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Abstract
Background  Low relative fat free mass (FFM) is associated with a greater risk of chronic diseases and mortality. 
Unfortunately, FFM is currently not being measured regularly to allow for individuals therapy.

Objective  One reason why FFM is not being used may be related to additional equipment and resources, thus we 
aimed to identify easily accessible anthropometric markers related with FFM.

Materials and methods  We analyzed data of 1,593 individuals (784 women; 49.2%, age range 28–88 years) 
enrolled in the population-based Study of Health in Pomerania (SHIP-TREND 1). Forty-seven anthropometric markers 
were derived from a 3D optical body-scanner. FFM was assessed by bioelectrical impedance analysis (FFMBIA) 
or air displacement plethysmography (FFMADP). In sex-stratified linear regression models, FFM was regressed on 
anthropometric measurements adjusted for body height and age. Anthropometric markers were ranked according to 
the coefficient of determination (R2) derived from these regression models.

Results  Circumferences of high hip, belly, middle hip, waist and high waist showed the strongest inverse associations 
with FFM. These relations were stronger in females than in males. Associations of anthropometric markers with FFMAPD 
were greater compared to FFMBIA.

Conclusion  Anthropometric measures were more strongly associated with FFMADP compared to FFMBIA. 
Anthropometric markers like circumferences of the high or middle hip, belly or waist may be appropriate surrogates 
for FFM to aid in individualized therapy. Given that the identified markers are representative of visceral adipose tissue, 
the connection between whole body strength as surrogate for FFM and fat mass should be explored in more detail.
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Introduction
Due to the ageing population in Western societies, there 
is a growing interest of assessing body composition in the 
clinical setting. Relative fat-free mass (FFM, described as 
% of total body weight) is directly related to cardiorespi-
ratory fitness [1] and inversely associated with all-cause, 
cardiovascular, and cancer mortality [2–4]. Low FFM is 
also an inherent characteristic of malnutrition and sarco-
penia [5, 6]. Physical disability and a reduced functional 
capacity are also related to a lack of FFM [7, 8]. In addi-
tion, a small FFM is associated with a higher prevalence 
of cardiovascular risk factors like hypertension [9], obe-
sity or diabetes [3]. Overall, FFM is of growing clinical 
interest and needs to be assessed in clinical practice to 
aid in individualized therapy.

FFM can be precisely determined by imaging methods 
such as quantitative magnetic resonance imaging (MRI), 
dual-energy X-ray absorption (DXA), ordinary MRI or 
computed tomography scans [10, 11]. However, these 
methods are commonly time consuming, rely on large 
and partly expensive stationary hardware and often go 
hand in hand with radiation exposure. Considering the 
aforementioned limitations, these procedures are incon-
venient or infeasible for practical reasons in the clinical 
setting and in large epidemiological studies.

Bioelectrical impedance analysis (BIA) can be consid-
ered an indirect, yet radiation free, time-efficient and 
portable alternative for FFM estimation [10]. None-
theless, BIA has some limitations. BIA requires some 
assumptions like constant hydration status [12] and this 
technology may not be used in patients with implanted 
cardiac devices [13]. Albeit, FFM measurements based 
on BIA (FFMBIA) has substantial variability on the indi-
vidual level, satisfactory reliability has been reported on a 
population level [14–16].

Air displacement plethysmography (ADP) may also 
be used to quickly assess FFM (FFMADP) [17, 18]. This 
method is also radiation-free and time-efficient, though 
not very portable. Various studies have shown high test-
retest-reliability [19] of ADP in the assessment of body 
composition and good validity compared to DXA or BIA 
[20, 21].

Since the assessment of FFM, independent of method, 
is currently hampered by time and costs, we aimed to 
identify easily accessible anthropometric markers. Auto-
matic three-dimensional optical body scans are a reliable 
and repeatable method to identify potential anthropo-
metric biomarkers [22]. This process is completely radia-
tion free and safe. Importantly, this method agrees with 
the reference method of manual measurements fulfilling 
WHO criteria [22–24].

