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Abstract 

Background Intervention planners use logic models to design evidence-based health behavior interventions. Logic 
models that capture the complexity of health behavior necessitate additional computational techniques to inform 
decisions with respect to the design of interventions.

Objective Using empirical data from a real intervention, the present paper demonstrates how machine learning can 
be used together with fuzzy cognitive maps to assist in designing health behavior change interventions.

Methods A modified Real Coded Genetic algorithm was applied on longitudinal data from a real intervention study. 
The dataset contained information about 15 determinants of fruit intake among 257 adults in the Netherlands. Fuzzy 
cognitive maps were used to analyze the effect of two hypothetical intervention scenarios designed by domain 
experts.

Results Simulations showed that the specified hypothetical interventions would have small impact on fruit intake. 
The results are consistent with the empirical evidence used in this paper.

Conclusions Machine learning together with fuzzy cognitive maps can assist in building health behavior interven-
tions with complex logic models. The testing of hypothetical scenarios may help interventionists finetune the inter-
vention components thus increasing their potential effectiveness.

Keywords Machine learning, Genetic algorithms, Fuzzy cognitive maps, Complex interventions

Background
Many planning frameworks to guide the development 
of evidence-based health behavior change interventions 
start with conceptualizing the problem at hand. Interven-
tion planners often do so by building a logic model of the 
problem [1, 2]. The logic model of the problem can make 
use of previously tested theoretical frameworks, concep-
tual frameworks, empirical evidence, or a combination 
of the three [3–6]. In short, a logic model of the problem 
constitutes a causal-path diagram that represents how a 
given problem has arisen and is being sustained. In the 
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subsequent stages of the intervention development, the 
logic model of the problem is translated into a logic model 
of change (a.k.a. theory of change) which illustrates how 
specific intervention components are expected to result 
in a desired solution to the given problem (see Fig. 1). The 
logic model of the problem and the logic model of change 
are crucial for designing intervention components and 
properly defining research questions and measures both 
in process and outcome evaluation studies [1].

To build a comprehensive logic model of a given 
problem, intervention planners ought to meaning-
fully integrate evidence of various types from multiple 
sources. Types of evidence include both quantitative and 

qualitative data that come from expert panels, grassroot 
surveys, systematic reviews and meta-analysis, and theo-
ries related to behavior and behavior change [1].

Logic models commonly used in health behavior inter-
ventions (e.g., often simplified as chains of lists) are not 
limited to a certain type of evidence: they can integrate 
both qualitative and quantitative data as needed. Such 
flexibility is possible because the causal paths in these 
models are often defined at higher levels of abstrac-
tion (e.g., personal, behavioral, environmental) and do 
not specify either the nature or strength of the causes 
(Fig.  1a). This high-level specification of causal paths 
also makes such models intuitive to interpret as we can 

Fig. 1 (a) A simple logic model based on PRECEDE model and (b) a logic model of change [1]
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visually trace the effect of the intervention on the prob-
lem node. Nonetheless, these relatively simple logic mod-
els run the risk of oversimplifying the problem of interest 
by missing out on details that are important to plan, con-
duct, and evaluate an intervention.

Alternatively, we can incorporate information on 
lower levels (e.g., specific attitudes and beliefs) into a 
logic model, which requires knowledge of the nature 
and strength of causal paths (Fig. 2) [7]. Although this 
is appealing in terms of representing more information 
about the problem, this also faces two major challenges. 
Firstly, the struggle to integrate heterogeneous data-
sets within a single analytical framework. This integra-
tion is a necessity for practitioners who utilize survey 
data from primary sources, various types of effect-size 
metrics from secondary sources (e.g., Cohen’s d, odds 
ratios, correlation coefficients), qualitative evidence 
and expert opinions (both from primary and second-
ary sources). Secondly, because such frameworks per-
mit more complex causal structures within a set of 

determinants (e.g., feedback loops instead of merely 
presenting chains of lists), it becomes difficult to esti-
mate how a given intervention will unfold without addi-
tional computational techniques. For example, unlike in 
systems with simpler structure (e.g., a tree), in systems 
with causal loops the effect of an intervention will keep 
cycling between certain components which may inhibit 
the effect of an intervention or reinforce it.

Thus, effective evidence- and theory-based inter-
ventions require a framework that permits systematic 
integration of evidence of different types (qualitative 
and quantitative), accounts for the complex structure 
and functioning of interactions between the identified 
determinants, and provides computational techniques 
to assist decision making (i.e., testing of intervention 
scenarios). In our previous work, we discussed how a 
hybrid approach of Fuzzy Cognitive Maps (FCM) and 
machine learning could theoretically meet the afore-
mentioned requirements [8]. In the present work, 
we provide empirical evidence that this potential 

Fig. 2 An excerpt of a more complex logic model of government control of tobacco [7]
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can be realized, using a case study from a real-world 
intervention.

Case study setting
The intervention we selected for this case study is 
directed towards promoting healthy eating among adults 
in the Netherlands [9]. For the purposes of this study, we 
focus on fruit intake because the average habitual daily 
fruit consumption of Dutch adults was estimated to be 
below recommendation (117.4 compared to the recom-
mended 200 g) [9–11]. Springvloet et al. [9] identified a 
broad list of personal and environmental determinants 
(Table  1) of unhealthy eating through a comprehensive 
review of the empirical literature and by surveying rel-
evant theories (e.g., self-regulation theory, the precaution 
adoption process model, the theory of planned behav-
ior and social cognitive theory). The determinants were 
grouped into three domains: i) individual cognition, ii) 
self-regulation skills, and iii) environmental level factors. 
The individual cognition domain included 1) awareness 
of the fruit intake; 2) attitude towards fruit intake; 3) atti-
tude towards price related to fruit intake; 4) perception 
of availability; 5) self-efficacy; 6) social influence; and 7) 
intention. The self-regulation skills included action plan-
ning and coping planning. Lastly, the environmental level 
factors included the availability and the location of fruits 
at home. These determinants can be represented in a 
logic model of fruit intake (Fig. 3).

