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Tauroursodeoxycholic acid alleviates 
pulmonary endoplasmic reticulum stress 
and epithelial‑mesenchymal transition 
in bleomycin‑induced lung fibrosis
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Abstract 

Background:  Several studies demonstrate that endoplasmic reticulum (ER) stress-mediated epithelial-mesenchymal 
transition (EMT) is involved in the process of bleomycin (BLM)-induced pulmonary fibrosis. Tauroursodeoxycholic acid 
(TUDCA), a bile acid with chaperone properties, is an inhibitor of ER stress. This study aimed to investigate the preven‑
tive effects of TUDCA on BLM-induced EMT and lung fibrosis.

Methods:  The model of lung fibrosis was established by intratracheal injection with a single dose of BLM (3.0 mg/kg). 
In TUDCA + BLM group, mice were intraperitoneally injected with TUDCA (250 mg/kg) daily.

Results:  BLM-induced alveolar septal destruction and inflammatory cell infiltration were alleviated by TUDCA. BLM-
induced interstitial collagen deposition, as determined by Sirius Red staining, was attenuated by TUDCA. BLM-induced 
elevation of pulmonary α-smooth muscle actin (α-SMA) and reduction of pulmonary E-cadherin were attenuated 
by TUDCA. BLM-induced pulmonary Smad2/3 phosphorylation was suppressed by TUDCA. BLM-induced elevation 
of Ki67 and PCNA was inhibited by TUDCA in mice lungs. In addition, BLM-induced elevation of HO-1 (heme oxyge‑
nase-1) and 3-NT (3-nitrotyrosine) was alleviated by TUDCA. Finally, BLM-induced upregulation of pulmonary GRP78 
and CHOP was attenuated by TUDCA.

Conclusions:  These results provide evidence that TUDCA pretreatment inhibits Smad2/3-medited EMT and subse‑
quent lung fibrosis partially through suppressing BLM-induced ER stress and oxidative stress.
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Background
Idiopathic pulmonary fibrosis (IPF) is characterized by 
excessive deposition of collagen, leading to death due to 
the lack of effective therapies [1, 2]. Bleomycin (BLM), an 

efficacious anti-cancer chemotherapeutic agent, causes a 
dose-dependent interstitial lung fibrosis [3, 4]. The model 
of BLM-evoked lung fibrosis has been used extensively 
in animal experiments over the past years for resembling 
human interstitial pulmonary fibrosis [5, 6]. Although the 
mechanism has not completely been clarified, alveolar 
epithelial damage, interstitial inflammation and trans-
forming growth factor (TGF)-β/Smad2/3-mediated 
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epithelial-mesenchymal transition (EMT) play a vital role 
in the pathogenesis of BLM-induced lung fibrosis [7].

There is increasing evidence that alveolar epithelial 
damage and lung fibrosis are associated with oxidative 
stress [8]. Clinical observation found that lipid perox-
ide levels were higher in patients with IPF than those 
in healthy subjects [9]. Animal experiment showed that 
administration with antioxidant alleviated BLM-induced 
lung fibrosis [10]. On the other hand, several studies 
have confirmed that endoplasmic reticulum (ER) stress 
and unfolded protein response (UPR) are involved in 
BLM-induced pulmonary EMT and lung fibrosis [11, 
12]. Tauroursodeoxycholic acid (TUDCA), a hydrophilic 
bile acid, has been effectively used to treat cholestasis 
[13]. Recently, several studies found that TUDCA allevi-
ated non-liver diseases, such as intestinal inflammation 
and neurodegenerative disorders, through suppressing 
ER stress [14, 15]. However, further study is required to 
determine whether TUDCA alleviates BLM-induced pul-
monary fibrosis.

The objective of this study is to investigate whether 
TUDCA has a therapeutic effect on BLM-induced EMT 
and subsequent lung fibrosis in a mouse model. Our 
results provide experimental evidence that TUDCA 
attenuates pulmonary EMT and subsequent lung fibro-
sis partially through suppressing BLM-induced oxidative 
stress and ER stress.

