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Objective  This study describes regional differences and dynamic changes in the prevalence of comorbidities 
among middle-aged and elderly people with chronic diseases (PCMC) in China from 2011–2018, and explores distri-
bution patterns and the relationship between PM2.5 and PCMC, aiming to provide data support for regional preven-
tion and control measures for chronic disease comorbidities in China.

Methods  This study utilized CHARLS follow-up data for ≥ 45-year-old individuals from 2011, 2013, 2015, and 2018 
as research subjects. Missing values were filled using the random forest machine learning method. PCMC spatial 
clustering investigated using spatial autocorrelation methods. The relationship between macro factors and PCMC 
was examined using Geographically and Temporally Weighted Regression, Ordinary Linear Regression, and Geograph-
ically Weighted Regression.

Results  PCMC in China showing a decreasing trend. Hotspots of PCMC appeared mainly in western and northern 
provinces, while cold spots were in southeastern coastal provinces. PM2.5 content was a risk factor for PCMC, the range 
of influence expanded from the southeastern coastal areas to inland areas, and the magnitude of influence decreased 
from the southeastern coastal areas to inland areas.

Conclusion  PM2.5 content, as a risk factor, should be given special attention, taking into account regional factors. In 
the future, policy-makers should develop stricter air pollution control policies based on different regional economic, 
demographic, and geographic factors, while promoting public education, increasing public transportation, and urban 
green coverage.
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Introduction
In the context of global population aging, the life expec-
tancy of populations in various countries and regions has 
been increasing almost universally. However, with aging 
often comes the occurrence of chronic diseases [1], lead-
ing to a continuous increase in the number of patients 
with chronic non-communicable diseases and a growing 
prevalence of multimorbidity [2, 3]. China, as the most 
populous developing country with a large elderly popu-
lation, has entered an era of deep aging. According to 
the 7th National Population Census, the proportion of 
people aged over 65 has reached 13.5% [4, 5]. With the 
increase in life expectancy and the widespread preva-
lence of various risk factors, the number of chronic dis-
ease patients in China continues to expand. Additionally, 
the situation of multiple chronic diseases coexisting is 
becoming increasingly serious [6]. Chronic diseases are 
the main source of global disease burden [7, 8] and have 
become a focus problem that seriously troubles individu-
als, families, and society. They are also the biggest obsta-
cle to achieving the "Healthy China 2030" goal [9, 10]. In 
2019, deaths caused by chronic diseases accounted for 
88.5% of the total deaths in China [10]. Compared to hav-
ing a single chronic disease, the threat of comorbidities 
of chronic diseases to patients’ life safety and quality of 
life is greater, and the risk of death is higher [11]. Studies 
have shown that for each additional disease, the average 
life expectancy of patients will be shortened by 1.8 years 
[12–14]. Therefore, it is of great practical significance to 
clarify the influencing factors of the prevalence of comor-
bidities among middle-aged and elderly people with 
chronic diseases (PCMC). This will help improve the 
quality of life and happiness of middle-aged and elderly 
people and ensure that the elderly can enjoy their later 
years.

Environmental air pollution has become a global pub-
lic health problem, and fine particulate matter ((PM2.5) is 
one of its main components. PM2.5 has a small diameter 
and a large surface area, which allows it to carry various 
toxic substances. It can enter the bloodstream directly 
through the blood-gas barrier, causing damage to vari-
ous tissues and organs of the body and posing potential 
hazards to health. Previous studies have shown that 
PM2.5 can harm the physical function of middle-aged and 
elderly individuals [12–15]. However, it is still uncertain 
whether PM2.5 exposure is associated with the occur-
rence of chronic disease comorbidity. Further research is 
needed to investigate this relationship.

Researchers have gradually recognized that the etiol-
ogy of chronic diseases is complex and involves not only 
genetics and unhealthy lifestyles but also spatial factors 
such as geographical location, environment, climate, and 
various levels of pollution from harmful substances [16, 

17]. Therefore, it is necessary to analyze the distribution 
of various disease patterns by exploring their associations 
with environmental and geographical factors. Review-
ing the studies conducted by scholars, it can be observed 
that most of the current research focuses on individual 
chronic diseases, such as diabetes and hypertension. Sig-
nificant progress has been made in understanding their 
spatial distribution characteristics, providing data sup-
port for the development of regional control measures 
for chronic diseases [18–20]. In terms of studying mul-
timorbidity, scholars have utilized methods like spatial 
autocorrelation or spatial clustering to identify the spatial 
distribution of comorbid chronic diseases. For instance, 
Guo Xiaorong et  al. used spatial autocorrelation meth-
ods to investigate the spatial distribution and patterns 
of multimorbidity among the elderly in China in 2015 
[21]. Isabel et  al. employed Bernoulli cluster analysis to 
determine regional disparities in the burden of comorbid 
diseases [22]. Regarding the analysis of influencing fac-
tors, current studies often employ basic global or local 
regression methods to analyze cross-sectional data. For 
example, Peixi Rong et al. identified the influencing fac-
tors of multimorbidity among the elderly in China but 
did not consider environmental variables [23]. However, 
it is evident that the research on multimorbidity is still 
incomplete and has certain limitations. Many studies rely 
on cross-sectional data, neglecting the lag effects of vari-
ous influencing factors and failing to capture the dynamic 
factors affecting multimorbidity in middle-aged and 
elderly individuals. Furthermore, there is limited explo-
ration of the actual effects of air pollution, a significant 
influencing factor for comorbidities.