The model in Fig. 3 reads from left to right, includes 
a few causal paths, and does not include complex struc-
tures (feedback cycles). The intervention assumes that 
the change in the determinants will lead to an expected 

change in the fruit intake. Two important observations 
can be made about this logic model, which are repre-
sentative of many available logic models. Firstly, the 
determinants are grouped into larger theoretical/con-
ceptual domains (i.e., individual cognitions, self-regula-
tion skills, environmental level factors) and the causal 
relationships are only considered between these larger 
domains and the problem node (fruit intake). Secondly, 
no consideration is given to the (possible) relation-
ships between the determinants at the lower levels (i.e., 
the determinants within these theoretical/conceptual 
domains). For instance, knowledge, awareness and atti-
tudes are interlinked. Individuals’ attitudes and beliefs 
depend at least partly on the information available to 
them. Similarly, the attitudes and beliefs will determine 
what type of information a person will search for (i.e., 
confirmation bias) [13]. This creates a reinforcing feed-
back process between knowledge, awareness, attitudes 
and beliefs. Such reinforcing processes reflect the ten-
dency of an individual to align the elements of their 
cognition to avoid or minimize cognitive dissonance 
and the associated mental and physical discomfort 
[14–17]. The reinforcing processes are not only hypoth-
esized to exist between the psychological determinants 
but also between the determinants within the domains 
of person, behavior and the environment in general 
(i.e., triadic reciprocal relationships in Bandura’s social 
cognitive theory) [4, 18].

In the subsequent section, we provide a brief introduc-
tion to FCMs, describe the machine learning algorithm 
to build an FCM model based on longitudinal data from 
this case study and use computer simulations to assist 

Table 1 Determinants of fruit intake and their operationalizations [12]

# Construct Operationalization

1 Awareness One’s awareness of the number of fruits s/he thinks s/he eats?

2 Attitude One’s belief that eating 2 servings of fruits daily is healthy

3 Attitude Price One’s belief that eating 2 servings of fruits daily is expensive

4 Self-efficacy One’s belief that s/he can eat more fruit per day in the next six months if s/he really wants to?

5 One’s belief about the extent to which it is difficult to eat more fruit in the next six months?

6 Social-influence One’s belief that most people who are important to her/him think s/he should eat two pieces of fruit per day

7 One’s belief that most people who are important to him/her consume two pieces of fruit per day

8 Intention One’s intention to eat two pieces of fruit per day?

9 Action-planning One has a clear plan for when s/he is going to eat more fruit

10 One has a clear plan for which fruit s/he is going to eat more/less

11 One has a clear plan for how many fruits s/he is going to eat more/less

12 Copying planning One has a clear plan for what s/he is going to do when something interferes with his/her plans to eat more fruit

13 One has a clear plan for what s/he is going to do in situations in which it is difficult to eat more fruit

14 Perception of availability 
at home

How often does one have fruit products available at home?

15 Visibility at home Visibility of fruits at home
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decision making (i.e., test hypothetical intervention 
scenarios).

Methods
FCMs represent a system of interdependent components 
in a weighted signed directed graph. The nodes in the 
graph represent the factors included in the system (e.g., 
determinants) and the weighted signed directed arcs rep-
resent the causal relationships between the causal fac-
tors. The FCMs are equipped with simulation capabilities 
which permit exploration of the effects of various hypo-
thetical scenarios. To construct an FCM one needs infor-
mation on the factors that are relevant for a given case 
and the causal relationships between these factors (i.e., 
direction and strength of the causal relationships) [8].

For this intervention case, we already had a com-
prehensive list of determinants of the fruit intake, as 
described in Springvloet et al. [9]. To construct the FCM 
for this case study, we needed to add the potential causal 
paths between these determinants. For this, we used 

the baseline measurements of each determinant among 
the group of participants who did not receive any inter-
vention in between the measurement time points (i.e., 
control group). The dataset contained 257 observations 
on the 15 determinants and the outcome variable (fruit 
intake) (see Table 1). The data was collected in the period 
of March 2012 and December 2013. The details on the 
socio-demographic profiles of the study participants can 
be found at [12]. The determinants in the domain of indi-
vidual cognition and self-regulation skills were assessed 
on a 5-point Likert scale whereas the environmental 
determinants were assessed on a nominal scale. The fruit 
intake variable was created as a composite score based on 
multiple indicators (more information about the survey 
can be found in Springvloet et al. [12]).

In an FCM created via Machine Learning, whenever 
longitudinal data on the determinants is available, we 
can use data-driven approaches (e.g., Nonlinear Heb-
bian Learning algorithm, Real Coded Genetic Algorithm 
(RCGA)) to identify the potential causal links between 

Fig. 3 Logic model of fruit intake among adults in the Netherlands (adopted based on the conceptual model from Springvloet et al., [9])
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the determinants [19–21]. The RCGA algorithm gener-
ates FCMs based on longitudinal data and requires no 
expert intervention in the learning process. In this study, 
we use a modified version of the legacy RCGA algorithm 
proposed by Stach [21]; our method is summarized at a 
high-level by Algorithm 1, which is detailed in a technical 

publication [22] and illustrated in Fig.  4. The algorithm 
is able to reproduce the trajectory of an individual’s 
behavior because we seek an optimal fitness at every step, 
instead of optimizing only the final stage as was done in 
prior work (Fig. 4).