Methods
Animals and treatments
BLM was purchased from HiSUN PFIZER Pharmaceu-
ticals Co., Ltd; Zhejiang, China. TUDCA was prepared 
from EMD Millipore Corporation; Billerica, MA. Adult 
male C57BL/6  J (7  weeks-old, 21–23  g) mice were pro-
vided by Beijing Vital River Laboratory Animal Tech-
nology Co., Ltd (Beijing, China) and housed under a 
natural day/night cycle room with comfortable environ-
ment (temperature 20–25  °C, humidity 45–50%). Mice 
were supplied with enough food and water. Based on the 
previous studies of our laboratory and power calculation 
analysis, 80 mice were used in this study [11, 12]. Eighty 
mice were divided into 4 groups randomly. The experi-
mental protocol was shown in Additional file 1: Figure S1. 
In TUDCA alone and BLM + TUDCA group, mice were 
intraperitoneally injected with TUDCA (250 mg/kg) once 
a day for 21  days. In BLM alone and BLM + TUDCA 
group, mice were intratracheally injected with a single 
dose of BLM (3.0 mg/kg, 1 mg bleomycin = 1000 IU bleo-
mycin). Mice were intraperitoneally injected with saline 
and administered with saline by intratracheal injection in 
control group. The dose of BLM and the number of mice 
based on existing literature [11]. The dose of TUDCA 
based on existing literature [16]. Two mice were died in 

the BLM group. All mice were euthanized at 21 d after 
BLM injection. Left lungs were fixed for hematoxylin and 
eosin (H&E) staining and Masson trichrome staining. 
Right lungs were harvested and homogenized in liquid 
nitrogen for immunoblots, immunohistochemistry and 
RT-PCR [17]. This study was approved by the Associa-
tion of Laboratory Animal Sciences and the Center for 
Laboratory Animal Sciences at Anhui Medical University 
(Permit Number: 13–0016). All procedures on animals 
followed the Guide for the Care and Use of Labora-
tory Animals published by the US National Institutes of 
Health (NIH Publication No. 85–23, revised 1996).

Histology and pulmonary collagen identification
The left lungs of the mice were collected and fixed with 
4% paraformaldehyde solution. Lung tissue sections were 
stained with hematoxylin eosin (H&E) and observed 
under a light microscope by a blinded and experienced 
investigator. Morphological changes were scored absent 
(0), mild (1), moderate (2) or severe injury (3) based on 
the presence of exudates, hyperemia/congestion, neu-
trophilic infiltrates, intraalveolar hemorrhage/debris, 
and cellular hyperplasia. HE staining and pathologi-
cal scores were conducted based on the existing litera-
ture [11]. Mice in BLM-exposed group showed dim 
hair, loss of appetite and decreased activity. However, 
the health condition was better in control, TUDCA and 
BLM + TUDCA groups than these in BLM group. Col-
lagen deposition in lung tissue was measured through 
Sirius Red staining. The percentage of collagen deposi-
tion area was determined using Image J Pro software. The 
quantification of images was performed by two investiga-
tors which were blinded to the experimental groups. Ten 
mice per group were used. Twelve images were randomly 
selected from similar lung lobe in every mouse at ×200 
magnification. The hydroxyproline assay were performed 
in mice lungs according to the previous study [18].

Immunoblots
The protein extraction and quantitative analysis were 
carried out based on the existing literature [19]. Briefly, 
mouse lung tissue was fully lysed in RIPA buffer and the 
appropriate protein concentration was determined. For 
immunoblots, equal amounts of protein from different 
treatment groups were added in sodium lauryl sulfate 
polyacrylamide gel and transferred to the membranes 
when the protein ladder was electrophoresed to the 
appropriate position. The membranes were incubated 
with different primary antibodies (α-SMA, phosphoryl-
ated-Smad2, phosphorylated-Smad3, Smad2/3, etc.) for 
different time. The membranes were washed in the PBST 
solution for three times, followed by incubating with dif-
ferent secondary antibodies. Antibodies against Ki-67, 
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GRP78, E-cadherin, CHOP (C/EBP-homologous protein) 
and p-Smad2 were provided by Cell Signaling Technol-
ogy (Beverley, MA). Antibodies against PCNA, α-SMA, 
p-Smad3 and Smad2/3 were provided by Abcam (Cam-
bridge, UK). Antibody against β-actin was provided by 
Sigma Chemical Co., (St. Louis, MO). Antibodies against 
HO-1, 3-NT and secondary antibodies were provided by 
Santa Cruz Biotechnology Inc. (Santa Cruz, CA). Anti-
bodies information was shown in Supplemental Table 1. 
Membrane signal was detected using ECL detection kit 
(Advansta Inc., California, USA). β-actin was used as a 
reference in the present study. Ten mice per group were 
used. Representative blots were selected and used in the 
figures.

