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Abstract
Background Previous studies have suggested the potential association between air pollution and tuberculosis 
incidence, but this association remains inconclusive and evidence to assess causality is particularly lacking. We aimed 
to draw causal inference between fine particulate matter less than 2.5 μm in diameter (PM2.5) and tuberculosis in 
China.

Methods Granger causality (GC) inference was performed within vector autoregressive models at levels and/or 
first-differences using annual national aggregated data during 1982–2019, annual provincial aggregated data during 
1982–2019 and monthly provincial aggregated data during 2004–2018. Convergent cross-mapping (CCM) approach 
was used to determine the backbone nonlinear causal association based on the monthly provincial aggregated data 
during 2004–2018. Moreover, distributed lag nonlinear model (DLNM) was applied to quantify the causal effects.

Results GC tests identified PM2.5 driving tuberculosis dynamics at national and provincial levels in Granger sense. 
Empirical dynamic modeling provided the CCM causal intensity of PM2.5 effect on tuberculosis at provincial level and 
demonstrated that PM2.5 had a positive effect on tuberculosis incidence. Then, DLNM estimation demonstrated that 
the PM2.5 exposure driven tuberculosis risk was concentration- and time-dependent in a nonlinear manner. This result 
still held in the multi-pollutant model.

Conclusions Causal inference showed that PM2.5 exposure driving tuberculosis, which showing a concentration 
gradient change. Air pollutant control may have potential public health benefit of decreasing tuberculosis burden.
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Background
Tuberculosis (TB) is a chronic infectious disease and 
one of the leading causes of mortality worldwide. Myco-
bacterium tuberculosis (M. tb) infects approximately one 
quarter of the world’s population (latent TB infection, 
LTBI) [1], causing estimated 10.0  million symptomatic 
cases and 1.4 million death in 2019 [2]. In addition, post-
TB sequelae add substantially to the overall disease bur-
den [3]. China accounted for 8.5% (rank 3rd, after India 
and Indonesia) of global total TB cases in 2019, and was 
included in WHO’s three high TB burden country lists 
for the period 2016–2020 [2].

The linkage between poverty and TB has long been 
apparent. In China, prenatal and early-life exposure to 
malnutrition during the Great Famine of 1959–1961 
increased the risk of tuberculosis in adulthood [4]. On 
the one hand, China’s economic growth, accompanied 
by improved nutrition and better healthcare programs, 
has become an integral component of national TB con-
trol efforts [5]. On the other, rapid urbanization and large 
flow of migrant workers might facilitate TB transmission 
and spatial diffusion [6]. Furthermore, there is evidence 
suggesting an association between ambient air pollution 
(especially particulate matter 2.5, PM2.5), a byproduct of 
economic activity, and TB development [7–10]. However, 
it is methodologically complex to establish causal link 
between air pollution and TB because TB changes during 
the past four decades are unlikely to have happened with-
out changes in other environmental and socio-economic 
conditions [11].

Developments in epidemiologic and statistical methods 
have brought light to better causal inference in disease 
ecology [12]. Standard regression-based methods suffer 
from both omitted variable bias and errors-in-variable 
bias. As our study subject is large, complex, coupled 
human-natural system, it is probable that the overall 
resilience of the system cannot be reduced to a linear 
relationship. Both Granger causality (GC) and conver-
gent cross mapping (CCM) tests are powerful method-
ological approaches that can help distinguish causality 
from spurious correlation in time series from stochastic 
or deterministic (chaotic) dynamical systems [13].

There was a demonstrable affirmative correla-
tion between ambient PM2.5 levels and the incidence 
of newly diagnosed pulmonary tuberculosis in Jinan, 
China [14]. However, the situation in Beijing was char-
acterized by equivocal evidence, with no definitive posi-
tive link observed [15]. A recent finding on the causal 
impact between major PM2.5 components and TB 
showed that PM2.5 components exposure was associated 
with increased TB burden [16]. Studies examining the 

long-term effects of ambient air pollution on the inci-
dence of TB remain sparse, particularly in the context of 
causal inference. In the study, we focused on PM2.5, using 
combined modeling analysis on a large dataset covering 
31 provinces in mainland China, to explore the popula-
tion impact of air pollution on TB at national and provin-
cial scale.