Previous studies with relatively small sample sizes 
reported associations between three-dimensional body 
surface anthropometrics and data derived from BIA [23, 

25] or ADP [26]. However, the study population was 
rather small and consisted almost exclusively of healthy 
men or even athletes. A systematic review summariz-
ing associations of body scan markers with FFMADP and 
FFMBIA [27] reported that body scanners had a high 
degree of accuracy and reliability. The major limitations 
of the previous studies were the small sample sizes as well 
as the homogenous study populations which we tried to 
address in our analysis.

The rationale for this study was to identify easily acces-
sible anthropometric markers of FFM to aid in individ-
ualized therapy. A prime example could be the use of 
resistance training to either reduce the loss or even gain 
fat-free mass (i.e. skeletal muscle). Especially in rural and/
or economically not very successful regions of the world, 
the above mentioned technologies may not be available. 
Yet, inhabitants of these regions may also suffer from car-
diovascular risk factors and/or age-induced sarcopenia. 
This study aims to identify potential surrogates of FFM 
by investigating associations of automatic body scanner-
derived anthropometric measurements with FFM as 
determined by BIA and ADP in a large-population-based 
sample including 1,593 individuals aged 28–88 years to 
provide alternatives. Since individuals with higher BMI 
have also higher FFM, we decided to use FFM normal-
ized for total body weight as an outcome to not under-
estimate the effect of obesity on the relation between 
anthropometric markers and FFM.

Materials and methods
Study population
The Study of Health in Pomerania (SHIP), conducted by 
the University Medicine Greifswald, has been designed 
as a population-based project assessing common risk 
factors and subclinical disorders in the adult popula-
tion [28]. For the present analyses, we used data from 
the SHIP-TREND-1 cohort. SHIP-TREND-1 is the first 
follow-up of the population-based SHIP-TREND study, 
in which 2,507 individuals were examined between 2016 
and 2019. We excluded 679 participants without BIA and 
67 participants without ADP measurements. In addition, 
we did not include 38 participants with missing body 
scanner values and 130 participants with implausible BIA 
or ADP measurements resulting in a study population of 
1,593 individuals (Fig. 1).

Anthropometric measurements
Manual anthropometric measurements included height, 
weight, waist- and hip circumference. Weight was mea-
sured to the nearest 0.1 kg in light clothing and without 
shoes using standard digital scales. Waist circumfer-
ence (WC) was measured to the nearest 0.1  cm using 
an inelastic tape midway between the lower rib margin 
and the iliac crest in the horizontal plane with the subject 
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standing comfortably with weight distributed evenly on 
both feet. Hip circumference (HC) was measured to the 
nearest 0.1  cm using an inelastic tape midway between 
the iliac crest and the most lateral (sideways) protrud-
ing points of the greater trochanter. Waist-to-hip ratio 
(WHR) was calculated as WC/HC. Body mass index 
(BMI) was calculated as weight [kg] divided by height to 
the square [m2].

3D optical body scan
Anthropometric data was measured with a three-dimen-
sional optical body scanner (VITUS Smart XXL, Vitronic, 
Wiesbaden, Germany) driven by the software AnthroScan 
Professional (Version 3.0.7, Human Solutions GmbH, Kai-
serslautern, Germany). This measuring technique is based 
on the optical triangulation process using four lasers and 
eight cameras, to date one of the most precise method of 
contactless capture of body shape. The apparatus allows 
the observer to receive deformation-free measurements, 
since neither the lasers nor the sensors enter into any 
physical contact with the study participant [29, 30].

The measurement results in a detailed three-dimen-
sional image of the participants’ body surface and 
extracts a large number of standard anthropometric 
markers, including circumferences, lengths, distances, 
areas, volumes and their ratios within 10–15  s. After 
exclusion of markers which were highly associated with 

other anthropometric markers (e.g. different height 
measurements) and markers which cannot be measured 
standardized in clinical practice (e.g. distance back to the 
wall), we used 47 standard anthropometric markers for 
the present analyses (Supplementary Tables 1 and 2).