Immunohistochemistry (IHC)
Pulmonary α-SMA, p-Smad3, 3-NT and Ki67 were 
detected using immunohistochemistry (IHC). Briefly, 
lung tissues were fixed in paraformaldehyde, dehydrated 
and embedded. Endogenous peroxidases were blocked in 
3% H2O2. Antigen retrieval was performed in the boiled 
citrate buffer for 4  min at an interval of 5  min, total 3 
times. After inactivation of endogenous peroxidase and 
serum blocking, primary antibodies were incubated at 
4℃ overnight. Then, goat anti-rabbit and goat anti-mouse 
IgG (1: 1000) were incubated 2 h at 37℃. Eventually, aspi-
rate the primary antibody with a pipette, color reaction 
was detected with biotin-streptavidin peroxidase system 
[20]. Moreover, in order to suppress nonspecific stain-
ing, positive and negative controls were performed in this 
study. Negative control was defined as which primary 
antibody or second antibody were replaced with PBS. 
Positive control was defined as which lung sections of 
confirmed pulmonary fibrosis in the previous study were 
performed through IHC staining [11, 12]. Ten mice per 
group were used. Representative images were selected 
and used in the figures.

RNA extraction and RT‑PCR analysis
Total RNA extraction was referred to existing literature 
[21] and cDNAs were produced by reverse transcription 
reagent kit (Promega, Madison, USA). Real-time RT-PCR 
was conducted in LightCycler480 Instrument (Roche 
Diagnostics, Germany). Primers for real-time RT-PCR 
were listed as following: Tgf-β (F, TTC​CGC​TGC​TAC​
TGC​AAG​TCA; R, GGG​TAG​CGA​TCG​AGT​GTC​CA), 
18S (F, GTA​ACC​CGT​TGA​ACC​CCA​TT; R, CCA​TCC​
AAT​CGG​TAG​TAG​CG). Gene expression was normal-
ized to 18S.

Statistical analyses
Statistical analyses were performed using SPSS software 
(version 23.0). Figures were produced using GraphPad 

Prism 7.0. The normality of distribution was analyzed 
using Kolmogorov–Smirnov test. Continuous variables 
were expressed as means ± S.E.M. or medians with inter-
quartile ranges. Differences among different groups in 
normally distributed data were analyzed by ANOVA and 
Tukey’s test. Data non-normally distributed were ana-
lyzed by nonparametric test (Kruskal–Wallis test and 
Mann–Whitney U test). P < 0.05 was regarded as statisti-
cally significant.

Results
TUDCA mitigates BLM‑induced pulmonary histological 
damage and collagen deposition in mice
There was no death in Control and TUDCA groups. Bleo-
mycin exposure induced death on the 4–7th and 14–17th 
days after the administration. Eight mice were died in 
the process of BLM-induced pulmonary fibrosis. There 
was no difference of healthy condition between Control 
and TUDCA groups. BLM exposure induced a dim hair, 
decreased appetite, activity and body weight. The healthy 
condition was better in Control and TUDCA groups than 
these in BLM and BLM + TUDCA groups. The average 
weight in four groups was as follows: Control: 25.0  g, 
TUDCA: 24.3  g, BLM: 19.5  g, BLM + TUDCA: 21.1  g. 
To investigate whether TUDCA alleviate BLM-induced 
pathological damage and collagen deposition of pulmo-
nary fibrosis. H&E staining and Sirius Red staining was 
performed on lung tissue sections. According to H&E 
staining, the main histological damages in BLM-treated 
mice was alveolar septal destruction. Interestingly, pre-
treatment with TUDCA attenuated BLM-induced alveo-
lar septal destruction in mice lungs (Fig. 1a, b). Sirius Red 
staining showed a large amount of collagen deposition in 
pulmonary interstitium of BLM-treated mice. Pretreat-
ment with TUDCA markedly attenuated BLM-induced 
collagen deposition in pulmonary interstitium (Fig.  1c, 
d). Moreover, the levels of hydroxyproline were detected 
in mice lungs. The results found that BLM-exposure ele-
vated the levels of hydroxyproline in mice lungs (Fig. 1f ). 
Interestingly, pretreatment with TUDCA alleviated 
BLM-induced up-regulation of hydroxyproline (Fig. 1f ).