It is worth noting that spatial statistical methods 
have rapidly evolved in recent years, leading to the 
development of a series of more advanced and tar-
geted local spatial analysis methods. These methods 
have been widely applied by scholars in various fields 
such as land allocation, environmental pollution, and 
urban planning [24, 25]. For example, Shukui Tan uti-
lized multiscale geographically weighted regression 
(MGWR) to analyze the different socioeconomic driv-
ing factors influencing carbon emissions, identifying 
the scales of influence for each factor [26]. Maomao 
Zhang employed MGWR to differentiate the socio-
economic factors affecting land transfer scale [27]. 
Xiyu Zhang introduced temporal weighted regres-
sion (GTWR) to analyze the dynamic influencing fac-
tors of interprovincial occurrence rates of catastrophic 
health expenditures using longitudinal data [28]. 
The GTWR model is a spatial and temporal weighted 
regression method that introduces spatial and tempo-
ral weights to the traditional linear regression model. 
It allows the model parameters to vary in both spatial 
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and temporal dimensions, thereby taking into account 
the non-stationarity in space and time. The GTWR 
model has enhanced predictive capability and higher 
interpretability compared to traditional models [29]. It 
is particularly suitable for utilizing longitudinal data to 
analyze the dynamic environmental influencing factors 
of chronic diseases.

Therefore, this study utilized national authoritative 
data and data from the China Health and Retirement 
Longitudinal Study (CHARLS) to analyze the spatial dis-
tribution characteristics of PCMC in different provinces 
of China. Firstly, the spatial autocorrelation method is 
used to analyze the spatial distribution characteristics of 
the PCMC in different provinces of China, and to identify 
aggregation and dispersion regions. Secondly, based on 
the GTWR model, which considers spatial and temporal 
heterogeneity, the relationship between the PCMC and 
macro factors such as environmental PM2.5 content is 
modeled. The coefficient function was estimated to reveal 
spatiotemporal heterogeneity, and the results were com-
pared with those of the Ordinary Linearity Regression 
(OLR) and Geographically Weighted Regression (GWR) 
models. Finally, based on the estimation results of the 
coefficient function, the effects of different macro factors 
on different regions were investigated, and the research 
results were visualized using GIS technology (See Fig. 1 
for details).

The aim of this study was to expand and deepen the 
theoretical research in the field of chronic disease comor-
bidity. Additionally, it aimed to provide a theoretical 
basis and decision-making support for the construction 
and optimization of regionalized prevention and control 
measures for chronic disease comorbidity in China. This 
study has two potential innovative aspects: (1) It utilizes 
longitudinal panel data to analyze the spatial distribution, 
regional disparities, and temporal trends of the co-occur-
rence of air pollution and chronic diseases.(2) Taking into 
account both spatial and temporal dimensions, it employs 
various regression methods (OLS, GWR, TWR, GTWR) 
to investigate the impact of air pollutants (PM2.5) on the 
comorbidity of chronic diseases among middle-aged and 
elderly populations. The study also considers the influ-
ence of regional heterogeneity and temporal heterogene-
ity, thereby capturing the lagged effects of air pollution 
on the comorbidity of chronic diseases to some extent.

Methods
Data acquisition
Based on the principle of data accessibility, this study 
selected all provincial-level units except for Hong Kong, 
Macau, Taiwan, Hainan, Ningxia, and Tibet as the study 
area. Data from four time points (2011, 2013, 2015, and 
2018) were selected to evaluate the spatiotemporal dis-
tribution characteristics of the PCMC and to analyze 

Fig. 1  Research framework
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the impact of fine particulate matter on comorbidities of 
chronic diseases and its spatiotemporal non-stationarity. 
The data on comorbidities of chronic diseases among 
middle-aged and elderly people were obtained from 
the China Health and Retirement Longitudinal Study 
(CHARLS), which used a multi-stage sampling method 
to cover 28 provincial-level units in China and has a cer-
tain national representativeness.