While being scanned participants wore underwear and 
a fabric head cap in order to reduce measurement error 
due to hair volume. After measuring body height twice 
(sitting and standing position) a so-called standard-scan 
allowed measuring aforementioned anthropometric 
markers in an upright standing position. More details on 
the assessment can be found in the supplement.

Bioelectrical impedance analysis
BIA was performed using a multifrequency Nutriguard-
M device (Data Input GmbH, Pöcking, Germany) and the 
NutriPlus software (Version 5.4.1, Data Input GmbH, 
Pöcking, Germany). R (resistance) and Xc (reactance) 
were measured applying electric currents of 800  mA at 
5, 50, and 100 kHz following the manufacturer’s instruc-
tions [31, 32]. Source and sensor electrodes were placed 
on the dorsum of hand, wrist, ankle and dorsum of foot 
of the right side of the body with participants in supine 
position [33]. Absolute FFM was calculated within the 
software. Relative FFM was calculated in % by dividing 
absolute FFM by total body weight and then multiplying 
by 100. The BIA examination took place on a different 

Fig. 1  Flow chart on the selection process of the study population
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date than the core examination. For more details, see 
supplement.

Air displacement plethysmography
Air displacement plethysmography was performed using 
a BOD POD®(COSMED Deutschland GmbH, Werneck, 
Germany) device according to the manufacturer’s rec-
ommendation (COSMED Deutschland GmbH, Werneck, 
Germany). This method is a densitometric measuring 
method and can be used to determine body volume, body 
density, lung volume and fat mass. Absolute FFM was 
calculated by subtracting body weight and fat mass. Rela-
tive FFM was calculated in % by dividing absolute FFM 
by total body weight and then multiplying by 100.

Other clinical measurements
Non-fasting blood samples were taken and serum levels 
of low density lipoprotein (LDL-C) cholesterol, high den-
sity lipoprotein (HDL-C) cholesterol, triglycerides, serum 
glucose and glycated hemoglobin (HbA1c) were assessed 
by a Dimension Vista 500 analytical system (Siemens AG, 
Erlangen, Germany). Blood pressure was measured using 
a HEM 705CP device (Omron Corporation, Tokyo, Japan). 
Arterial hypertension was defined as systolic blood pres-
sure ≥ 140 mmHg or diastolic blood pressure ≥ 90 mmHg 
or antihypertensive treatment (Anatomical Therapeutic 
Chemical Classification System (ATC) codes C02, C03, 
C04, C07, C08 or C09A). Known or newly detected dia-
betes mellitus was defined as self-reported physician’s 
diagnosis or intake of glucose-lowering drugs (ATC code 
A10) or HbA1c concentrations of ≥ 6.5% (≥ 47.54 mmol/
mol) or non-fasting serum glucose > 11.1 mmol/l.

Statistical analysis
Characteristics of the study population are reported 
stratified by sex as absolute numbers and percentages for 
categorical data and as median, 25th, and 75th percentiles 
for continuous data. Since individuals with greater abso-
lute FFM also have a higher fat mass, FFM is positively 
related with cardiovascular risk. Hence, we used relative 
FFM as the outcome in our analysis [4]. Anthropometric 
markers were associated with FFM by sex-stratified lin-
ear regression models adjusted for age and body height. 
Since men and women show significant differences with 
regards to cardiometabolic biomarkers [34], body fat dis-
tribution [35] and body composition [36] we decided that 
a sex-stratified analysis is warranted. To make the effect 
sizes of the different anthropometric markers compa-
rable, all anthropometric markers were z-standardized. 
Stratified by sex and measurement technique, anthropo-
metric markers were ranked based on the coefficients of 
determination (R2). As a result, we derived for each vari-
able a β-coefficient, a 95%-confidence interval, a R2, a 
p value, and a -log p value. For each sex the β-coefficients 