Algorithm 1. Pseudocode for our approach. Details are available in our technical publication [22]

Since an FCM serves to support decision making activities, its construction is generally followed by its use on sce-
narios of interest (Fig. 5). In our case, the scenarios consist of hypothetical interventions, whose results are estimated 

by running simulations on the FCM. Simulations were 
performed using the FCMpy package in Python [23]. In 
this section, we describe each step in more detail.

Constructing a fuzzy cognitive map
Step 1: Identify the determinants in the problem domain
In the first step of constructing an FCM, the modeler 
must identify all the determinants (i.e., nodes) relevant 

to the problem domain. This can be achieved either by 
directly collecting relevant information from the stake-
holders (e.g., domain experts, community members) or 
by obtaining such information indirectly from secondary 
sources (e.g., empirical papers, reports, archives, theo-
ries) [24, 25]. Indirect approaches can be applied when 
there are considerable constraints imposed on the pro-
ject (e.g., hard to reach population, limited resources) or 
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when the problem domain is well covered in secondary 
sources. A mixture of direct and indirect approaches is 
also possible in cases where the problem domain is par-
tially covered in the literature [26]. In our case, Spring-
vloet et  al. [9] in their study have already identified 11 
determinants in the empirical literature that are relevant 

to the problem domain. Some of these determinants con-
stitute aggregate scores of several measurement items. 
For this study we selected determinants at the lowest 
possible level and therefore we considered the determi-
nants at the level of measurement items that totals to 15 
determinants (see Table 1).

Fig. 4 Representation (top) and computations involved in optimizing an FCM using the Genetic Algorithm approach summarized in Algorithm 1
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This choice was guided by the notion that interven-
tions operate on the determinants at the lowest level and 
thereby cannot directly target determinants on higher 
levels [27]. In the next step, we proceeded to the identifi-
cation of causal weights between the determinants.

Step 2: Identify the causal weights (structure of the system)
In this step, we ought to identify causal links (and the 
associated weights) between the set of determinants 
listed in the previous step. These weights can be iden-
tified by experts, inferred from data, or a mix of both 
(when experts’ weights can be refined thanks to data). In 
our study, we learn the weights from data. While there 
are many evolutionary algorithms to perform this task, 
they share common characteristics: they begin with 
a random solution and aim to improve it by repeatedly 
applying operators such as crossover, mutation, and selec-
tion [28]. The quality of a solution at a given iteration is 
known as its fitness. In other words, the fitness meas-
ures the extent to which (through the links’ weights) an 
FCM can produce data that is “similar enough” to the 
real-world target data. Algorithmic solutions can differ 
in how they define the operators as well as their quanti-
fication of fitness. Solutions can be broadly categorized 
depending on whether they improve a single candidate 
solution or keep a pool of candidates at each step (known 

as a ‘population’). We use a population-based algorithm, 
which is the most prolific research area to create FCMs 
with over 20 algorithms proposed previously (see Table 1 
in [29]).

Our algorithm modifies the foundational RCGA solu-
tion [12]. The RCGA computed the fitness as the dif-
ference between the final (simulated) outputs of an 
FCM and the real-world observed data. The RCGA was 
designed for data-scarce situations in which only the 
initial (baseline) and final value of a phenomenon were 
recorded. In our case, we have longitudinal measure-
ments hence we know the values of concepts in each par-
ticipant over several steps. We thus previously modified 
the RCGA [22] to ensure that the fitness was computed 
over each time step. This modification ensures that the 
optimized FCM closely follows the trajectory of an indi-
vidual, instead of only replicating the final value.

The crossover is a way to mix two candidate solutions, 
seen as ‘parents’ from the perspective of evolutionary 
algorithms. For instance, we can cut each of two par-
ents into two parts (i.e., split their matrices) and swap 
these entire parts, in a similar manner to how an off-
spring’s genome is obtained through a recombination 
of the parents’ genomes. In our case, the crossover con-
sists of swapping the causal weight of an edge selected at 
random.

Fig. 5 The data analysis process
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The mutation will replace some of the values. This is a 
way to introduce more variability in the pool of potential 
solutions. A mutation can be an advanced process, for 
example if we have reasons to control the level of varia-
bility (i.e., ensure that each offspring resembles its parent 
to a measurable level). In our case, in line with the origi-
nal RCGA algorithm, we perform a uniform mutation 
such that the causal weight of a randomly chosen edge is 
randomly reassigned.

If any of the new solutions is satisfactory, the algorithm 
can end by providing the solution along with its fitness. 
Otherwise, the algorithm will select the solutions with 
the highest fitness and resume the process.

Due to the randomness inherent to this algorithm, 
several FCMs can be provided (e.g., by running the algo-
rithms a few times) that all provide a fitness that meets 
or exceeds the goal. This is illustrated in our third-party 
repository at https:// osf. io/ uj7wd/, under the archive 
‘weights’, where we provided a comprehensive set of 
FCMs produced as the final product of our algorithm. 
An example of an FCM connection matrix produced by 
genetic algorithms is shown in Fig. 6.