This study obtained high spatial resolution ground-
level PM2.5 concentration data from the Atmospheric 
Composition Analysis Group at Dalhousie University [30, 
31]. The data were based on the Twin MODerate Reso-
lution Imaging Spectroradiometer (MODIS), Multiangle 
Imaging SpectroRadiometer (MISR), and Sea-viewing 
Wide Field-of-view Sensor (SeaWIFS) of the US National 
Aeronautics and Space Administration (NASA) inversed 
to obtain aerosol optical depth (AOD) data, combined 
with the GEOS-Chem chemical transport model, and 
ground monitoring data, which were incorporated into 
the GWR to obtain ground-level annual PM2.5 concentra-
tion in China with a resolution of 0.01°*0.01°.

Next, geocoding was performed on individual 
addresses, and the PM2.5 concentration measurements 
were assigned using ArcGIS software (ESRI Corpora-
tion). Specifically, the average concentration for each grid 
cell (0.01° × 0.01°) was merged with a geographic shape-
file containing the boundaries of Chinese provinces. The 
average PM2.5 exposure concentration was then allocated 
to each province, resulting in annual provincial-level 
PM2.5 mean data for the years 2011, 2013, 2015, and 2018. 
The remaining environmental control variable data were 
sourced from the 2012, 2014, 2016, and 2019 editions 
of the "China Statistical Yearbook" and the "China Civil 
Administration Statistical Yearbook.".

Sample selection
This study included the prevalence of 14 common 
chronic diseases in the health and function question-
naire of CHARLS, which were self-reported by the 
respondents. The chronic diseases included hyperten-
sion, dyslipidemia, diabetes or elevated blood glucose, 
cancer, chronic lung disease (such as chronic bronchitis 
or emphysema, pulmonary heart disease), liver disease, 
heart disease (such as myocardial infarction, coronary 
heart disease, angina pectoris, congestive heart failure, 
and other heart diseases), stroke, kidney disease, gastric 
disease, emotional and mental health problems, mem-
ory-related diseases (such as Alzheimer’s disease, cere-
bral atrophy, Parkinson’s disease), arthritis, and asthma. 
The definition of middle-aged and elderly people in this 
study was age ≥ 45 years [32, 33], and the definition of 
comorbidities of chronic diseases was the coexistence 

of two or more chronic diseases [34]. To address the 
issue of missing values in the study sample, this study 
utilized machine learning techniques and the random 
forest imputation method.

In the regression analysis, the PCMC in each province 
was taken as the dependent variable, and the impact of 
PM2.5 concentration was explored [35, 36]. Based on 
the research of other scholars and the underlying logic 
of changes in PCMC [37, 38], this study selected macro 
factors such as provincial area, population density, pop-
ulation dependency ratio, hospital quantity, basic medi-
cal institution quantity, and specialized public health 
institution quantity as control variables.

Statistical methods
Spatial autocorrelation
Spatial Autocorrelation is commonly used to explore 
whether there is statistical correlation between a cer-
tain variable or data in space, or to explore the poten-
tial mutual influence among several data indicators. 
The research theory inherits the first law of geography 
proposed by Swiss geographer Tobler, which states that 
everything is related to everything else, but near things 
are more related [39]. As spatial autocorrelation can 
discover the distribution status and regular features of 
data in space, such as exploring the aggregation and 
dispersion states of data distribution, exploring the hot 
and cold spots of data distribution, it is often used to 
study the distribution of related indicators of public 
service facilities. In this study, the Global Moran’s I and 
Getis-Ord General G indices and the local indicator of 
spatial autocorrelation (LISA) and Getis-Ord Gi* tool 
were used to analyze the spatial distribution character-
istics of the PCMC in each province, and to identify the 
aggregation and dispersion regions of data distribution.

Global spatial autocorrelation  Global Moran’s I reflect 
the overall spatial autocorrelation of the study area and 
is used to determine whether there is spatial autocor-
relation in the research object as a whole. It is a spatial 
autocorrelation statistic for the entire study area [40]; 
The Getis-Ord General G method is used to preliminarily 
determine the clustering type.

The Global Moran’s I method of global spatial auto-
correlation is given as

The Getis-Ord General G method of global spatial 
autocorrelation is given as

I =
n
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×

n
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The range of values for Global Moran’s I is [-1, 1]. 
Observing Moran’s I can help determine the aggregation 
and dispersion status of data in space. If Moran’s I < 0, it 
indicates that the statistical data exhibit negative cor-
relation in space, and the closer Moran’s I is to -1, the 
stronger the negative correlation. If Moran’s I = 0, it indi-
cates that there is no obvious correlation in the spatial 
distribution of the statistical data, and the data are ran-
domly and uniformly distributed. If Moran’s I > 0, it indi-
cates that the statistical data exhibit positive correlation 
in space, and the closer Moran’s I is to 1, the stronger the 
positive correlation. In the analysis results of Getis-Ord 
General G, if the p-value is significant and the z-score is 
greater than 0, the higher the score, the tighter the clus-
tering of high-value (hotspot) clusters; if the z-score is 
less than 0, the lower the score, the tighter the clustering 
of low-value (coldspot) clusters.