TUDCA inhibits BLM‑induced pulmonary EMT in mice
EMT plays a crucial role in pulmonary fibrosis [12]. 
α-SMA is a hallmark of myofibroblasts and is gener-
ally accepted as a marker for EMT. E-cadherin, an 
epithelial marker, is an important cell adhesion mol-
ecule. To explore whether TUDCA alleviate pulmo-
nary EMT in BLM-treated mouse lungs, α-SMA and 
E-cadherin were measured. The results indicated that 
the percentage of pulmonary α-SMA-positive cells was 
markedly elevated in the BLM-treated mice. After pre-
treatment with TUDCA, the percentage of pulmonary 
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α-SMA-positive cells was reduced (Fig.  2a, b). Further 
analysis displayed that the expression of pulmonary 
α-SMA was elevated by BLM. Correspondingly, pre-
treatment with TUDCA downregulated α-SMA in the 

lungs of BLM-treated mice (Fig.  2c, d). By contrast, 
the expression of pulmonary E-cadherin was obviously 
decreased in BLM-treated mice lungs. After pretreat-
ment with TUDCA, BLM-induced downregulation of 
pulmonary E-cadherin was inhibited (Fig. 2c, e).

Fig. 1  TUDCA attenuates BLM-induced histological damage and collagen deposition in the mice lungs. In BLM alone and BLM + TUDCA group, 
mice were intratracheally injected with a single dose of BLM (3.0 mg/kg). In TUDCA alone and BLM + TUDCA group, mice were intraperitoneally 
injected with TUDCA (250 mg/kg) once a day. Mice were intraperitoneally injected with NS and administered with NS by intratracheal injection 
in control group. Mice were sacrificed at 21 d after BLM treatment. a Pulmonary tissues were stained with H&E. Original magnification: 100×. b 
Pathological damage degree was assessed. c Pulmonary tissues were stained with Sirius Red. Original magnification: 100×. d Quantification of 
collagen deposition area. e The levels of hydroxyproline were detected in mice lungs. All data were expressed as means ± S.E.M. (pathological 
damage degree and levels of hydroxyproline) or median (IQR) (collagen deposition area) of ten lung tissues from ten different mice
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TUDCA alleviates BLM‑induced pulmonary TGF‑β/Smad2/3 
activation in mice
Smad2/3-mediated EMT of alveolar epithelial cells 
is involved in the pathogenesis of BLM-induced lung 
fibrosis [22, 23]. To investigate whether TUDCA allevi-
ate BLM-induced pulmonary TGF-β/Smad2/3 activa-
tion in mice, TGF-β/Smad2/3 signaling was detected. 
Pulmonary Tgf-β1 mRNA level was upregulated after 
BLM treatment in mice lungs. After pretreatment 
with TUDCA, BLM-induced upregulation of pulmo-
nary Tgf-β1 mRNA was inhibited (Fig. 3a). As shown in 
IHC, pulmonary p-Smad3-positive cells were elevated 
by BLM treatment. After pretreatment with TUDCA, 
BLM-induced elevation of p-Smad3-positive cells was 
significantly attenuated (Fig. 3b, c). In addition, the lev-
els of pulmonary p-Smad2 and p-Smad3 were elevated 
after BLM treatment. After pretreatment with TUDCA, 

BLM-induced phosphorylation of pulmonary Smad2 and 
Smad3 was inhibited (Fig. 3d–f).

TUDCA inhibits BLM‑induced cell proliferation in mice 
lungs
In the present study, two markers of cellular proliferation 
were detected. Ki67 was detected by IHC. PCNA was 
detected by immunoblot. As shown in Fig. 4a, b, pulmo-
nary Ki67-positive cells, were increased in BLM-treated 
mice. Of interest, BLM-induced cellular proliferation 
was alleviated in TUDCA-pretreated mice (Fig.  4a, b). 
The effect of TUDCA on pulmonary PCNA protein was 
explored. As shown in Fig. 4c, d. As expected, pulmonary 
PCNA level was increased in BLM-treated mice. TUDCA 
pretreatment obviously attenuated BLM-induced eleva-
tion of PCNA in mice lungs (Fig. 4c, d).