The FCM connection matrices produced by our algo-
rithmwere further evaluated by calculating the in-sample 
and out of sample errors. The in-sample error indicates 
the average difference between the observed data and the 
data from the simulation of the learned FCM using the 
same initial conditions. The out of sample error indicates 
the difference between the observed data and the data 
from the simulations using randomly generated initial 
conditions [21].

Defining hypothetical intervention scenarios
Based on the developed logic model of the problem, 
Springvloet et al. [9] constructed two interventions (basic 
and plus). The basic intervention targeted only determi-
nants within the domains of individual cognitions and 
self-regulation (i.e., awareness, attitude and self-efficacy). 

The plus intervention additionally provided environmen-
tal level feedback on availability and prices of fruit in the 
supermarket as well as on how to make fruit more avail-
able and accessible in the home environment. The inter-
vention planners expected that either intervention would 
increase fruit intake among the participants compared to 
no treatment scenario.

To translate the above-described interventions (basic 
and plus) into the framework of an FCM, we needed to 
specify the determinants directly modified by these inter-
ventions [30] (i.e., intervention targets) and indicate the 
(hypothesized) effect of the interventions on these tar-
gets. To achieve this, we invited three experts from the 
Department of Health Promotion at Maastricht Univer-
sity who had a PhD in the field of public health or health 
promotion, were familiar with the context in the Neth-
erlands (have at least one research report on the topic in 
the Netherlands), and had experience in the field of nutri-
tion (at least two years of work experience). The experts 
were asked to assess the causal impact of the (hypotheti-
cal) interventions on the target determinants. In line with 
best practices for Fuzzy Cognitive Mapping, experts pro-
vided the causal impact using linguistic terms (very high, 
high, medium, low, very low and non-existent) rather 
than a Likert-scale.

After the experts evaluated the expected causal impact 
of the interventions on the target determinants by using 
linguistic terms, we applied fuzzy logic using the same 
four steps as in prior studies to obtain numerical causal 
weights [30–33]. First, we associated each of the linguis-
tic terms with a triangular membership function [33–35]. 
For example, this can represent how an expert who says 
“medium” tends to mean 0.5 on a scale from 0 to 1 and 
there is a reduced (but non-zero) possibility for other val-
ues as we move away from this peak. In addition, these 
functions can overlap, which gives the possibility that 
experts with closely related terms (e.g., low and very 
low) have the same thought but expressed it differently. 

Fig. 6 Example of an FCM produced by Genetic Algorithms. The FCM is shown as a matrix of weights, where concept names are the same 
between the x-axis and y-axis

https://osf.io/uj7wd/
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Second, for each causal relationship from an intervention 
to a determinant, we projected the experts’ responses 
onto the membership functions. For example, if we have 
three experts who said {Low, Medium, Medium} then 
1/3 of the experts endorses ‘low’ and 2/3 of the experts 
endorse ‘medium’. We thus use each membership func-
tion to the extent in which it was endorsed by the experts 
([36], which is known as ‘activation’; [33]). Third, we 
aggregated all the activated membership functions (with 
a Family Max aggregation operation) [37]. Lastly, we 
derived the final value for the intervention-determinant 
pair by using centroid defuzzification method [38]. By 
applying this procedure for each pair, we obtain a con-
nection matrix that encodes information about the 
causal impact of the intervention on the target determi-
nants (described in more detail in Mkhitaryan et al. [21]) 
(Fig. 7).

Testing of intervention scenarios
Testing of intervention scenarios in an FCM framework 
is often implemented by either changing the baseline 
values of the determinants (single shot interventions) 
or by introducing the intervention as a new factor in 
the defined FCM that continuously influences the target 
determinants (continuous interventions) [28, 33]. In our 
case, we used the latter approach because the plus and 
basic interventions are designed in such a way that the 

participants are expected to be continuously exposed to 
the intervention.

After introducing the proposed interventions as part of 
the identified FCM structure, the effects of the interven-
tions are examined by iteratively updating the values of 
the determinants by the following equation [39, 40]:

where  Ai  is the value of concept  i  at the simulation 
step  t  and the Wji is the causal impact of concept j 
on concept  i . As can be noted in the equation two, a 
(transfer) function f is applied to the results to keep the 
concept values within a certain range. In our case, we 
chose a sigmoid function as the concept values should 
take values in the range of [0,1]. The sigmoid function 
can be expressed as [41]:

where � is a positive number that determines the 
steepness of the sigmoid function ( 0 < � ≤ 10 ). The 
concept values are updated until the change in either 
all or a subset of these values ( |At+1

i − At
i | ) is not more 

than a specified threshold (e.g., 0.001) or a specified 
maximum number of iterations is reached (e.g., 2000) 

(1)At+1

i = f Ai +

n

j=1

At
j ∗Wji

(2)f (x) =
1

1+ e−�x

Fig. 7 The process of computing causal impacts of interventions on the target determinants via fuzzy logic (the gray arrows are the causal weights 
between the determinants derived via RCGA)
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[19]. In our case, we did not specify a subset of con-
cepts and let the algorithm run until the change in all 
the concept values did not exceed the threshold.

Results
The RCGA produced FCM connection matrices for each 
participant (257 matrices in total). The median in sam-
ple and out of sample errors of the weight matrices were 
0.36 (SD 0.086) and 0.145 (SD = 0.023) respectively. The 
experts specified two hypothetical intervention scenar-
ios (basic and plus) to be tested in an FCM framework. 
Based on the expert inputs, we derived the effects of the 
interventions on the target determinants (Table 2).

