treatment (Additional file 1: Table S1). It is 
worth noting that in those patients who developed both 
hepatic injury and AE-IPF, all AE-IPF events occurred 
after the hepatic injury.

Compared to patients without hepatic injury, patients 
who developed hepatic injury had significantly higher 
baseline levels of plasma KL-6 (2.72  ng/mL [IQR 1.82–
4.05] and 0.94  ng/mL [IQR 0.44–1.63], respectively; 
p < 0.001) and significantly lower DLCO (42% predicted 
[IQR 31–54] and 60% predicted [IQR 53–83], respec-
tively; p = 0.001). Patients with hepatic injury also exhib-
ited a borderline-significant pattern of higher plasma 
SPA, lower pulse oximetry (breathing ambient air), and 
higher frequency of pulmonary hypertension (Addi-
tional file  1: Table  S2). No significant difference was 
identified in the dosing, the time to the first test for 
hepatic enzymes, or the concurrently used medication 

(Additional file  1: Table  S3) between patients with and 
without hepatic injury. Patients who had on-treatment 
AE-IPF also had significantly higher plasma levels of 
KL-6 (3.11  ng/mL [IQR 1.38–5.07] versus 1.03  ng/mL 
[IQR 0.48–1.86]; p = 0.001) and SPA (412.6 pg/mL [IQR 
181.8–478.5] versus 235.6  pg/mL [IQR 157.3–379.9]; 
p = 0.042) than those who did not have AE-IPF. They also 
had a borderline-significant pattern of a higher frequency 
of pulmonary hypertension than patients without AE-IPF 
(Additional file 1: Table S4). The 16 patients who died on-
treatment had significantly higher baseline plasma levels 
of KL-6 (3.61 ng/mL [IQR 1.28–8.22] versus 1.31 ng/mL 
[IQR 0.48–2.20]; p = 0.001) and SPA (447.9 pg/mL [IQR 
393.5–697.3] versus 226.0  pg/mL [IQR 140.2–373.7]; 
p < 0.001) than those who survived. They also had sig-
nificantly higher frequencies of pulmonary hypertension 
(88% versus 54%; p = 0.03) and on-treatment AE-IPF 
(75% versus 20%; p < 0.001) than patients who survived 
(Additional file  1: Table  S5). These variables were thus 
selected as candidate predictors for further analyses. The 
results from the ROC analysis for selecting cut-off values 
for continuous-variable candidate predictors are summa-
rized in Additional file 1: Table S6. It is worth noting that 
there was no significant difference between patients with 
and without adverse outcomes in either their dosing regi-
men or the time intervals between blood sampling, base-
line pulmonary functions, or the initiation of nintedanib 
treatment (Additional file 1: Tables S2, S4, S5).

In the univariate and multi-variable Cox proportional-
hazards regression analyses, only two candidate predic-
tors (KL-6 ≥ 2.5 ng/mL and DLCO < 55% predicted; Fig. 2a, 
b show the distribution of patients with respect to these 
cut-off values) consistently yielded significantly elevated 
crude and adjusted hazard ratios for nintedanib-related 
hepatic injury (the adjusted hazard ratio [aHR] for KL-6 
was 3.46 [95% CI 1.13–10.60], p = 0.029; and the aHR 
for DLCO was 6.05 [95% CI 1.89–19.32], p = 0.002). Pul-
monary hypertension yielded a borderline-significant 
crude hazard ratio, but that failed to reach statistical 
significance in the multi-variable model (Fig.  3a and 
Additional file 1: Table S7). A baseline KL-6 ≥ 2.5 ng/mL 
and DLCO < 55% predicted was also correlated with an 
increased risk of severe and recurrent hepatic injury dur-
ing nintedanib treatment. For severe hepatic injury, the 
adjusted odds ratio (aOR) from the multi-variable ordi-
nal logistic regression analysis was 9.58 (95% CI 1.97–
55.67; p = 0.007) for KL-6 and 10.89 (95% CI 2.63–54.25; 
p = 0.002) for DLCO. For recurrent hepatic injury, the aOR 
was 26.01 (95% CI 4.19–260.13; p = 0.001) for KL-6 and 
60.28 (95% CI 8.30–823.62; p < 0.001) for DLCO (Addi-
tional file 1: Table S8). Ikeda et al. reported that patients 
with BMI < 22  kg/m2 or BSA < 1.58 m2 would have an 
increased risk for nintedanib-related hepatitis [26, 27]. 