Fig. 2  TUDCA inhibits BLM-induced EMT in the mice lungs. In BLM alone and BLM + TUDCA group, mice were intratracheally injected with a single 
dose of BLM (3.0 mg/kg). In TUDCA alone and BLM + TUDCA group, mice were intraperitoneally injected with TUDCA (250 mg/kg) once a day. Mice 
were intraperitoneally injected with NS and administered with NS by intratracheal injection in control group. Mice were sacrificed at 21 d after BLM 
treatment. a Pulmonary α-SMA-positive cells were detected via IHC. Original magnification: 400×. b Pulmonary α-SMA-positive cells were counted. 
c α-SMA and E-cadherin were detected via immunoblot. d, e Quantitative analysis of grayscale value. All data were expressed as means ± S.E.M. of 
ten lung tissues from ten different mice
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TUDCA attenuates BLM‑induced upregulation of HO‑1 
and 3‑NT in mice lungs
Increasing data have demonstrated that excess ROS 
(reactive oxygen species) takes part in the process of 
BLM-evoked lung fibrosis [24, 25]. HO-1 and 3-NT, 
two markers of oxidative stress, were detected in mice 
lungs. In the present study, we found that pulmonary 
HO-1 protein was increased after BLM treatment. After 
pretreatment with TUDCA, BLM-induced increase of 
HO-1 was inhibited in mice lungs (Fig.  5a, b). 3-NT 
was elevated in BLM-treated mice. After pretreatment 
with TUDCA, pulmonary 3-NT was alleviated (Fig. 5a, 
c). IHC showed that 3-NT-positive cells were increased 
in the lungs of mice after BLM treatment. After pre-
treatment with TUDCA, the percentage of pulmonary 
3-NT-positive cells was alleviated (Fig. 5d, e).

TUDCA relieves BLM‑induced pulmonary ER stress in mice
GRP78, an ER chaperone and a marker of ER stress, 
was elevated in lungs of BLM-treated mice. After pre-
treatment with TUDCA, the expression of GRP78 was 
decreased (Fig.  6a, b). In addition, CHOP, a marker of 
UPR, was increased in BLM-treated mouse lungs. After 
pretreatment with TUDCA, BLM-evoked elevation of 
CHOP was suppressed (Fig. 6a, c).

Discussion
In this study, we evaluated whether TUDCA pretreat-
ment had a prophylactic effect on BLM-induced lung 
fibrosis in mice. Our results suggested that TUDCA alle-
viated BLM-induced pulmonary EMT and subsequent 
lung fibrosis. The specific findings include: (1) TUDCA 
pretreatment inhibits BLM-induced pulmonary TGF-β/

Fig. 3  TUDCA alleviates BLM-induced activation of TGF-β/Smad2/3 in the mice lungs. In BLM alone and BLM + TUDCA group, mice were 
intratracheally injected with a single dose of BLM (3.0 mg/kg). In TUDCA alone and BLM + TUDCA group, mice were intraperitoneally injected with 
TUDCA (250 mg/kg) once a day. Mice were intraperitoneally injected with NS and administered with NS by intratracheal injection in control group. 
Mice were sacrificed at 21 d after BLM treatment. a Pulmonary Tgf-β1 mRNA were detected by real-time RT-PCR. b Pulmonary p-Smad3-positive 
cells were detected by IHC. Original magnification: 400×. c Pulmonary p-Smad3-positive cells were counted. d Pulmonary p-Smad2 and p-Smad3 
were detected via immunoblot. e, f Quantitative analysis of grayscale value. All data were expressed as means ± S.E.M. (p-Smad2 and p-Smad3) or 
median (IQR) (Tgf-β1 mRNA and p-Smad3-positive cells) of ten lung tissues from ten different mice
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Smad2/3 signaling activation; (2) TUDCA pretreatment 
prevents the elevation of α-SMA and reversed the reduc-
tion of E-cadherin during BLM-induced lung fibrosis; (3) 
TUDCA alleviates BLM-evoked collagen deposition in 
the mice lungs.

Several studies suggest that pulmonary ER stress plays 
an important role in BLM-induced lung fibrosis [11, 12]. 
TUDCA, a chemical molecular chaperone, has been 
widely used to improve ER function and protein-folding 
homeostasis [26]. Several studies found that TUDCA 
attenuated hepatic and cardiac fibrosis by inhibiting ER 
stress [27, 28]. According to a recent report, TUDCA 
alleviated acute kidney injury and renal fibrosis through 
suppressing ischemia/reperfusion-induced ER stress [16]. 
In the current study, the effect of TUDCA on pulmonary 

ER stress was explored during BLM-induced lung fibro-
sis. As expected, pulmonary GRP78, a marker of ER 
stress, was upregulated. CHOP, a marker of the UPR, 
was ascended in the lungs of BLM-treated mice. TUDCA 
inhibited upregulation of pulmonary GRP78 and CHOP 
in the lungs of BLM-treated mice. These results suggest 
that TUDCA pretreatment prevents pulmonary fibrosis, 
at least partially, through suppressing BLM-evoked ER 
stress in mice lungs.