Local spatial autocorrelation  The global autocorrela-
tion statistic indicates the presence of clustering, while 
the local autocorrelation indicates the location and type 
of spatial correlation. In order to further study the dis-
tribution pattern of the PCMC, the local autocorrela-
tion analysis method was used to identify the reachable 
local clusters. Due to the heterogeneity of space, there 
will be different clustering states in different geographi-
cal locations. LISA is suitable for studying the heteroge-
neity characteristics of the aggregation of PCMC [41]. 
The Getis-Ord Gi* tool is applicable for hotspot analysis, 
which can analyze the distribution of cold spots and hot-
spots of the PCMC.

Its calculation expression is as follows:
The LISA method of local spatial autocorrelation is 

given as

The Getis-Ord Gi* method of local spatial autocorrela-
tion is given as

where and are attribute values for features i and j; is the 
spatial weight between feature i and feature j; and n is the 
number of features in the dataset. When the statistic is 
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higher than the mathematical expectation and passes the 
hypothesis test, it is a hot spot; otherwise, it is a cold spot 
[42].

Regression model
The first step is to use the OLS regression model to fit the 
relationship between the PCMC and the annual average 
PM2.5 content in each province in China, and calculate 
the variance inflation factor (VIF) of each independent 
variable [43] to test for multicollinearity.

Secondly, in the selection of spatial regression meth-
ods, scholars in the research on spatial heterogeneity and 
spatial effects often use the GWR model as a local spa-
tial regression model [44], which can determine the local 
influence factors of the PCMC in different spatial loca-
tions. However, GWR can only model cross-sectional 
data and does not consider changes over time, so the con-
clusions obtained are not complete. In order to accurately 
fit the time and space effects and make the regression 
model estimates more accurate, Huang Bo et al. proposed 
the GTWR model [45, 46], which introduces the time 
dimension, uses geographic location and time scale func-
tions to calculate each local regression equation, and the 
regression parameters of the independent variables in the 
model vary with the change of spatiotemporal location, 
providing strong support for analyzing the spatiotempo-
ral characteristics of regression relationships.

The general form of the two models is as follows:

Formula (1) represents the GWR model, Formula (2) 
represents the GTWR model, where yi represents the 
value of the dependent variable at study unit i; (ui, vi, ti) 
represents the longitude, latitude, and time coordinates 
of the i-th sample point; β0(ui, vi, ti) is the regression 
intercept of study unit i, βk(ui, vi, ti) is the regression 
coefficient of the kth explanatory variable on study unit 
i, xik is the data of the kth explanatory variable on study 
unit i, εi is the Error term which meets the εi ∼ N

(

0, σ 2
)

 
assumption.

The choice of bandwidth can affect the results of the 
model. A bandwidth that is too small may lead to over-
fitting, while a bandwidth that is too large may include 
points that have little effect on the model, leading to 
inaccurate results. In this study, an adaptive bandwidth 
selection method was used, which selects the bandwidth 
and model based on the modified Akaike Information 

(1)yi = β0(ui, vi)+

P
∑

k=1

βk(ui, vi)xik + εi

(2)yi = β0(ui, vi, ti)+

P
∑

k=1

βk(ui, vi, ti)xik + εi
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Criterion (AICc) [47]. Furthermore, to demonstrate the 
superior fitting performance of the GTWR model, this 
study compared the results of the OLS regression model, 
traditional GWR model, and TWR model. OLS was cho-
sen as the comparison method due to its wide applicabil-
ity, global nature, and unbiasedness [48].

In addition, this study used SPSS 26.0 software for data 
management and OLS analysis, and ArcGIS 10.8 soft-
ware with the GTWR plugin [45] for spatial autocorrela-
tion and spatial regression analysis. A two-tailed test with 
a significance level of α = 0.05 was used for hypothesis 
testing.

Model evaluation
To evaluate the model fit and complexity, this study uti-
lized metrics such as the Coefficient of Determination 
(R2), Adjusted R-squared (AdjR2), Akaike Information 
Criterion with correction (AICc), and Residual Sum of 
Squares (RSS). These metrics were used to compare dif-
ferent models and select the optimal regression model. 
R2 and AdjR2 were used to assess the goodness of fit of 
the model, with higher values indicating better fit. AICc 
was used to compare the complexity of the models, with 
lower values indicating simpler models. RSS was used to 
evaluate the magnitude of the residuals, with lower val-
ues indicating better model performance.