Fig. 1  The inclusion and exclusion flowchart for this study
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Table 1  Baseline characteristics and adverse outcomes of the 57 patients

Categorical data are presented as counts and percentages, and continuous variables were presented as mean (± standard deviation) or median (interquartile range) 
if non-normally distributed. AE-IPF, acute exacerbation of idiopathic pulmonary fibrosis; DLCO, diffusion capacity for carbon monoxide; FVC, forced vital capacity; GAP, 
gender, age, physiology; KL-6, Krebs von den Lungen-6; LV, left ventricular; SPA, surfactant protein A

Baseline characteristics and outcome events Results

Age, years 75.4 ± 9.4

Sex

 Female, n (%) 9 (16)

 Male, n (%) 48 (84)

Body height, cm 162.2 ± 7.7

Body weight, kg 63.5 ± 10.8

Body mass index, kg/m2 24.0 (21.5 to 26.5)

Body surface area, m2 1.67 ± 0.15

Charlson comorbidity index 5 (3 to 6)

Echocardiographic evidence of pulmonary hypertension, n (%) 36 (63)

Echocardiographic evidence of LV dysfunction, n (%) 2 (4)

Dyslipidaemia, n (%) 26 (46)

Chronic hepatitis B, n (%) 6 (11)

Chronic hepatitis C, n (%) 5 (9)

Other non-viral liver condition, n (%) 3 (5)

Fatty liver on baseline sonography, n (%) 15 (26)

Cigarette smoking status

 Never smoker, n (%) 26 (46)

 Current smoker, n (%) 4 (7)

 Former smoker, n (%) 27 (47)

Baseline plasma KL-6 level, ng/mL 1.48 (0.55 to 2.82)

Baseline plasma SPA level, pg/mL 283.6 (157.3 to 435.4)

Baseline oximetry breathing ambient air, % 95 (93 to 97)

Baseline DLCO, mmol/min/kPa 2.78 (2.11 to 3.96)

Baseline DLCO, % predicted 55 (38 to 70)

Baseline FVC, L 2.02 ± 0.49

Baseline FVC, % predicted 67 ± 12

Stages based on the GAP index

 Stage 1, n (%) 14 (25)

 Stage 2, n (%) 31 (54)

 Stage 3, n (%) 12 (21)

Nintedanib-related hepatic injury, n (%) 24 (42)

On-treatment AE-IPF, n (%) 20 (35)

On-treatment mortality, n (%) 16 (28)

Duration of nintedanib therapy, days 345 (91 to 706)

Time to first nintedanib-related hepatic injury, days 69 (17 to 156)

Time to first on-treatment AE-IPF, days 238 (111 to 431)

Time to on-treatment mortality, days 486 (217 to 811)

Time between plasma sampling and nintedanib initiation, days 6 (0 to 28)

Time between baseline pulmonary functions and nintedanib initiation, days 28 (16 to 51)

Time between plasma sampling and baseline pulmonary functions, days 24 (12 to 81)

Annual rate of change in FVC, L/52 weeks − 0.13 (− 0.26 to + 0.06)