Methods
Data
The longitudinal data was retrieved from provincial and 
national TB prevalence surveys [5, 17, 18]. The time 
series data of annual reported number of pulmonary 
tuberculosis (PTB) in China during 1982–2019 was col-
lected from online global TB database (https://world-
healthorg.shinyapps.io/tb_profiles/) [19]. The panel data 
of TB incidence in 31 provinces (annually during 1997–
2018, and monthly during 2004–2018), was obtained 
from Chinese public health science data center (https://
www.phsciencedata.cn/).

The air pollutant and whether data were retrieved from 
the modern-era retrospective analysis for research and 
applications version 2 (MERRA-2) released by national 
aeronautics and space administration (NASA) of USA 
[20].

The national and provincial-level data on annual birth 
rate, population density, per capita GDP, certified doctors 
and beds of medical institutions were extracted from the 
governmental statistical yearbooks (http://www.stats.gov.
cn/tjsj/ndsj/).

Granger causality (GC) tests
GC tests are well-suited for rudimentary linear causality 
analysis, particularly in instances characterized by lim-
ited data length [21]. The GC analysis was conducted as 
an initial step to explore the causal relationship between 
PM2.5 and TB with the annual 1982–2019 time series 
data, using vector autoregressive (VAR) models [22] or 
vector error correction (VECM) models [23]. Then, the 
heterogeneous panel GC tests were applied to annual 
1997–2018 and monthly 2004–2018 panel data, based on 
Monte-Carlo or Bootstrap simulation [24].

The analyses were performed using the standard mod-
ules (e.g., var, vec, vargranger, xtgcause) in Stata 17.0 
(StataCorp, Texas, USA).

Convergent cross mapping (CCM) method
The Granger causality framework is inapplicable in sce-
narios where the segregation of information pertaining to 
variables from the broader system is unfeasible, particu-
larly in cases where causal relationships exhibit weak to 
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moderate strengths. Conversely, CCM presents a height-
ened utility in addressing intricate systems and data, 
exhibiting diminished susceptibility to the effects of noise 
and external factors [25]. Nonetheless, it is imperative 
to note that CCM necessitates the availability of time-
series data of substantial duration for meaningful analy-
sis. Thus, we used empirical dynamic modeling (EDM), a 
data-driven equation-free mechanistic approach [25], to 
model mechanisms forcing TB epidemics with monthly 
2004–2018 panel data. Convergent cross-mapping 
(CCM) method was adopted to distinguish causality 
between pairs of time series from correlations. The basic 
idea of CCM is to look for the signature of X in Y’s time 
series [26].

The convergent cross-mapping analysis, an EDM for 
detecting causality in nonlinear dynamic systems, [25] 
was composed of three parts here. First, the CCM cau-
sality between PM2.5 and TB incidence was tested based 
on univariate state-space reconstruction (SSR) accord-
ing the modified methods described elsewhere [27, 
28]. We examined whether the cross-map prediction 
skill (ρCCM, the Pearson correlation between observa-
tions and CCM prediction) increased and demonstrated 
convergence as the library length increased if causality 
existed for two variables. CCM for the real time series 
need to show higher prediction skill than 90% confidence 
intervals of surrogate time series.

Second, multivariate SSR (including stochastic causal 
variables as a coordinate in the state space) could improve 
the ability of nearest-neighbor prediction. For seasonal 
TB, PM2.5 could be considered stochastic because infor-
mation about it may already be included in the univariate 
embedding [25]. We examined multivariate SSR forecast 
improvement, according to a modified method devel-
oped by a previous study [28].