and 95%-confidence intervals for the ten variables with 
the highest R2 were plotted. Furthermore, we created 
a heatmap, in which all body scanner variables were 
included that were one of the ten variables most strongly 
associated with FFMBIA or FFMADP in men or women. 
In addition, we conducted a sex-stratified random forest 
regression, in which we included all 47 body scan mark-
ers together with age and height as explanatory variables 
and the respective FFM as outcome. Before applying the 
random forest, the data was randomly split into equally-
sized training and test datasets. Before applying the final 
models, we optimized the hyper-parameters “number of 
iterations” (numit) and “number of variables to randomly 
investigate at each iteration” (numvars) by minimizing 
the out of bag (oob) and validation errors as described by 
Schonlau et al. [37]. Afterwards, the final random forest 
models with the optimized hyper-parameters were cal-
culated and the most important variables for each set-
ting were plotted. All statistical analyses were performed 
using Stata 18.0 (Stata Corporation, College Station, TX, 
USA).

Results
Characteristics of the study population
The study sample included 1,593 individuals (49.2% 
females, 28–88 years). Males were slightly older and had 
a higher BMI than females (Table  1). Independent of 
method, FFM was higher in males than in females.

Association of FFM assessed by BIA and ADP
Relative FFMBIA (median = 68.7; inter-quartile range 
(IQR) = 62.5 to 74.0) was 3% higher than FFMADP 
(median = 65.7; IQR = 58.5 to 72.4). The median differ-
ence was more pronounced in females (63.3% vs. 59.6%) 
compared to males (72.7% vs. 70.3%). In linear regression 
analysis FFMBIA and FFMADP were stronger associated in 
women compared to men (R2 = 0.70 vs. R2 = 0.43). Overall 
association expressed as R2 was 0.69 (Fig. 2). The correla-
tion coefficients between FFMBIA and FFMADP were 0.66 
in men and 0.84 in women.

Associations between anthropometric markers and FFM
After adjustment for age and body height, the ten body 
scanner markers associated most strongly with FFMADP 
were very similar for men and women (Fig. 3). However, 
the order of these markers was slightly different and most 
of these markers were indicators of belly fat. Associa-
tions of the anthropometric markers with FFMADP were 
higher in women compared to men. The R2’s for the ten 
strongest markers for FFMADP ranged from 0.76 to 0.70 
for women and from 0.70 to 0.58 for men. Calf and upper 
arm circumference, which are frequently used markers 
for FFM estimation in clinical practice, had considerably 
lower R2 values in both sexes and were not among the 
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ten makers. The sex-specific associations of all body scan 
markers with FFMADP and FFMBIA are listed in the Sup-
plementary Tables 1 and 2. Accounting for multiple test-
ing, all markers with a–log(p) > 6.84 were considered as 
statistically significant. With this threshold we observed 
42 significant markers for FFMADP and 41 FFMBIA in 
men. In women 42 significant markers were found for 
FFMADP for FFMBIA.

Correlations of body scan markers with FFMBIA 
(adjusted for body height, age and time between core 
and BIA examination) were higher in women compared 

to men. Nonetheless, nine of the ten body scan mark-
ers showing the strongest association with FFMBIA were 
the same in women and men. The body scan markers for 
belly fat, which were most tightly related to BIA, were 
also among the strongest markers for FFMADP. The R2’s 
for the ten strongest markers for FFMBIA ranged from 
0.69 to 0.63 for women and from 0.42 to 0.32 for men.

In females, the β-coefficients for the relation between 
anthropometric markers and FFM were very similar 
independent of measurement technique. In men, how-
ever, the β-coefficients were much smaller for FFMBIA 
compared to FFMADP (Fig. 4). Independent of measure-
ment technology and sex, the most strongly related 
anthropometric markers showed inverse relations with 
FFM.

Independent of measuring technique and sex, manually 
measured waist circumference showed a weaker asso-
ciation with FFM than waist circumference measured 
by body scanner. (Table  2) Manually measured hip cir-
cumference had a lower association with FFM than the 
automatically measured equivalents (“middle hip circum-
ference” [MHC] and “high hip circumference” [HHC]) in 
females and males independent of measuring technique. 
Manually measured waist to hip ratio was only weakly 
associated with FFM independent of measurement tech-
nique and sex.

Further adjustment of the models for smoking status, 
alcohol consumption and the sports score did not change 
the results substantially. Exactly the same markers 
showed the strongest associations to FFMBIA compared 
to FFMADP in a very slight different order.