Annual rate of change in DLCO, % predicted/52 weeks − 9 (− 29 to − 2)
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Fig. 2  Distribution of patients above and below the cut-off values of the major predictors for the three adverse outcomes. Numbers within the 
bars are the patient counts. a KL-6 level versus nintedanib-related hepatic injury, b DLCO % predicted versus nintedanib-related hepatic injury, c KL-6 
level versus on-treatment AE-IPF, d KL-6 level versus on-treatment mortality, and e SPA level versus on-treatment mortality. p-values were derived 
from Fisher’s exact test. Number of patients with available data: 54 for KL-6, 55 for DLCO % predicted, and 55 for SPA. Abbreviations AE-IPF, acute 
exacerbation of idiopathic pulmonary fibrosis; DLCO, diffusion capacity for carbon monoxide (in % predicted); KL-6, Krebs von den Lungen-6; SPA, 
surfactant protein A
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However, we found no significant differences in BMI or 
BSA between patients with and without hepatic injury 
(Additional file 1: Table S2). Univariate regression analy-
ses involving BMI and BSA (using the cut-off values pro-
posed by Ikeda et al.) also found no significant differences 
(Fig. 3a and Additional file 1: Tables S7 and S8). With the 
same cut-off value as for hepatic injury (2.5 ng/mL), the 
baseline plasma KL-6 level was the only significant pre-
dictor of on-treatment AE-IPF in both the univariate 
and the multi-variable Cox proportional-hazards regres-
sion (aHR 4.52; 95% CI 1.63–12.55; p = 0.004; Fig. 3b and 
Additional file 1: Table S9). Figure 2c shows the distribu-
tion of patients above and below this cut-off value. For 
on-treatment mortality, the baseline plasma KL-6 level 
was also a significant predictor, but with a cut-off value 
of 3.5  ng/mL (aHR 5.39; 95% CI 1.16–24.97; p = 0.031). 
Another significant predictor in the multi-variable 
model for on-treatment mortality was baseline plasma 
SPA level, with a cut-off value of 600 pg/mL (aHR 12.28; 
95% CI 2.06–73.05; p = 0.006; Fig. 2d, e show the distri-
bution of patients above and below these cut-off values, 
while Fig. 3c shows the results of the Cox proportional-
hazards regression analyses). Although the patients who 
died on-treatment had a significantly higher frequency 
of pulmonary hypertension at baseline and AE-IPF on 
treatment, these two predictors were not statistically sig-
nificant in the regression models (Fig. 3c and Additional 
file 1: Table S10). To control for the competing risk of on-
treatment mortality, we performed a multi-variable sub-
distribution hazard regression analysis for hepatic injury 
and for on-treatment AE-IPF, which yielded concordant 
and supportive results (the lower parts of Fig. 3a, b, and 
the far-right panels of Additional file  1: Tables S7 and 
S9). In addition, sensitivity analyses showed that, even in 
the presence of an unidentified confounder, the above-
mentioned multi-variable Cox models and the predic-
tors thereby derived yielded significantly elevated hazard 
ratios for the corresponding adverse outcomes (Addi-
tional file 1: Figures S1a to S1e).

Because plasma KL-6 level was the only baseline factor 
that significantly predicted the risk of all three adverse 
outcomes, we further explored the relationship between 
KL-6 level and treatment response in terms of pulmo-
nary function decline. Forty-four and 34 patients had at 

least one follow-up FVC and DLCO assessment, respec-
tively, at least eight weeks later and while still on-treat-
ment. For FVC, 40 patients had a time interval between 
the baseline and the last measurements of more than six 
months, of whom the time interval was more than one 
year in 25 patients (median interval, 409 days; IQR, 265–
712). For DLCO, 32 patients had a time interval between 
the measurements of more than six months, of whom 
the time interval was more than one year in 19 patients 
(median interval, 393  days; IQR, 280–767). The over-
all annual rate of change in FVC and DLCO in the cohort 
was − 0.13 L (IQR, − 0.26 to + 0.06) and − 9% (IQR, − 29 
to − 2), respectively (Table  1). However, patients with 
KL-6 ≥ 2.5 ng/mL exhibited a significantly higher annual 
rate of decline in FVC than patients with KL-6 < 2.5 ng/
mL, but a similar annual rate of decline in DLCO (Fig. 4a, 
b). A significantly higher proportion of patients with 
KL-6 ≥ 2.5  ng/mL had a decline in FVC of ≥ 5% over 
24 weeks than patients with KL-6 < 2.5 ng/mL. For DLCO, 
a higher proportion of patient with KL-6 ≥ 2.5  ng/mL 
had a decline ≥ 10% over 24  weeks than patients with 
KL-6 < 2.5  ng/mL, although this difference was not sta-
tistically significant (left half of Fig.  4e, f ). Similar pat-
terns of pulmonary function decline were observed 
with a KL-6 cut-off value of 3.5 ng/mL (Additional file 1: 
Figures  S2a to S2d). Even if we excluded patients with 
on-treatment AE-IPF from this analysis, we observed 
similar trends in pulmonary function decline, in addition 
to a nonsignificant pattern of a faster annual decrease in 
DLCO, in patients with KL-6 ≥ 2.5 ng/mL (Fig. 4c, d, and 
the right half of Fig. 4e, f ).