The results of the simulations of the hypothetical inter-
vention scenarios showed that both interventions would 
produce similar effects on the determinants of fruit 
intake, except for the visibility of fruits at home. More 
specifically, the plus intervention would have a stronger 
positive impact on the change in the mentioned determi-
nants compared to the basic intervention (Table 3).

Furthermore, the simulations showed that the average 
effect (percent change compared to the baseline) of both 
interventions on fruit intake across all participants would 
yield similar results (mean difference in the percent 
change in fruit intake compared to the baseline 1.86% 
and 2.43% respectively) (Fig. 8).

The effect of the interventions on the change in fruit 
intake did not seem to depend on the levels of fruit intake 
at baseline (Fig. 9).

Discussion
Intervention planners use logic models to design evi-
dence-based interventions. Logic models are the back-
bone of the theories of change which encapsulate 
information on how interventions are expected to impact 
the target variable/s. Logic models can vary in their com-
plexity and the more complex the logic models become 
the more they necessitate the use of additional computa-
tional techniques to guide decisions. Indeed, logic mod-
els that incorporate complex structures (feedback loops) 
need to be simulated until loops have stabilized, instead 
of simple chains of lists in which effects can be manually 
tracked on a diagram.

In the present paper, we demonstrated how machine 
learning can be used with FCMs to assist in develop-
ing health behavior interventions that accounted for 
such complex structures. In this framework and in line 
with previous studies, machine learning allows build-
ing FCMs relying on historical data without imposing 
any restriction on the structure of the system (e.g. loops 
are allowed) [21, 42]. In our study, we showed that it was 
even possible to generate a variety of FCMs that each 
correspond to an individual, thus evaluating the potential 
effect of interventions across a population.

The simulation engine of the FCMs allows testing 
hypothetical intervention scenarios. By doing so, the 
intervention planners have the opportunity to finetune 
the intervention components thus increasing its potential 
effectiveness. For demonstration purposes, the two sce-
narios used in this study were based on the scenarios that 
were actually tested in real-life in the evaluation study. 
This allows for comparison of the results of the simula-
tions with the real-life evaluation study. For example, the 

Table 2 Intervention scenarios and their causal impacts on the target determinants. Target determinants are described with short 
labels; see Table 1 for complete descriptions

Intervention 
Scenarios

Target Determinants

Awareness Attitude Attitude Price Self-efficacy 1 Self-efficacy 2 Perception of 
availability at home

Visibility 
at home

Basic 0.591 0.340 -0.340 0.500 0.058 N/A N/A

Plus 0.591 0.340 -0.558 0.591 0.040 0.341 0.500

Table 3 Percent change in the determinants in the Basic and 
Plus interventions

% Change compared to the baseline (± SD)

Determinant Basic Intervention Plus Intervention

Awareness 30.453 (19.684) 30.841 (20.831)

Attitude 5.984 (5.68) 5.813 (5.594)

Attitude Price -21.002 (8.705) -32.493 (9.678)

Self-efficacy 15.772 (20.441) 13.558 (18.138)

3.096 (7.988) 2.23 (8.407)

Social-influence 1.021 (6.634) 1.095 (7.563)

1.055 (6.613) 1.154 (8.313)

Intention 0.152 (6.194) 0.206 (6.915)

Action-planning 0.142 (9.744) -0.298 (11.383)

-1.329 (8.423) -1.509 (10.39)

-0.749 (7.925) -0.672 (9.46)

Copying planning 0.192 (8.797) 0.207 (10.341)

1.379 (10.818) 1.843 (12.413)

Perception of availability 
at home

1.379 (10.818) 2.98 (5.203)

Visibility at home -0.143 (3.655) 4.372 (11.325)
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results of the FCM simulations of the intervention cases 
presented in this paper showed that the effect found in 
the two intervention scenarios (basic and plus) would 

be very small. This finding is consistent with the results 
of the evaluation study of the intervention we used as a 
case study [12], thus providing external validity to the 

Fig. 8 Percent change in fruit intake at group level compared to baseline in Basic and Plus intervention scenarios

Fig. 9 Percent change in fruit intake at individual level after an intervention compared to baseline
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approach. The evaluation study of the real life interven-
tion found a small difference between the two interven-
tions at four months follow-up (plus vs basic: d = 0.22, 
P = 0.04) [12]. The presented approach uses a single case 
study in the context of nutrition within the Netherlands, 
so the validity of the approach could be strengthened by 
complementary studies on different populations and dif-
ferent endpoints/behaviors. Additionally, the reliability of 
the hypothetical interventions could be further strength-
ened by involving more domain experts.

The demonstrated approach can also be used to test 
multiple intervention scenarios that cannot all be tested 
in real-life (e.g., due to constraints in resources, such as 
budget and time). Additionally, it can be used to test mul-
tiple intervention scenarios and use the results to make 
an informed decision regarding which scenarios to test in 
a real-life evaluation study.

Building an FCM for health behavior interventions is a 
challenging task. The challenge lies in the paucity of the 
theoretical and empirical knowledge-base on the causal 
relationships between the determinants at lower levels. 
To build an FCM for health behavior interventions, we 
need to have sufficient knowledge on the mechanics by 
which various determinants impact one another. Such 
knowledge is essential for FCMs that are entirely based 
on expert knowledge (i.e., expert-based FCMs), quantita-
tive data (e.g., data driven approaches) or a combination 
of both (i.e., hybrid approaches). Our study demon-
strates a potential combination, by using a data-driven 
approach to create an FCM for each individual based 
on their empirical data, while involving subject-matter 
experts to qualitative assess the expected strength of an 
intervention.