In sex-stratified random forest regression, the most 
important markers for FFMADP and FFMBIA were simi-
lar to those detected in the logistic regression analyses 
and represented mainly markers of central adiposity 
(Fig.  5). The model specifications for the random forest 
models were as follows: FFMADP in men: numit = 300, 
numvars = 25, oob error = 3.32, root mean square 

Table 1  Characteristics of the study population stratified by sex
Males (n = 809) Females 

(n = 784)
Age; years 57 (47; 67) 55 (46; 65)
Body mass index; kg/m2 27.9 (25.7; 30.7) 26.6 (23.4; 30.3)
Waist circumference; cm 101 (93; 109) 88 (80; 99)
Hip circumference; cm 100 (95; 106) 102 (95; 111)
Fat-free mass (BIA); % 72.7 (69.0; 77.1) 63.3 (58.5; 68.1)
Fat-free mass (ADP); % 70.3 (65.4; 75.8) 59.6 (54.0; 65.9)
Alcohol consumption; g/day 9.2 (3.0; 20.0) 3.3 (1.0; 7.9)
Smoking status
Never
Former
Current

223 (27.6%)
446 (55.1%)
140 (17.3%)

329 (42.0%)
314 (40.1%)
141 (18.0%)

Sports score according to Baecke 
[55]

2.4 (0.0; 5.1) 2.3 (0.0; 4.2)

Systolic blood pressure; mmHg 128 (121; 137) 120 (111; 129)
Diastolic blood pressure; mmHg 76 (70; 82) 73 (67; 79)
Hypertension 421 (52.0%) 289 (36.9%)
LDL-cholesterol; mmol/l 3.29 (2.63; 3.87) 3.39 (2.8; 4.05)
HDL-cholesterol; mmol/L 1.31 (1.08; 1.53) 1.64 (1.38; 1.96)
Triglycerides; mmol/L 1.38 (0.92; 2.02) 1.08 (0.76; 1.62)
Blood glucose; mmol/L 5.5 (5.0; 6.0) 5.1 (4.8; 5.5)
HbA1c; % 5.5 (5.3; 5.8) 5.5 (5.3; 5.7)
Type 2 diabetes 78 (9.6%) 48 (6.1%)
Continuous data are expressed by median, 25th, and 75th percentile; categorical 
data by absolute numbers and percentages (LDL = low-density lipoprotein, 
HDL = high-density lipoprotein, HbA1c = glycated hemoglobin)

Fig. 2  Association between ADP relative fat-free mass (FFM) and BIA FFM
The models were stratified by sex (red = female, blue = male) and were adjusted for body height, age and time between ADP and BIA examination
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error = 4.17; FFMBIA in men: numit = 150, numvars = 8, 
oob error = 3.68, root mean square error = 4.82; FFMADP 
in women: numit = 150, numvars = 23, oob error = 2.96, 
root mean square error = 3.92; FFMBIA in women: 
numit = 150, numvars = 20, oob error = 2.98, root mean 
square error = 3.78.

Discussion
We investigated associations of anthropometric markers 
derived from an automated three-dimensional body scan-
ner as well as manual measurement with FFM assessed 
by ADP and BIA in 1,593 individuals from Northeast 
Germany. We found strong inverse associations for 
markers of abdominal adiposity with relative FFM. Inter-
estingly, effect estimates for markers derived automati-
cally in the three-dimensional body scanner were much 
stronger compared to those measured manually. Fur-
thermore, associations of body scan markers with FFM 
were stronger in women compared to men. With regards 
to measurement technique we found higher effect esti-
mates for FFMADP compared to FFMBIA. Interestingly, 
our results highlight the potential to use of markers for 
central adiposity as a surrogate for FFM. This is especially 

surprising given that FFM is very much related to skeletal 
muscle mass and one would have hypothesized arm cir-
cumferences rather than markers of visceral adipose tis-
sue [38].