Discussions
In this study, we confirmed our hypothesis and found 
that for patients with IPF who receive nintedanib treat-
ment, certain baseline markers predict the risk of on-
treatment adverse outcomes. Specifically, patients with 
baseline plasma KL-6 levels ≥ 2.5 ng/mL had a higher risk 
of nintedanib-related hepatic injury (including severe and 
recurrent injury) and on-treatment acute-exacerbation of 
IPF. Patients with baseline plasma KL-6 levels ≥ 3.5  ng/
mL had a higher risk of on-treatment mortality. Hav-
ing a baseline DLCO < 55% predicted and plasma SPA 

Fig. 3  Forest plots showing the results of Cox proportional-hazards regression and subdistribution hazard regression analyses of candidate 
predictors for a nintedanib-related hepatic injury, b on-treatment acute exacerbation of IPF, and c on-treatment mortality. In addition to the 
candidate predictors shown, all the multi-variable regression models were also adjusted for gender-age-physiology (GAP) stage, Charlson 
comorbidity index, and treatment duration. Abbreviation and Notes AE-IPF, acute exacerbation of idiopathic pulmonary fibrosis; BMI, body mass 
index; BSA, body surface area; DLCO, diffusion capacity for carbon monoxide (in % predicted); HR, hazard ratio; KL-6, Krebs von den Lungen-6; PH, 
echocardiographic pulmonary hypertension; SPA, surfactant protein A; SPO2, pulse oximetry (while breathing ambient air). *This cut-off value was 
proposed by Ikeda et al. [26]. **This cut-off value was proposed by Ikeda et al. [27]

(See figure on next page.)
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Fig. 4  Comparison between patients with baseline plasma KL-6 < 2.5 ng/mL with patients with KL-6 ≥ 2.5 ng/mL in: a annual rate of FVC decline; b 
annual rate of DLCO decline; c annual rate of FVC decline after excluding patients with AE-IPF; d annual rate of DLCO decline after excluding patients 
with AE-IPF; e proportion of patients with ≥ 5% FVC decline over 24 weeks; f proportion of patients with ≥ 10% DLCO decline over 24 weeks. In 
panels a to d, data are presented as medians with inter-quartile ranges, and p-values were derived from the Mann Whitney U test. In panels e and f, 
data shown are proportions of patients in each subgroup, and p-values were derived from Fisher’s exact test. Abbreviation AE-IPF, acute exacerbation 
of idiopathic pulmonary fibrosis; DLCO, diffusion capacity for carbon monoxide; FVC, forced vital capacity; KL-6, Krebs von den Lungen-6
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levels ≥ 600  pg/mL was also associated with increased 
risk of hepatic injury and on-treatment mortality, respec-
tively. In addition, regardless of which cut-off values for 
KL-6 was used (2.5 or 3.5  ng/mL), a pattern of greater 
on-treatment decline in FVC and DLCO was observed in 
patients whose baseline plasma KL-6 levels were above 
the cut-off value.