Although our method was able to quickly provide 
satisfactory individual FCMs for a case study of hun-
dreds of adults and a few measurements, it is pos-
sible that intervention planners either have access to 
a much larger population or use a significant larger 
number of measurements. In these cases, scalability 
with respect to population size and/or measurements 
become important considerations. In a recent study 
[43], we showed that the Genetic Algorithms used in 
our process (Algorithm  1) can be improved by using 
a state-of-the-art optimization algorithm known as 
CMA-ES (Covariance Matrix Adaptation Evolution 
Strategy) instead of manually performing core opera-
tions such as crossover, mutation, and selection. As a 
result, we achieve a 15 × speed-up and our approach 
can be extended to large populations or many measure-
ments while continuing to provide high fidelity (with 
respect to individual trajectories of behavior change) 
and delivering results within a satisfactory timeframe. 

The timeframe scales linearly with respect to the num-
ber of individuals (i.e., if an intervention planner has 
twice the population size then it will take twice as long) 
and the growth is sublinear with respect to the num-
ber of measurements (i.e., if an individual is defined by 
twice the number of steps then it takes under twice the 
amount of time).

While our study used Fuzzy Cognitive Mapping to 
capture the dynamics of health behaviors, there are 
other techniques which also produce simulation models 
in the form of networks. For instance, System Dynam-
ics (SD) has been abundantly used for health behaviors 
[44–46] and this technique also structures a model 
through concepts connected by edges. In addition, 
Genetic Algorithms have also been used to calibrate 
SD models [47]. However, FCM and SD are employed 
in different situations. As explained in our Background 
section, FCMs are appropriate when data is partly 
qualitative, for example if data originates from surveys 
in which fuzzy qualifiers are used (e.g., ‘very strong’, 
‘medium’) [48]. In contrast, SD is the tool of choice 
when data is quantitative so that edges are expressed as 
rates (i.e., units of flow for a given time window). Our 
method is thus most applicable when health behaviors 
have been tracked through surveys rather than when 
precise measurements have been obtained for each 
construct over time.

To fully leverage the potential of the FCM framework 
for health behavior interventions, future work should 
be dedicated to consolidating theories and empirical 
evidence on the relationships between the determi-
nants at lower levels. Furthermore, the machine learn-
ing algorithms for FCMs should be extended to allow 
imposing of constraints on the FCM structure to pro-
duce FCMs that are consistent with available theories 
and the empirical evidence [49].

Abbreviations
FCM  Fuzzy Cognitive Maps
RCGA   Real Coded Genetic Algorithm

Acknowledgements
Our model relied on consultations with experts to whom we would like to 
express our gratitude: Jessica Gubbels and Stef Kremers from Maastricht 
University, The Netherlands.

Authors’ contributions
SM, PJG, and RC designed the study. NV and RC supervised SM, while PJG 
supervised MW. SM designed the Fuzzy Cognitive Map, PJG and MW designed 
the algorithm to create individual maps, and MW implemented it. AO 
provided domain expertise and data from the intervention study. SM wrote 
the first draft of the manuscript, which was edited and approved by all other 
authors.

Funding
Not Applicable. The study was not funded by any funding organization.



Page 14 of 15Mkhitaryan et al. BMC Public Health         (2023) 23:2478 

Availability of data and materials
The datasets used and/or analyzed during the current study are available from 
the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
All methods were carried out in accordance with relevant guidelines and 
regulations. This is secondary data analysis from an intervention study that 
was approved by The Medical Ethics Committee of the Erasmus Medical Cen-
tre in Rotterdam (NL35430.078.11/MEC-2010–408). All participants provided 
informed consent.

Consent for publication
Not Applicable.

Competing interests
The authors declare no competing interests.

Received: 28 March 2022   Accepted: 28 November 2023

References
 1. Bartholomew LK, Markham CM, Ruiter RA, Fernández ME, Kok G, Parcel 

GS. Planning health promotion programs: an intervention mapping 
approach. John Wiley & Sons; 2016.

 2. Green L, Kreuter M, Green L. Health program planning. New York: 
McGraw-Hill; 2005.

 3. Fishbein M, Ajzen I. Predicting and changing behavior: the reasoned 
action approach. New York: Psychology Press; 2011.

 4. Bandura A, Walters RH. Social learning theory, vol. 1. Englewood cliffs: 
Prentice Hall; 1977.

 5. Grimley D, Prochaska JO, Velicer WF, Blais LM, DiClemente CC. The 
transtheoretical model of change. Changing the self: Philosophies, tech-
niques, and experiences. 1994. p. 201–27.

 6. Ruiter RA, Crutzen R. Core processes: how to use evidence, theories, and 
research in planning behavior change interventions. Front Public Health. 
2020;8:247.

 7. Davies R. Representing theories of change: technical challenges with 
evaluation consequences. J Dev Effectiveness. 2018:438–461. https:// doi. 
org/ 10. 1080/ 19439 342. 2018. 15262 02.

 8. Mkhitaryan S, Giabbanelli PJ, de Vries NK, Crutzen R. Dealing with 
complexity: How to use a hybrid approach to incorporate complexity in 
health behavior interventions. Intell Based Med. 2020;3:100008.

 9. Springvloet L, Lechner L, Oenema A. Planned development and evalua-
tion protocol of two versions of a web-based computer-tailored nutrition 
education intervention aimed at adults, including cognitive and environ-
mental feedback. BMC Public Health. 2014;14(1):47.