By automatically collecting 47 different anthropomet-
ric sites using a three-dimensional body scanner, we were 
able to access a large, comprehensive set of anthropo-
metric parameters. Importantly, the Global Leadership 
Initiative on Malnutrition (GLIM) recently endorsed 
anthropometric markers as alternatives to technology-
based measurements of low muscle mass (i.e. low FFM), 
in settings where resources are limited [39]. We identi-
fied eleven anthropometric markers associated with FFM 
independent of technology. Hence, these parameters 
could be useful in the clinical assessment of FFM. These 
markers are generally considered to be surrogates of cen-
tral adiposity: circumferences of belly, buttock, hip, waist, 
maximum belly, and depths of the abdomen and buttock. 
In current clinical practice the circumference of the arm 
and of the calf are used to estimate FFM. However, in our 
analysis these parameters only showed very weak asso-
ciations. Thus, FFM may be related to fat accumulation in 
the waist, hip, and abdomen area of a person, regardless 

Fig. 3  Body scan markers showing the strongest associations with relative fat free mass (FFM)
Ranking according to the R2. Models were adjusted for body height, age (and time between core and BIA examination [for BIA FFM]). ADP F = FFM from 
ADP in females, BIA F = FFM from BIA in females, ADP M = FFM from ADP in males, BIA M = FFM from BIA in males
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of sex or age. Since circumferences in this region can be 
taken relatively easy using an inelastic tape measure, the 
assessment will not depend on a large stationary device. 
We acknowledge that non-circumference anthropomet-
ric markers like “body depth” and “buttock abdomen 
depth” are not easily measured. The two reference points 
for applying the measuring tape are not on a horizontal 
plane. This suggests to use circumferences as convenient 
anthropometric markers in order to assess FFM in a clin-
ical setting.

We show that automatically derived anthropometric 
markers had larger effect estimates compared to their 

manually measured equivalents. In addition, circum-
ferences measured by scan were slightly different from 
those derived manually, which may be the result of dif-
ferent measuring positions. Assuming that parameters 
such as “high hip circumference” or “middle hip cir-
cumference” serve as the equivalent of manually mea-
sured, for instance, “hip circumference”, automatic body 
scanners may be superior to manual measurements or 
that the locations of the circumference of the automatic 
measurements contain more information for FFM pre-
diction. Repp et al. [40] previously reported that the 
site of waist circumference measurement is important 
to improve the prediction of visceral adipose tissue. The 
exact measuring regions of aforementioned manually 
measured circumferences are described and defined in 
the ISO 7250-1:2017 standard [41]. Hence, future studies 
need to elucidate the most optimal site for circumference 
measurements.

Ng et al. [42] described three-dimensional scans as reli-
able methods to estimate FFM in healthy adults, albeit 
in a rather small study sample (n = 39). Bennett et al. [43] 
evaluated estimates of three-dimensional anthropomet-
ric markers and body composition (DXA scans). They 

Table 2  Associations of manually measured anthropometric 
markers with relative fat free mass (FFM) adjusted for body 
height, age (and time between core and BIA examination [for BIA 
FFM])

ADP F
R2

BIA F
R2

ADP M
R2

BIA M
R2

Hip circumference 0.738 0.683 0.593 0.346
Waist circumference 0.707 0.654 0.675 0.414
Waist to hip ratio 0.293 0.178 0.347 0.205
ADP F = FFM from ADP in females, BIA F = FFM from BIA in females, ADP M = FFM 
from ADP in males, BIA M = FFM from BIA in males

Fig. 4  β-coefficients for the ten anthropometric markers most strongly associated with relative fat free mass (FFM)
Models were adjusted for body height, age, (and time between core and BIA examination [for BIA FFM]). ADP M = FFM from ADP in males, BIA M = FFM 
from BIA in males, ADP F = FFM from ADP in females, BIA F = FFM from BIA in females
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reported strong association of body scanner anthropo-
metrics and FFM based on DXA. Overall, previous stud-
ies already reported that anthropometrics may be used to 
estimate FFM, yet in relatively homogeneous study sam-
ples. The advantage of our study is that we included study 
participants representative of the general population. 
Hence, we extend the current knowledge by assessing 
the relation between anthropometrics and FFM in a very 
broad phenotype. We hope that this may help to promote 
the use of anthropometric markers as surrogates for FFM 
in clinical practice. This may be especially relevant for 
individuals living in rural or middle/low income regions 
with little access to technology. Health care professionals 
in these locations may use the identified anthropometric 
markers to monitor the individual response to specific 
treatments or interventions.