Results
Description
This study included a total of 76,459 samples. The sam-
ple size for each year was 17,502 cases in 2011, 18,420 
cases in 2013, 20,838 cases in 2015, and 19,684 cases 
in 2018. In 2011, among middle-aged and elderly peo-
ple, there were 5,735 cases (32.8%) without chronic dis-
eases, 5,133 cases (29.3%) with one chronic disease, and 
6,634 cases (37.9%) with two or more chronic diseases. 
In 2013, the corresponding numbers were 7,483 cases 
(40.6%), 4,523 cases (24.6%), and 6,414 cases (34.8%). 
In 2015, there were 8,851 cases (42.5%), 4,777 cases 
(22.9%), and 7,210 cases (34.6%), while in 2018, there 
were 10,832 cases (55.0%), 4,337 cases (22.0%), and 
4,515 cases (22.9%). The prevalence of various chronic 
diseases is shown in Table S1.

Figure  2 shows the PCMC in different provinces of 
China. The PCMC in China has shown a decreasing trend 
over time. In 2011, Guangdong province had the lowest 
PCMC, which was 20.95%. Four provinces had a PCMC 
over 50%, namely Jilin province, Heilongjiang province, 
Inner Mongolia, and Sichuan province. By 2018, Guizhou 
province had the lowest PCMC, which was only 9.05%. 
Xinjiang was the only province with a PCMC over 50%, 
while the prevalence in the rest of the provinces was 
below 40%. In terms of regional distribution, provinces 

located in the southeastern coastal areas consistently 
had lower PCMC. The PCMC in northeastern provinces 
has been well controlled, while there is still room for 
improvement in western regions.

Figure 3 shows that the level of PM2.5 pollution in China 
has also shown a decreasing trend since 2013. Tianjin has 
consistently had the highest annual average PM2.5 con-
tent for four years. In 2011, its value was 79.39μg/m3, 
which increased to 82.49μg/m3 in 2013, but then began 
to decrease. By 2015, it had decreased to 73.06μg/m3, and 
in 2018, it was only 52.73μg/m3. Qinghai has consistently 
had the lowest annual average PM2.5 content among all 
provinces, with a trend similar to that of Tianjin. In 2011, 
its value was 12.84μg/m3, which increased to 13.70μg/m3 
in 2013, decreased to 12.39μg/m3 in 2015, and continued 
to decrease to 12.19μg/m3 in 2018. Provinces with severe 
PM2.5 pollution are mainly located in developed regions 
in the east, with Beijing and its surrounding provinces 
experiencing particularly severe pollution. In addition, 
Xinjiang is the only province where the PM2.5 content 
has not decreased in recent years. In 2011, its value was 
44.96μg/m3, and in 2018, it was 46.21μg/m3.

Spatial statistical analysis of PCMC
Spatial autocorrelation analysis of PCMC
The results of global spatial autocorrelation for the PCMC 
in each province are presented in Table 1 and Figures S7 
and S8. The Global Moran’s I results show that there was 
no spatial autocorrelation in the PCMC in 2011 and 2013. 
However, in 2015, positive spatial autocorrelation began 
to emerge within the 90% confidence interval. By 2018, 
there was strong positive spatial autocorrelation within 
the 99% confidence interval. This indicates that the spa-
tial distribution of the PCMC has gradually shown posi-
tive correlation over time, with clustering in areas of high 
prevalence and low prevalence. This study further con-
ducted Getis-Ord General G calculation, but the results 
for four years did not show significance, indicating that 
there may not be significant high-value or low-value clus-
tering areas nationally. Therefore, further local spatial 
autocorrelation analysis is needed.

The LISA analysis results indicate that there is spatial 
heterogeneity in the PCMC in China. In 2011, Hunan 
province was classified as high-low, indicating that the 
PCMC in Hunan province was significantly higher than 
that in surrounding provinces. In 2013, Yunnan province 
was classified as low–high, indicating that the PCMC in 
Yunnan province was significantly lower than that in sur-
rounding provinces. In 2015, Gansu province was clas-
sified as low–high, and in 2018, Liaoning province was 
classified as low–high, while Anhui, Hubei, and Hunan 
provinces were classified as high-low. Please refer to 
Fig. 4 for details.
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The results of hot and cold spot analysis indicate that 
the cold spot areas of the PCMC in China from 2011 to 
2018 were all located in southeastern provinces, and the 
range of these cold spots had expanded over time. By 
2018, the cold spots had spread to seven provinces. In 
contrast, the hot spot areas were mainly located in west-
ern provinces of China, with Jilin province also becom-
ing one of the hot spots by 2018. Please refer to Fig. 5 for 
details.

Regression analysis of PCMC
The results of the collinearity test presented in Table  2 
show that the Tolerance values of all control variables are 
greater than 0.3, and the VIF values are all less than 5, 
which indicates that there is no collinearity between the 
control variables (The specific values and spatial distri-
bution diagrams of the control variables included in the 
model are detailed in Table S1 and Figures S1-S6).