The recent introduction of antifibrotic therapy has been 
a breakthrough in the management of IPF. Although it is 
not a curative therapy and its efficacy for reducing mor-
tality remains inconclusive, nintedanib has been shown 
to halt pulmonary function decline and is likely to reduce 
the risk of acute exacerbation. [13, 16, 19, 20]. However, 
not all patients receiving nintedanib exhibit the same 
favourable response. It remains unclear whether and how 
we can predict who will benefit most from this treat-
ment and who will have a poor response or even develop 
adverse outcomes. On the other hand, nintedanib has 
been known to cause drug-induced liver injury ever since 
its early major trials [7, 10, 24, 45]. Hepatic impairment 
has also consistently been reported in real-world data 
from various countries (1.6–9.6% of treated patients) [15, 
17, 18, 21–25], and as well as in the recent INPULSIS-
ON and INBUILD trials [13, 14]. Late-onset hepatotox-
icity has also been described [46]. Data from East Asia 
have shown relatively high incidence rates of hepatitis, 
reaching 67.6% [19, 20, 26–29]. In our study cohort, 42% 
of patients developed hepatic injury.

Functional parameters like FVC and DLCO are impor-
tant for diagnosing and assessing IPF [16, 20, 47, 48]. 
Serial decline in pulmonary function parameters is also 
associated with increasing risk of mortality [49, 50]. 
However, these parameters may be insensitive to early 
disease or minor progression, and they are also subject 
to variation resulting from suboptimal testing procedures 
and patient-specific factors [51–54]. The blood levels of 
circulating lung-specific macromolecules such as KL-6 
[38, 39, 55–58] and SPA [37, 59] appear to correlate with 
the severity and prognosis of IPF. Yokoyama et al. retro-
spectively studied 23 patients with IPF and found that a 
high baseline serum KL-6 level (≥ 1000 U/mL) was asso-
ciated with significantly diminished survival [56]. Using 
the same cut-off value, Wakamatsu et  al. also showed 
that an initially high serum KL-6 level with a subsequent 
increasing pattern was associated with poor survival and 
a steep decline in FVC [57]. In addition, Ohshimo et al. 
proposed that a high baseline serum KL-6 level (≥ 1300 
U/mL) predicts a subsequent risk of acute exacerbation 
[58]. However, none of the patients included in these 
studies received nintedanib or any other anti-fibrotic 
treatment. Bergantini et al. followed 23 patients with IPF 
who received nintedanib for 12  months and found that 
uninterrupted nintedanib treatment may have stabilized 

their serum KL-6 levels in serial tests, and that variation 
in serum KL-6 levels was correlated with serial varia-
tions in DLCO [60]. Yoshikawa et  al. analysed data from 
49 patients receiving anti-fibrotic treatment (including 26 
who were receiving nintedanib) and found that the pat-
terns of change in serum SPA, surfactant protein D, and 
KL-6 levels three and six months into treatment were 
correlated with the rate of deterioration in FVC and DLCO 
[61]. Building on these pioneering findings, the present 
study is novel in showing that the baseline levels of KL-6 
in particular, and SPA, have a predictive role in patients 
with IPF who receive nintedanib treatment, not only for 
mortality and pulmonary function deterioration, but also 
for other clinically important outcomes like acute exac-
erbation and hepatic injury. The findings of our study 
highlight the heterogeneity of patients with IPF, identify 
subgroups of patients who may have a poor response 
and adverse outcomes despite ongoing nintedanib anti-
fibrotic treatment, and further support the clinical utility 
of blood molecular markers (particularly KL-6) for IPF.