Third, Scenario exploration with multivariate SSR was 
employed to investigate the effect of a small change in the 
potential driver (PM2.5) on TB incidence across different 
states of the system. The effect of ΔTB/ΔPM2.5 provided a 
way to understand the causality direction.

The analyses were performed using rEDM package 
version 0.7.5 of R software (R Foundation for Statistical 
Computing, Vienna, Austria).

Distributed lag nonlinear model (DLNM)
While CCM helped us to establishing the causal rela-
tionship (statistical significance) and the causal direc-
tion (temporality), it provided little information on the 
causal strength (exposure-response relationship). Thus, 
we further evaluated the exposure risks using distributed 
lag nonlinear models (DLNM) [29].The basic model of 
DLNM is generalized linear model (GLM). In the mul-
tivariate DLNM, temperature, precipitation and sun-
shine duration were included to control the potential 

confounders [9]. The cumulative relative risks (RRs) 
were calculated for different extents of exposure to PM2.5 
within lag 0–15 months, as well as for every 10 µg/m3 of 
PM2.5. The reference values of PM2.5 was set as 15 µg/m3 
according to WHO’s air quality guidelines (https://www.
who.int/publications/i/item/9789240034228). In order 
to fit the nonlinear and delayed effects, we constructed 
“cross-basis” (bidimensional) function and depicted the 
effects of predictors and lags simultaneously. Moreover, 
we computed a three-dimensional model of PM2.5, lag 
months and risk of TB incidence into a hexahedron.

Sensitivity analysis was conducted by fitting multi-pol-
lutant models to identify the robustness of the results. To 
avoid multicollinearity problem, the pollutant would be 
excluded if the Pearson correlation coefficient ≥ 0.7 [29].

The analyses were performed using the package “dlnm” 
version 2.4.7 in R software (R Foundation for Statistical 
Computing, Vienna, Austria). Figure 1 showed the com-
plete flow diagram.

Data availability
The data that supports the findings of this study are avail-
able in the supplementary material.

Results
Economic development and environmental health trends
With the progress of society, both PM2.5 and TB have 
experienced three stages during 1982–2019: from slow 
increase, then rapid rise to moderate decline (SI Appen-
dix Fig. S1A, SI Appendix Table S1). Real GDP per capita 
(pGDP) is utilized to extend the environmental Kuznets 
curve (EKC) hypothesis to the interrelationships among 
economic growth, environment and health, indicated by 
the inverted U-shaped curves (SI Appendix Fig. S1B). 
That is, the health gains obtained through improved 
incomes could be significantly negated by the envi-
ronmental stress variable at the beginning. But after a 
threshold of economic development level, environmental 
health issues will decline [30].

GC analysis
We found positive associations between TB incidence 
and PM2.5 in most provinces during 1997–2018 (SI 
Appendix Fig. S2). Based on the VAR models using 
the non-stationary time series at difference, GC tests 
revealed a significant unidirectional causality from 
dPM2.5 to dTB (Wald F test, P = 0.026, Table 1, SI Appen-
dix Table S2). The response of dTB to dPM2.5 reached its 
peak at 1-year and prevailed between 2 and 4 years (SI 
Appendix Fig. S3). Meanwhile, the GC analysis based on 
VECM also indicated a possible causal link from PM2.5 to 
TB, although the association did not reach statistical sig-
nificance (P = 0.114) (Table 1).

https://www.who.int/publications/i/item/9789240034228
https://www.who.int/publications/i/item/9789240034228
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Based on the panel data of from 1997 to 2018 (SI 
Appendix Table S3), the heterogeneous GC tests based 
on panel vector autoregressive model (PVAR) suggested 
unidirectional G-causality between PM2.5 and TB (Z-Bar 
10.39, P = 0.060, Table 1, SI Appendix Table S4).