The overall fit results of different models are presented 
in Table 3. It can be observed that the GTWR model has 
the highest R2, the lowest AICc and RSS, and the AICc 
difference with other models exceeds 3, indicating a bet-
ter fit [49]. Therefore, it can be concluded that the GTWR 
model provides a more accurate fit for the relationship 

between the PCMC and various influencing factors. In 
this study, the GTWR model was selected for further 
analysis, and an adaptive method was used to determine 
its bandwidth based on the sparsity of sample points to 
achieve a better fit.

The results of the GTWR model show that in 2011, 
only the PM2.5 content in the nine southeastern coastal 
provinces had a significant impact on the PCMC. How-
ever, over time, the PM2.5 content in more and more 
provinces showed a significant impact on PCMC, as 
shown in Fig. 6. The non-white provinces in Fig. 6 are the 
ones where the PM2.5 content has a significant impact 
on the PCMC. The color from blue to red indicates the 
increasing degree of impact, and the overall trend is that 
the impact range gradually expands from the southeast-
ern coastal areas to the inland areas, and the impact size 
gradually decreases from the southeastern coastal areas 
to the inland areas. In 2011, Fujian province was the 
most affected, with a regression coefficient of 0.22, while 
Hubei province was the least affected, with a regression 
coefficient of 0.12. By 2018, Guangdong province was the 
most affected, with a regression coefficient of 0.41, while 
Qinghai province was the least affected, with a regression 
coefficient of 0.21, as shown in Table S3.

Fig. 2  Dynamic changes in PCMC across provinces
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Discussion
Since 2011, the implementation of the Healthy China 
strategy and the vigorous promotion of ecological civili-
zation construction by the Chinese government, as well 
as the introduction of multiple related policies, have 
greatly alleviated the problem of chronic disease comor-
bidity and air pollution among middle-aged and elderly 
individuals in China. The PCMC and PM2.5 levels have 
both shown a declining trend. However, it is important to 
note that chronic disease comorbidity still poses a signifi-
cant threat to the health of middle-aged and elderly indi-
viduals in China, and should be given special attention 
while considering regional factors. Continued efforts are 
needed to improve air quality, promote healthy lifestyles 

and behaviors, and ensure access to quality healthcare 
services for this population.

Overall, the PMAC in China has exhibited a declin-
ing trend over time, which can be attributed to the efforts 
made by the Chinese government in addressing and man-
aging comorbid chronic diseases. The development of 
general practitioner teams has played a significant role in 
this regard [50], and the prioritization of advancing and 
enhancing the general practitioner system in China has 
helped to manage comorbidity effectively. Family doctor 
contract services have been implemented in major cities 
like Beijing, Shanghai, and Shenzhen, which are consid-
ered to be crucial in managing comorbidity [51]. However, 
in 2018, the PCMC in Xinjiang was still higher than 50%, 

Fig. 3  Dynamic changes in annual average PM2.5 content across provinces

Table 1  Global autocorrelation analysis results

*  The P value is statistically significant at the test level of 0.1

Year Moran’s I z-score p-value observed General G z-score p-value

2011 0.017589 0.672866 0.501033 0.000001 -0.742472 0.457801

2013 0.034806 0.895831 0.370343 0.000001 -0.485638 0.627224

2015 0.114417 1.868788 0.061652* 0.000001 0.058729 0.953168

2018 0.162901 2.597737 0.009384* 0.000001 -0.176488 0.859911
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which may be due to the vast geographical area, the low 
level of economic development, and the low accessibility of 
medical and elderly care resources. Additionally, a scarcity 
of non-medical health resources may also contribute to the 
high PCMC in Xinjiang. Continued efforts are needed to 
improve the accessibility of healthcare resources and non-
medical health resources in underdeveloped regions to 
further reduce the PCMC in China [52].

Furthermore, China has indeed made remarkable 
achievements in controlling air pollution, with the annual 
average PM2.5 pollution level showing a downward trend 
since 2013. This can be attributed to the Chinese gov-
ernment’s high attention to air pollution control, as evi-
denced by the release of the "Notice of the State Council 
on Printing and Distributing the Action Plan for Preven-
tion and Control of Air Pollution" in 2013 [53], which 
put forward comprehensive governance requirements 
for industrial enterprise atmospheric pollution, surface 
source pollution, mobile source pollution, and other 
directions. During the period from 2011 to 2018, Tian-
jin consistently had the highest annual average PM2.5 
content, with a value of 79.39μg/m3 in 2011, increasing 
to 82.49μg/m3 in 2013, but then showing a decreasing 

trend, dropping to 73.06μg/m3 in 2015, and reaching only 
52.73μg/m3 in 2018.

This indicates that the efforts made by the Chinese gov-
ernment in controlling air pollution have been successful, 
and there is a positive trend in improving air quality in 
China. However, continued efforts are needed to further 
reduce the PM2.5 pollution level and improve air quality, 
especially in heavily polluted regions.