Smad2/3-mediated EMT of alveolar epithelial cells 
is involved in the pathogenesis of BLM-induced lung 
fibrosis [22, 23]. In this study, we found that pulmonary 
TGF-β1 was upregulated and Smad2/3 was activated 
in BLM-exposed mice lungs. Moreover, the number of 
α-SMA-positive cells, a marker of pulmonary EMT, was 

Fig. 4  TUDCA inhibits BLM-induced cell proliferation in mouse lungs. In the BLM alone and BLM + TUDCA groups, mice were intratracheally 
injected with a single dose of BLM (3.0 mg/kg). In the TUDCA alone and BLM + TUDCA groups, mice were intraperitoneally injected with 
TUDCA (250 mg/kg) once a day. Mice were sacrificed at 21 d after BLM treatment. a Pulmonary Ki67-positive cells was detected by IHC. Original 
magnification: 400×. b Pulmonary Ki67-positive cells were counted. c Pulmonary PCNA was detected by immunoblot. d Quantitative analysis of 
grayscale value. All data were expressed as median (IQR) of ten lung tissues from ten different mice
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Fig. 5  TUDCA attenuates BLM-induced oxidative stress in the lungs. In BLM alone and BLM + TUDCA group, mice were intratracheally injected with 
a single dose of BLM (3.0 mg/kg). In TUDCA alone and BLM + TUDCA group, mice were intraperitoneally injected with TUDCA (250 mg/kg) once 
a day. Mice were intraperitoneally injected with NS and administered with NS by intratracheal injection in control group. Mice were sacrificed at 
21 d after BLM treatment. a Pulmonary HO-1 and 3-NT were detected by immunoblot. b, c Quantitative analysis of grayscale value. d Pulmonary 
3-NT-positive cells was detected by IHC. Original magnification: 400×. e Pulmonary 3-NT-positive cells were counted. All data were expressed as 
median (IQR) of ten lung tissues from ten different mice

Fig. 6  TUDCA blocks BLM-induced ER stress in the lungs. In BLM alone and BLM + TUDCA group, mice were intratracheally injected with a single 
dose of BLM (3.0 mg/kg). In TUDCA alone and BLM + TUDCA group, mice were intraperitoneally injected with TUDCA (250 mg/kg) once a day. Mice 
were intraperitoneally injected with NS and administered with NS by intratracheal injection in control group. Mice were sacrificed at 21 d after BLM 
treatment. a Pulmonary GRP78 and CHOP were detected via immunoblot. b, c Quantitative analysis of grayscale value. All data were expressed as 
means ± S.E.M. (CHOP) or median (IQR) (GRP78) of ten lung tissues from ten different mice
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elevated after BLM treatment. The level of pulmonary 
α-SMA protein was also upregulated after BLM intratra-
cheal instillation. By contrast, pulmonary E-cadherin, 
an epithelial marker, was downregulated during BLM-
induced lung fibrosis. Two early reports indicated that 
EMT is accompanied by ER stress in alveolar epithelial 
cells [29, 30]. The current study explored the effect of 
TUDCA on TGF-β/Smad2/3-mediated EMT in BLM-
induced lung fibrosis. Our results showed that TUDCA 
alleviated BLM-induced TGF-β1 upregulation and 
Smad2/3 activation in the lungs. Moreover, TUDCA 
inhibited α-SMA upregulation and E-cadherin down-
regulation in BLM-evoked lung fibrosis. These results 
provide evidence that TUDCA pretreatment prevents 
BLM-induced lung fibrosis through inhibiting EMT in 
the lungs.