The beta-estimates for the associations between 
anthropometric parameters and FFM were depended on 
measurement technique. This was particularly seen in 
men, where the association between the anthropomet-
ric markers and FFM was much stronger for FFMADP 
than for FFMBIA. An explanation for this may be that 
the correlation between FFMBIA and FFMADP was sub-
stantially higher in women compared to men. Previous 
studies reported that in individuals with obesity the dif-
ferent measurement techniques for FFM provide unequal 
results [44, 45]. In our study population men had a higher 

BMI compared to women. However, this difference may 
not explain a systematic bias in measuring FFM by BIA 
since previous studies also revealed conflicting results 
[46–49]. Our results identified very similar anthropomet-
ric parameters related to FFM yet with different effect 
estimates and in a different order for each sex. These 
findings may be related to sex specific cardiometabolic 
biomarkers [34], body fat distribution [35] and body 
composition [36].

In our study, the men had a higher prevalence of hyper-
tension and type 2 diabetes mellitus compared to women. 
The presence of chronic diseases such as hypertension 
or type 2 diabetes are related to chronic inflammation or 
malnutrition resulting in a lower FFM. In addition, these 
metabolic conditions are associated with greater visceral 
fat [50, 51]. This again highlights the interesting nature 
of our results. In general, individuals with a greater BMI 
(i.e. more visceral adipose tissue) also have higher FFM, 
since locomotion of the greater body weight also requires 
more muscle mass. Yet, our findings highlight that when 
FFM is adjusted for FM and thus relative FFM is used, 
the statement above is not true. However, we believe that 
relative FFM is more important compared to absolute 
FFM with regards to health risk. Since chronic inflamma-
tion, malnutrition and aberrant fat distribution can cause 
altered hydration status and BIA equations depend on 
the consistency of hydration status [12, 52, 53], one may 

Fig. 5  Importance ranking for body scan markers for relative fat free mass (FFM) as observed in random forest regression
ADP M = FFM from ADP in males, BIA M = FFM from BIA in males, ADP F = FFM from ADP in females, BIA F = FFM from BIA in females
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speculate that the observed differences in FFMBIA and 
FFMADP are related to the hydration status of study par-
ticipants with preexisting metabolic dysfunction.

This study has several strengths. We were able to assess 
a high number of anthropometric markers in a rather 
large study sample (n = 1,593). In addition, SHIP data 
uses very stringent data quality control. This is particu-
larly related to standardization of non-invasive exami-
nation methods and data management [33]. FFMBIA and 
FFMADP are established in clinical, as well as in research 
settings with a high degree of validity on a population 
level [14–16, 20, 21].

However, we were unable to use the gold standard for 
FFM measurement (DXA) due to radiation exposure and 
practicality. Our study population consisted exclusively 
of Caucasians from rural northeastern Germany, which 
supports validity within this ethnicity but limits con-
clusions about other study populations. In addition, we 
did not test for multicollinearity between our outcomes 
which could be considered a limitation. However, the 
manually measured anthropometric data may potentially 
not be as accurate as automatically scanned data, since 
an inter-observer bias cannot be excluded entirely [54]. 
Distinguishing whether there is a systematic difference 
between methods or a measurement area adjustment is 
critical to the association with FFM in order to transfer 
our results to an outpatient setting may be part of future 
research.

Conclusion
Our findings suggest that anthropometric markers of vis-
ceral adiposity may be appropriate surrogates for relative 
FFM in the general population. The three-dimensional 
anthropometric markers were more strongly associated 
with FFMADP compared to FFMBIA potentially related to 
the hydration status of individuals with metabolic dys-
function. Overall, our findings support the use of anthro-
pometrics in daily clinical practice to estimate a person’s 
FFM for individualized therapy.
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