For the monthly data during 2004–2018 (SI Appen-
dix Table S5), although pooled panel regression showed 
negative association between PM2.5 and TB incidence 

(SI Appendix Fig. S4), the meta-analysis of Pearson cor-
relation coefficients (R) demonstrated positive associa-
tion between them (overall R = 0.12, 95%CI 0.07–0.17, 
P < 0.001) (SI Appendix Fig. S5). The panel GC tests based 
on the cross-sectional Wald statistic suggested bidirec-
tional G-causality between PM2.5 and TB (both P < 0.001) 
(Table  1, SI Appendix Table S6), although the converse 
scenario could not be true because TB cannot cause air 

Table 1 Granger causality between PM2.5 and tuberculosis
Test Null hypothesis (H0) Lag Statistic P Conclusion
1982–2019 annual country-level data

VAR-based GC ΔPM2.5 does not G-cause ΔTB 1 Y 4.925 0.026 PM2.5 G-causes TB

ΔTB does not G-cause ΔPM2.5 1 Y 0.578 0.447 TB does not G-cause PM2.5

VECM-based GC PM2.5 does not G-cause TB 2 Y 2.490 0.114 PM2.5 does not G-cause TB

TB does not G-cause PM2.5 2 Y 0.880 0.348 TB does not G-cause PM2.5

1997–2018 annual province-level data

PVAR-based GC (cross-sectional) PM2.5 does not G-cause TB 3 Y W-Bar:7.57
Z-Bar:10.39

0.060 PM2.5 G-causes TB for at least one province

TB does not G-cause PM2.5 3 Y W-Bar:5.72
Z-Bar:6.18

0.214 TB does not G-cause PM2.5

2004–2018 monthly province-level data

PVAR-based GC (cross-sectional) PM2.5 does not G-cause TB 9 M W-Bar:47.71
Z-Bar:50.80

< 0.001 PM2.5 G-causes TB for at least one province

TB does not G-cause PM2.5 9 M W-Bar:45.57
Z-Bar:48.00

< 0.001 TB G-causes PM2.5 for at least one province

VAR, vector autoregression model; Δ, 1st difference; G-cause, Granger-cause; GC, Granger causality test; VECM, vector error correction model; PVAR, panel vector 
autoregression model

Fig. 1 Methodology flowchart of the causal inference study on PM2.5 and TB.
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pollution. This result was not surprising because the data 
duration was shorter and the threshold for rejecting the 
null hypothesis was causal relation in Granger sense for 
at least one province.

CCM causal testing
The seasonality of TB and PM2.5 was distinct at country 
level, with peaks in winter and spring respectively (SI 
Appendix Fig. S6). In addition, the heatmaps showed 
substantial temporal and geospatial variation of TB sea-
sonality (SI Appendix Fig. S7). The mutual seasonality 
of TB and PM2.5 makes it especially important to dis-
tinguish causal interactions from spurious correlation. 
First, we performed univariate state-space reconstruc-
tion (SSR) with optimized CCM model parameters (SI 
Appendix Figs. S8, S9). The hypothesis was: if CCM 
prediction of TB for the observational PM2.5 was signifi-
cantly better than it was for the null surrogates which had 
the same seasonal cycle as PM2.5 yet with randomized 
anomalies, the causal forcing of PM2.5 on TB would be 
established (SI Appendix Fig. S10). The box-and-whisker 

plot (Fig. 2A) demonstrated that PM2.5 be causal forcing 
for TB in 10 provinces, indicated by the measured cross-
map skill (ρCCM) with significant P values (≤ 0.1). The 
results had very high metasignificance (Fisher’s method) 
for PM2.5: P < 4.2 × 10− 5. Second, we used the multivari-
ate SSR to look for improvement in forecasting. That 
is, if the multivariate SSR containing the potential driv-
ing variable PM2.5 produced better forecasts of TB than 
without, then PM2.5 causally influenced TB in the CCM 
sense. It turned out that including PM2.5 led to significant 
improvement on forecast skill of TB (Fig. 2B). Third, we 
conducted scenario exploration with multivariate SSR. 
By predicting the change in TB (ΔTB) that result from 
a small change in PM2.5 (ΔPM2.5), we demonstrated that 
PM2.5 had a positive effect on TB incidence (positive 
values for ΔTB/ΔPM2.5) for 22 provinces individually 
(Fig. 2C) and for the whole group (Fig. 2D). Nevertheless, 
the combined results of the correlation and CCM analy-
sis are provided in Table 2.