Based on the spatial autocorrelation analysis results, 
the spatial distribution of the PCMC has gradually exhib-
ited positive correlation characteristics over time, show-
ing spatial clustering, i.e., areas with high PCMC are 
surrounded by areas with high PCMC, and vice versa. 
However, there is spatial heterogeneity on a local level, 
with clear cold and hot spot areas. The main cold spot 
areas are in the southeastern coastal areas, while the main 
hot spot areas are in the western provinces of China. This 
may be determined by various factors such as regional 
environment, dietary habits, and economic development 
level. For example, the medical level in the southeast-
ern coastal areas is relatively high, and people’s health 
awareness is also relatively strong [54]. They attach more 
importance to the prevention and treatment of chronic 

Fig. 4  Clustering and outlier analysis results of PCMC
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diseases, which leads to a lower disease rate. In contrast, 
the medical conditions in the northwestern and inland 
provinces are relatively poor, and people’s health aware-
ness is relatively weak. They are more likely to neglect 
the prevention and treatment of chronic diseases, leading 
to a higher disease rate. Moreover, people in the south-
eastern coastal areas mainly eat seafood and vegetables, 
which are rich in nutrients such as dietary fiber, vitamins, 

Fig. 5  Analysis results of cold and hot spots of PCMC

Table 2  Collinearity test results

Unstandardized 
coefficient

Standardization 
coefficient

Covariance statistics

B Standard error Beta tolerances VIF

(Constant) 0.364 0.060

Area 1.304E-07 0.000 0.449 0.772 1.295

Population density -3.218E-06 0.000 -0.022 0.654 1.528

Population dependency ratio -0.003 0.001 -0.200 0.727 1.376

Number of Hospitals 0.000 0.000 -0.501 0.400 2.502

Number of primary care institutions 1.652E-06 0.000 0.330 0.303 3.304

Number of professional public health 
institutions

1.314E-05 0.000 0.083 0.674 1.483

PM2.5 content 0.002 0.001 0.258 0.764 1.310

Table 3  Model evaluation results

Evaluation 
Indicators

GTWR​ OLS GWR​ TWR​

R2 0.686191 0.441071 0.50651 0.509307

ADjustR2 0.66507 0.665432 0.473294 0.47628

AICc -242.654 -238.249 -231.232 -229.648

RSS 0.376967 0.665432 0.592812 0.589452
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and minerals [55]. These foods help reduce the incidence 
of cardiovascular and digestive system diseases. In con-
trast, people in the western provinces mainly eat meat 
and dairy products, which are high in fat and cholesterol, 
leading to a higher incidence of chronic diseases. Overall, 
these regional factors contribute to the spatial heteroge-
neity of the PCMC in China, highlighting the importance 
of targeted interventions and policies to address the dif-
ferent health needs of different regions.

The results of the regression analysis indicate that 
PM2.5 concentration is a risk factor contributing to the 
increased comorbidity of PCMC. Its impact has been 
expanding from the southeastern coastal regions towards 
inland areas over the years. This may be due to the dura-
tion of exposure to air pollutants, which is an important 
factor influencing the occurrence of chronic diseases 
among this age group. This finding has been widely sup-
ported by scholars [56–59]. Weuve et al. utilized medical 
statistical methods and found that higher levels of long-
term exposure to PM2.5 were associated with a faster 
decline in cognitive abilities among older women [60]. 
Zhang et  al., using data from the China Family Panel 
Studies, found significant impairments in cognitive per-
formance due to air pollution with a lag of three years. 

Wang Y and Luo N discovered that the negative impact 
of air pollution on mental health mainly occurred within 
0–9 months of pollution exposure, while the effects on 
physical health were concentrated within 9–18 months. 
However, their study did not explore long-term effects 
beyond 18 months due to data limitations [61]. In this 
study, we observe that over time, the impact of PM2.5 on 
PCMC becomes significant in an increasing number of 
provinces, which may further complement the limita-
tions of Wang Y and Luo N’s research. Additionally, we 
can observe that the magnitude of the impact of PM2.5 
concentration on PCMC gradually decreases from the 
southeastern coastal regions to inland areas. This phe-
nomenon may be influenced by factors such as the eco-
nomic development level and natural environmental 
characteristics of each province [62].