We suspect that the mechanism underlying the asso-
ciation between the predictors we have identified and 
the risk of the three adverse outcomes is related to the 
severity of lung parenchymal fibrotic destruction and 
overall physical frailty. The blood levels of KL-6 and SPA 
probably reveal the degree of injury and dysfunction of 
type 2 alveolar cells, and the associated fibrotic disrup-
tion of the alveolar-endothelial interface [39, 55]. Sup-
porting this rationale is the fact that, when we stratified 
the cohort according to the level of plasma KL-6 using 
a cut-off value 2.5 ng/mL (as shown in Additional file 1: 
Table  S11), we found that patients with KL-6 ≥ 2.5  ng/
mL indeed had more severe physiological impairment 
and physical frailty than those with KL-6 < 2.5  ng/mL. 
This was reflected by differences in relevant clinical indi-
ces: significantly lower body weights, body surface area, 
and DLCO; significantly higher frequencies of pulmonary 
hypertension; and borderline-significant patterns of 
lower body mass index and higher frequencies of GAP-
stage-3 disease. Interestingly, in the statistical analyses to 
identify predictors for on-treatment adverse outcomes, 
these clinical indices individually did not perform as 
well as KL-6 or, to a lesser extent, SPA. This can prob-
ably be explained by the fact that KL-6 and SPA indicate 
disease severity at the histological-molecular level. They 
are therefore less susceptible to confounding effects from 
comorbidities, and variations in function test procedures, 
than other clinical or functional indices. Considering that 
pharmacodynamically nintedanib can only slow down 
and not reverse the fibrogenesis [3, 9], it is plausible that 
patients with higher levels of KL-6 and SPA (indicating 
more severe fibrotic destruction) would be less likely to 
exhibit a strong therapeutic response and more likely 
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to progress towards unfavourable outcomes. This pro-
posed mechanism may also account for the enhanced 
risk of nintedanib-related hepatic injury. Patients with 
elevated KL-6 and/or low DLCO probably already had 
advanced IPF and may have experienced frequent epi-
sodes of hypoxemia (either resting or exertion-induced). 
Hypoxemia can interfere with the oxygen-demanding 
steps of nintedanib metabolism (such as glucuronida-
tion by UGT-enzymes) in hepatocytes, thereby retard-
ing the clearance of potentially harmful metabolites [35, 
62]. The higher risk of hepatic injury appears not to be 
the direct consequence of increased circulating KL-6 
per se, because circulating mucins are cleared mainly by 
hepatic endothelial cells and Kupffer cells, rather than by 
hepatocytes [63]. Further research to ascertain whether 
our proposed mechanisms are valid would be helpful and 
inspiring.

This study has some limitations. Due to the overall rar-
ity of IPF [2, 3, 64], the size of our study cohort is rela-
tively small. Nevertheless, our findings, which are derived 
from a detailed real-world database with extended lon-
gitudinal follow-up, do provide insights into important 
clinical issues. In addition, we included only patients of 
Han Chinese ethnicity who were followed at a single ter-
tiary center in Taiwan. Genetic polymorphisms of KL-6 
(such as the rs4072037 single nucleotide polymorphism, 
which was not checked in the present study) have been 
described. These may result in different cut-off thresh-
olds in different ethnicities for discriminating between 
patients with and without interstitial lung diseases 
(including IPF) [65]. It remains to be determined whether 
such polymorphisms may also effect the cut-off thresh-
olds for predicting adverse outcomes. Furthermore, we 
did not include subsequent KL-6 measurements, and 
therefore could not determine the relationship between 
longitudinal trends in KL-6 levels and adverse clinical 
outcomes. Future research involving serial measurements 
of KL-6 and a larger population with greater diversity, 
e.g., in both ethnicity and pulmonary spirometry results, 
or including patients with other progressive fibrosing 
interstitial lung disease (PF-ILDs) [14, 66], would help to 
validate the generalizability of our findings and provide 
more information about the clinical utility of KL-6 levels.

Conclusions
For patients with IPF receiving nintedanib treatment, 
their baseline plasma level of KL-6 predicted their risk of 
on-treatment acute exacerbation, mortality, and hepatic 
injury (including severe and recurrent injury). Patients 
with elevated baseline plasma KL-6 levels also exhibited 
a pattern of more rapid pulmonary function decline. 
Additionally, an initially high plasma SPA level and low 

DLCO were also associated with adverse on-treatment 
outcomes. The findings of this study may help to iden-
tify patients for whom close monitoring for unfavourable 
responses during nintedanib treatment would be impor-
tant. It may also contribute to the future formulation of 
more individualized therapeutic strategies and support 
the prognostic roles of blood molecular markers for IPF 
in real-world clinical practice.
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