 10. van Rossum CTM, Fransen HP, Verkaik-Kloosterman J, Buurma-Rethans 
EJM, Ocké MC. Dutch National Food Consumption Survey 2007–2010: 
Diet of Children and Adults Aged 7 to 69 years. Bilthoven: National 
Institute for Public Health and the Environment; 2011. RIVM-Report 
350050006/2011.

 11. Richtlijnen voedselkeuze (Guidelines food choice). http:// www. voedi 
ngsce ntrum. nl/ Assets/ Uploa ds/ Docum ents/ Voedi ngsce ntrum/ Actue el/ 
00_ Richt lijnen% 20voe dselk euze% 202011. pdf.

 12. Springvloet L, Lechner L, de Vries H, Candel MJ, Oenema A. Short-and 
medium-term efficacy of a Web-based computer-tailored nutrition 
education intervention for adults including cognitive and environ-
mental feedback: randomized controlled trial. J Med Internet Res. 
2015;17(1):e3837.

 13. Jones M, Sugden R. Positive confirmation bias in the acquisition of infor-
mation. Theor Decis. 2001;50(1):59–99.

 14. Festinger L. A theory of cognitive dissonance (Vol. 2). Stanford: Stanford 
University Press; 1957.

 15. Jones EE. Major developments in social psychology during the past 
five decades. In: Lindzey G, Aronson E, editors. The handbook of social 
psychology. 3rd ed. New York: Random House; 1985. p. 47–108.

 16. Gawronski B. Back to the future of dissonance theory: Cognitive consist-
ency as a core motive. Soc Cogn. 2012;30(6):652–68.

 17. Sakai H. A multiplicative power-function model of cognitive disso-
nance: Toward an integrated theory of cognition, emotion, and behav-
ior after Leon Festinger. In Convention of the Japanese Psychological 
Association, 48th, Oct, 1984, Osaka, Japan; Portions of this chapter 
were presented at the 48th Convention of the Japanese Psychological 
Association, Osaka, Japan, Oct 1984, and at the 7th International Kurt 
Lewin Conference, Los Angeles, California, Sep 1996. American Psycho-
logical Association. 1999.

 18. Kitayama S, Chua HF, Tompson S, Han S. Neural mechanisms of dis-
sonance: An fMRI investigation of choice justification. Neuroimage. 
2013;69:206–12.

 19. Khan MS, Khor S, Chong A. Fuzzy cognitive maps with genetic algo-
rithm for goal-oriented decision support. Int J Uncertain Fuzziness 
Knowledge-Based Syst. 2004;12(supp02):31–42.

 20. Poczęta K, Yastrebov A, Papageorgiou EI. Learning fuzzy cogni-
tive maps using structure optimization genetic algorithm. In: 2015 
federated conference on computer science and information systems 
(FedCSIS). 2015. p. 547–54 IEEE.

 21. Stach W, Kurgan L, Pedrycz W, Reformat M. Genetic learning of fuzzy 
cognitive maps. Fuzzy Sets Syst. 2005;153(3):371–401.

 22. Wozniak MK, Mkhitaryan S, Giabbanelli PJ. Automatic Generation of 
Individual Fuzzy Cognitive Maps from Longitudinal Data. In: 2022 
International Conference on Computational Science (ICCS). 2022.

 23. Mkhitaryan S, Giabbanelli PJ, Wozniak MK, Napoles G, de Vries NK, 
Crutzen R. FCMpy: A Python Module for Constructing and Analyzing 
Fuzzy Cognitive Maps. PeerJ Computer Science. 2022;8:e1078.

 24. Reddy T, Giabbanelli PJ, Mago VK. The artificial facilitator: guiding par-
ticipants in developing causal maps using voice-activated technolo-
gies. In: International Conference on Human-Computer Interaction. 
Cham: Springer; 2019. p. 111–29.

 25. Freund AJ, Giabbanelli PJ. Are We Modeling the Evidence or Our Own 
Biases? A Comparison of Conceptual Models Created from Reports. In: 
2021 Annual Modeling and Simulation Conference (ANNSIM). 2021. p. 
1–12 IEEE.

 26. Drasic L, Giabbanelli PJ. Exploring the interactions between physical 
well-being, and obesity. Can J Diabetes. 2015;39:S12–3.

 27. Peters GJY, Crutzen R. Pragmatic nihilism: how a Theory of Noth-
ing can help health psychology progress. Health Psychol Rev. 
2017;11(2):103–21.

 28. Bernard D, Giabbanelli PJ. Creating FCM models from quantitative data 
with evolutionary algorithms. In: Fuzzy Cognitive Maps: Best Practices 
and Modern Methods, Giabbanelli PJ, Napoles G. (eds.). Berlin: Springer-
Verlag; 2023.

 29. Salmeron JL, Mansouri T, Moghadam MRS, Mardani A. Learning fuzzy 
cognitive maps with modified asexual reproduction optimisation algo-
rithm. Knowl-Based Syst. 2019;163:723–35.

 30. Giabbanelli PJ, Crutzen R. Creating groups with similar expected behav-
ioural response in randomized controlled trials: a fuzzy cognitive map 
approach. BMC Med Res Methodol. 2014;14(1):1–19.

 31. Firmansyah HS, Supangkat SH, Arman AA, Giabbanelli PJ. Identifying 
the components and interrelationships of smart cities in Indonesia: 
Supporting policymaking via fuzzy cognitive systems. IEEE Access. 
2019;7:46136–51.