The specific reasons may be as follows. The south-
eastern coastal areas are one of the most rapidly 
developing economic regions in China [63], with a 
fast urbanization process and relatively concentrated 
sources of pollution such as industry and transporta-
tion [64]. Therefore, the air quality has been affected 
earlier and more severely in this region [65]. In con-
trast, the inland regions have relatively backward 

Fig. 6  The Influence of Annual Average PM2.5 Content on PCMC in Various Years
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economic development and fewer sources of pollution, 
resulting in the residents in these areas being affected 
by PM2.5 pollution later. The population density in the 
southeastern coastal areas is also relatively high, with a 
large concentration of people and human and produc-
tion activities producing more pollutants, resulting in 
poor air quality. In contrast, the population density in 
the inland regions is relatively low, with fewer pollut-
ants being emitted, resulting in a later impact on air 
quality. The urban construction in the southeastern 
coastal areas is relatively dense, with a significant urban 
heat island effect that affects air circulation and reduces 
air quality. In contrast, the urban construction in the 
inland regions is relatively dispersed, with a weaker 
urban heat island effect and relatively better air quality. 
Finally, the climate in the southeastern coastal areas is 
characterized by high temperature and short sunshine 
time, which may have a negative impact on air qual-
ity [66]. Inland regions, on the other hand, have lower 
temperatures and longer sunshine time, which are con-
ducive to maintaining air quality [67].

Overall, these factors contribute to the regional dif-
ferences in the impact of PM2.5 concentration on the 
PCMC in China, highlighting the importance of targeted 
interventions and policies to address the different health 
needs of different regions.

Limitations
Although we attempted in this study to use various 
tests and methods to explore the relationship between 
annual average PM2.5 concentration and the PCMC in 
each province, there are still some limitations. Firstly, 
this study lacks strong causal inference evidence to 
prove the impact of annual average PM2.5 concentra-
tion on the PCMC, as there is currently limited research 
on the spatial non-stationarity of PCMC. However, this 
also implies that the research direction of this paper is 
innovative. Secondly, the CHARLS dataset is not suffi-
ciently representative in terms of region, and the chronic 
disease data is collected from self-reported information 
from participants. To address and expand on these limi-
tations, this study plans to further improve the quality 
of data, conduct field research, establish databases with 
regional representation, and expand the sample size 
in the future to correct these issues and expand on the 
results of this study.

Conclusions and recommendations
This study provides valuable insights into the spatiotem-
poral patterns and factors affecting the PCMC in China 
from 2011 to 2018. The use of longitudinal data from a 
national perspective allows for a comprehensive analysis 

of the regional differences and dynamic changes in the 
PCMC, contributing to the development of the theo-
retical research in the field of chronic disease comorbid-
ity. The study found that the PCMC in China has been 
greatly alleviated since 2011, showing a downward trend, 
which can be attributed to the high attention and strong 
promotion by the Chinese government. The spatial auto-
correlation analysis showed that the PCMC had spatial 
clustering characteristics, with hotspots appearing in 
western or northern provinces and cold spots appear-
ing in southeastern coastal provinces. The GTWR model 
results showed that the impact of PM2.5 concentration on 
the PCMC expanded gradually from southeast coastal 
areas to the inland regions, with the magnitude decreas-
ing progressively from the southeast coastal areas to the 
inland regions.

These findings provide a good theoretical basis and 
decision-making reference for the construction and opti-
mization of regional prevention and control measures 
for chronic disease comorbidity in China. By identifying 
the regional differences and factors affecting the PCMC, 
targeted interventions and policies can be developed to 
address the different health needs of different regions, 
contributing to the improvement of public health in 
China.

In conclusion, PM2.5 should be given priority atten-
tion as a health risk factor, considering regional factors. 
To construct a regional prevention and control sys-
tem for chronic disease comorbidity and optimize the 
allocation of medical and health resources, this study 
proposes the following suggestions: Firstly, stricter 
policies for air pollution control should be formulated, 
and the supervision of polluting enterprises should 
be increased. Stricter emission standards should be 
adopted to reduce PM2.5 emissions [49]. Secondly, pub-
lic transportation construction should be strengthened, 
and residents should be encouraged to reduce the use 
of private vehicles to reduce the impact of motor vehi-
cle exhaust emissions on air quality [68]. Thirdly, pub-
licity and education should be strengthened to increase 
public awareness of air pollution and chronic dis-
eases. Residents should be encouraged to adopt posi-
tive health behaviors and lifestyles, such as exercising 
more, maintaining a healthy diet, quitting smoking, and 
limiting alcohol consumption [69]. Fourthly, the gov-
ernment should increase urban green coverage, intro-
duce more plants and trees, enhance the ecological 
environment of cities, absorb harmful substances such 
as PM2.5, and improve urban air quality. Studies have 
shown that this measure can significantly improve air 
quality [70]. Finally, scientific research efforts should be 
strengthened, and research on air pollution and chronic 
diseases should be promoted. More scientific basis 
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and support should be provided for the prevention 
and treatment of chronic diseases, and the treatment 
and prevention of chronic disease patients should be 
strengthened to improve the level and quality of medi-
cal services, thereby reducing the mortality and disabil-
ity rates of chronic diseases [71].

Abbreviation
PCMC	� Prevalence of comorbidities among middle-aged and elderly people 

with chronic diseases
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