Fig. 2 Cross-map causality of PM2.5 on tuberculosis. (A) Cross-map causality beyond shared seasonality of ambient PM2.5 on tuberculosis based on uni-
variate SSR. The box-and-whisker plots show the null distributions for cross-map skill (ρCCM) expected from random surrogate time series which share 
the same seasonality as the true PM2.5 concentration. Red circles demonstrate the unlagged ρCCM for observed TB predicting purported PM2.5. Filled 
circles indicate the significant ρCCM (P ≤ 0.1). Provinces are ordered according to their latitudes. (B) Forecast improvement with multivariate SSR is quanti-
fied using ΔρCCM = ρCCM (with PM2.5) - ρCCM (without PM2.5). Wilcoxon signed-rank exact test reveals a significant difference. (C) Effect of PM2.5 on TB 
(ΔTB/ΔPM2.5) for each province. In the scenario analysis, PM2.5 shows a positive effect on TB incidence for 22 provinces (P ≤ 0.1). (D) Range of ΔTB/ΔPM2.5 as 
a function of PM2.5 grouped over all provinces. SSR, state-space reconstruction; CCM, convergent cross-mapping; ρCCM, the Pearson correlation between 
observations and CCM prediction
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The exposure–response effects of air pollutants on TB risk
Based on the multivariate DLNM model, the three-
dimensional graph vividly depicted the overall effects of 
PM2.5 on TB incidence, calculated as relative risks (RRs) 
(Fig.  3A). In the contour plot, acute effects (lag 0–1 
months) were observed under exposure to high levels 
of PM2.5 (with the maximum pooled [lag-specific] RR of 
1.28 under exposure to 85 µg/m3 of PM2.5 at the current 
month), while delayed effects were seen under exposure 
to high levels of PM2.5 at lag 2–15 months (Fig. 3B). The 
cumulative (15 months) effects of PM2.5 on TB inci-
dence were demonstrated in the exposure-response 
curve (Fig.  3C). Besides, the pooled and cumulative 

(throughout lags of 0–15 months) RRs associated with 
10-µg/m3 increase in PM2.5 were shown in Fig. 3D and E 
respectively.

The pooled exposure–response effects of air pollutants 
on TB risk in both the single-pollutant and two-pollutant 
models were shown in Table 3. In single pollutant model, 
each 10 µg/m3 increase in PM2.5 concentrations was sig-
nificantly positively associated with the TB incidence, 
with RR of 1.121 (95% CI:1.095, 1.149). Moreover, there 
was no substantial change in the results when conducting 
the multi-pollutant models.

Discussion
Evaluating the influence of PM2.5exposure on TB occur-
rence holds substantial relevance in the realm of public 
health, serving as the initial phase in formulating envi-
ronmental strategies aimed at alleviating the tuberculo-
sis burden within the context of China. Several empirical 
studies have addressed the potential relation between 
air pollution and TB incidence, but this issue remains 
controversial and inconclusive, deserving further inves-
tigation [31]. The information presented here refers to 
situations within China, but environmental health and 
protection are known without boundaries. The causal 
inference framework may be valuable for the identifi-
cation of other air pollution-associated adverse health 
impacts.