 32. Gray S, Hilsberg J, McFall A, Arlinghaus R. The structure and function of 
angler mental models about fish population ecology: The influence of 
specialization and target species. J Outdoor Recreat Tour. 2015;12:1–13.

 33. Giabbanelli PJ, Torsney-Weir T, Mago VK. A fuzzy cognitive map 
of the psychosocial determinants of obesity. Appl Soft Comput. 
2012;12(12):3711–24.

 34. Frias M, Filiberto Y, Nápoles G, Vahoof K, Bello R. Fuzzy cognitive maps 
reasoning with words: an ordinal approach. In: Proceedings of the  2nd 
International Symposium on Fuzzy and Rough Sets ISFUROS. 2017. p. 
24–6.

 35. Pedrycz W. Why triangular membership functions? Fuzzy Sets Syst. 
1994;64(1):21–30.

https://doi.org/10.1080/19439342.2018.1526202
https://doi.org/10.1080/19439342.2018.1526202
http://www.voedingscentrum.nl/Assets/Uploads/Documents/Voedingscentrum/Actueel/00_Richtlijnen%20voedselkeuze%202011.pdf
http://www.voedingscentrum.nl/Assets/Uploads/Documents/Voedingscentrum/Actueel/00_Richtlijnen%20voedselkeuze%202011.pdf
http://www.voedingscentrum.nl/Assets/Uploads/Documents/Voedingscentrum/Actueel/00_Richtlijnen%20voedselkeuze%202011.pdf


Page 15 of 15Mkhitaryan et al. BMC Public Health         (2023) 23:2478  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 36. Nandi AK. GA-fuzzy approaches: application to modeling of manufactur-
ing process. In: Statistical and computational techniques in manufactur-
ing. Heidelberg: Springer, Berlin; 2012. p. 145–85.

 37. Xu Z, Da QL. An overview of operators for aggregating information. Int J 
Intell Syst. 2003;18(9):953–69.

 38. Piegat A. Fuzzy modeling and control (Vol. 69). Physica. 2013.
 39. Felix G, Nápoles G, Falcon R, Froelich W, Vanhoof K, Bello R. A review 

on methods and software for fuzzy cognitive maps. Artif Intell Rev. 
2019;52(3):1707–37.

 40. Papageorgiou EI, Salmeron JL. A review of fuzzy cognitive maps research 
during the last decade. IEEE Trans Fuzzy Syst. 2012;21(1):66–79.

 41. Nápoles G, Papageorgiou E, Bello R, Vanhoof K. On the convergence of 
sigmoid fuzzy cognitive maps. Inf Sci. 2016;349:154–71.

 42. Papageorgiou EI. Learning algorithms for fuzzy cognitive maps—
a review study. IEEE Trans Syst Man Cybernetics Part C (Appl Rev). 
2011;42(2):150–63.

 43. Bernard D, Cussat-Blanc S, Giabbanelli PJ. Fast generation of heteroge-
neous mental models from longitudinal data by combining genetic 
algorithms and fuzzy cognitive maps. In Proceedings of the  56th Hawaii 
International Conference on System Sciences (HICSS). 2023. Available 
at: https:// schol arspa ce. manoa. hawaii. edu/ items/ dbb54 831- d53f- 4455- 
98b7- 41fa6 a9065 a5.

 44. Romanenko E, Homer J, Fismen AS, Rutter H, Lien N. Assessing policies 
to reduce adolescent overweight and obesity: insights from a system 
dynamics model using data from the Health Behavior in School-Aged 
Children study. Obes Rev. 2023;24:e13519.

 45. Cilenti D, Issel M, Wells R, Link S, Lich KH. System dynamics approaches 
and collective action for community health: an integrative review. Am J 
Community Psychol. 2019;63(3–4):527–45.

 46. Butler EA, Barnard KJ. Quantifying interpersonal dynamics for studying 
socio-emotional processes and adverse health behaviors. Psychosom 
Med. 2019;81(8):749.

 47. Parra JF, Jaramillo P, Arango-Aramburo S. Metaheuristic optimization 
methods for calibration of system dynamics models. Journal of Simula-
tion. 2018;12(2):190–209.

 48. Voinov A, Jenni K, Gray S, Kolagani N, Glynn PD, Bommel P, ... Smajgl A. 
Tools and methods in participatory modeling: Selecting the right tool for 
the job. Environ Modelling Software. 2018;109:232–255.

 49. Mkhitaryan S, Giabbanelli JP. How modeling methods for fuzzy cognitive 
mapping can benefit from psychology research? In: Proceedings of the 
2021 Winter Simulation Conference. 2021.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://scholarspace.manoa.hawaii.edu/items/dbb54831-d53f-4455-98b7-41fa6a9065a5
https://scholarspace.manoa.hawaii.edu/items/dbb54831-d53f-4455-98b7-41fa6a9065a5

	How to use machine learning and fuzzy cognitive maps to test hypothetical scenarios in health behavior change interventions: a case study on fruit intake
	Abstract 
	Background 
	Objective 
	Methods 
	Results 
	Conclusions 

	Background
	Case study setting
	Methods
	Constructing a fuzzy cognitive map
	Step 1: Identify the determinants in the problem domain
	Step 2: Identify the causal weights (structure of the system)

	Defining hypothetical intervention scenarios
	Testing of intervention scenarios

	Results
	Discussion
	Acknowledgements
	References