Though, the pathogenesis of IPF remains unclear. 
Nowadays, it is thought that IPF always results from an 
abnormal wound healing response to epithelial injury in 
genetically susceptible individuals [31]. Moreover, the 
present study found that anti-inflammatory and immu-
nosuppressive agents cannot treat this disease effectively, 
meaning that chronic inflammatory may be not only 
cause of IPF [32]. Increasing data suggest that exces-
sive proliferation of fibroblasts is involved in the devel-
opment of IPF [33, 34]. An early study found that BLM 
promoted the proliferation of fibroblasts [35]. Ki67 and 
PCNA are two markers of cellular proliferation [36, 37]. 
A recent study found that TUDCA inhibited prolifera-
tion of fibroblasts during lung fibrosis [38]. In the present 
study, we showed that pulmonary Ki67 positive cells were 
increased in BLM-treated mice. Moreover, pulmonary 
PCNA protein was upregulated in BLM-treated mice. 
Of interest, TUDCA inhibited BLM-induced elevation 
of Ki67-positive cells in mice lungs. Moreover, TUDCA 
attenuated BLM-induced upregulation of PCNA in mice 
lungs. These results provide additional evidence that 
TUDCA pretreatment prevents BLM-induced pulmo-
nary fibrosis partially through inhibiting cellular prolif-
eration in lungs.

Increasing data have demonstrated that excess ROS 
taken part in the process of BLM-evoked lung fibrosis 
[24, 25]. N-acetylcysteine, an antioxidant, can effectively 
protect against BLM-induced lung fibrosis [39–41]. In 
this study, our results showed that the levels of HO-1 and 
3-NT, two markers of oxidative stress, were increased 
after BLM treatment. The number of 3-NT-positive 
cells was elevated in BLM-induced lung fibrosis. Indeed, 
TUDCA has an antioxidant activity [42–44]. The present 
study found that TUDCA alleviated BLM-induced eleva-
tion of pulmonary HO-1 and 3-NT. Therefore, the pre-
sent study does not exclude that TUDCA pretreatment 

protects against lung fibrosis through suppressing BLM-
induced oxidative stress.

In this study, we have focused on protection effect of 
TUDCA pretreatment against TGF-β/Smad2/3-medi-
ated EMT in the process of BLM-induced lung fibrosis. 
Nevertheless, there are a few limitations in this study. 
Firstly, the current study only investigated the preven-
tive effect on BLM-induced pulmonary EMT and sub-
sequent lung fibrosis by using a single dose of TUDCA. 
This is a prophylactic experiment. However, the treat-
ment effect of TUDCA on BLM-induced lung fibrosis is 
not unclear. Secondly, this study did not explore the exact 
mechanism which TUDCA inhibited TGF-β/Smad2/3-
mediated EMT in BLM-evoked lung fibrosis. Thirdly, 
only BLM-induced pulmonary fibrosis model was used 
in the current study. Because it has been found to have 
the possibility of self-recovery in a mouse model and 
species difference, multiple administrations and new 
suitable fibrosis models are needed in the future work. 
Thus, further research is necessary to investigate the 
effects of different TUDCA doses on BLM-evoked EMT 
and lung fibrosis. Fourthly, only part markers of EMT 
were measured in mice lungs. In order to evaluate the 
effect of TUDCA on BLM-evoked EMT, more in  vitro 
experiments should be performed. Different pulmonary 
epithelial cells were selected and used. The change of 
morphology in pulmonary epithelial cells was observed. 
Additionally, wound healing, migration and inva-
sion should be conducted in pulmonary epithelial cells. 
Besides, the levels of mRNAs and protein of markers in 
EMT, included E-cadherin, ZO-1, N-cadherin, Vimen-
tin, α-SMA and Fibronectin, should be measured using 
RT-PCR and western blotting. Moreover, E-cadherin and 
α-SMA were also detected through immunohistochem-
istry. Not only that, EMT related nuclear transcription 
factors, such as Snail, ZEB and Twist, would be evaluated 
using western blotting and immunofluorescence.

Conclusion
In summary, the aim of this study is to explore the effects 
of TUDCA on BLM-induced lung fibrosis in a mouse 
model. Our results showed that TUDCA suppressed pul-
monary TGF-β/Smad2/3-mediated EMT in the process 
of BLM-induced lung fibrosis. We found that TUDCA 
alleviated pulmonary cell proliferation and collagen 
deposition during BLM-induced lung fibrosis. The pre-
sent study provides experimental evidence that TUDCA 
prevents pulmonary EMT and subsequent lung fibrosis 
partially through suppressing BLM-induced oxidative 
stress and ER stress. Therefore, TUDCA may be used as a 
potential prophylactic drug for lung fibrosis.
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