Ambient air pollution is one of the leading environ-
mental risk factors to human health. Short-term air pol-
lution exposure is found to be causally related to acute 
adverse respiratory health effects and exacerbation of 
preexisting chronic airway diseases, while long-term 
exposure may be a causal factor for new-onset airway 
diseases such as childhood asthma [32]. PM2.5 (also called 
alveolar fraction) accounts for 96% of particles observed 
in human pulmonary system [33]. The toxicity of PM is 
inversely linked to particle size, with smaller particles 
contributing to greater inflammatory effects [34]. There 
are biological mechanisms by which PM2.5 could plau-
sibly affect individual’s susceptibility to TB infection or 
reactivation. First, PM2.5 could directly attack the respi-
ratory tract and suppress antimicrobial activity by down-
regulating airway antimicrobial proteins and peptides 
(AMPs) which are important for airway innate immunity 
[35]. Second, it may disrupt the synthesis and secretion 
of inflammatory cytokines and impair anti-mycobacterial 
T cell immune responses to M tb [36]. Third, increased 
iron availability provided by PM2.5 may create a favor-
able environment for mycobacterial proliferation [37, 38]. 
Based on the above, PM2.5 served as the best indicator of 
all air pollutants here. Our findings support that expo-
sure to air pollutants above a certain level may increase 
their susceptibility to M. tb infection or reactivation.

Table 2 Correlation and CCM causal analysis results between 
PM2.5 concentration and TB incidence across 31 provinces in 
China during 2004–2018
Province Pearson 

correla-
tion (R)

PM2.5 
causes 
TB (ρ)

TB 
causes 
PM2.5 
(ρ)

Causal 
direction#

Heilongjiang 0.0068 0.5101* 0.4036*** PM2.5↔TB

Jilin 0.1834** 0.4143** 0.0879 PM2.5→TB

Xinjiang 0.1722** 0.4527 0.1126 Neutrality

Liaoning 0.2709*** 0.4256 0.3248 Neutrality

Inner Mongolia 0.1138 0.3014 0.0187 Neutrality

Beijing 0.2158*** 0.4147* -0.0413 PM2.5→TB

Tianjin -0.0326 0.0977 -0.0166 Neutrality

Ningxia 0.2847*** 0.5019 0.3743 Neutrality

Hebei 0.0321 0.0937 -0.2149 Neutrality

Shanxi 0.1552** 0.1397** 0.0913 PM2.5→TB

Shandong 0.0974 0.2879* 0.3084 PM2.5→TB

Qinghai 0.2644*** 0.7879*** 0.5165* PM2.5↔TB

Gansu 0.3895*** 0.5176 0.3645** TB→PM2.5

Henan -0.0090 0.1044 0.1777 Neutrality

Shaanxi 0.1264* 0.2712 0.1077 Neutrality

Jiangsu 0.0327 0.2896 0.4116*** TB→PM2.5

Anhui 0.0789 0.2491 0.3672** TB→PM2.5

Shanghai 0.0102 0.4501 0.1720 Neutrality

Sichuan 0.1928*** 0.6745** 0.4451* PM2.5↔TB

Hubei 0.0619 0.4903 0.4764** TB→PM2.5

Zhejiang 0.0716 0.6748** 0.4381*** PM2.5↔TB

Chongqing 0.1054 0.6511 0.4271 Neutrality

Tibet 0.4404*** 0.5331* 0.3843 PM2.5→TB

Jiangxi 0.0736 0.6263 0.3711 Neutrality

Hunan 0.0165 0.5033 0.6260*** TB→PM2.5

Guizhou 0.1276* 0.7201 0.5867* TB→PM2.5

Fujian 0.1479** 0.6415 0.1869 Neutrality

Yunnan 0.1828** 0.8796* 0.4377 PM2.5→TB

Guangdong -0.0493 0.7374 0.6069*** TB→PM2.5

Guangxi 0.0227 0.7098 0.5783** TB→PM2.5

Hainan -0.0929 0.5281 0.4971** TB→PM2.5
*P ≤ 0.1, **P ≤ 0.05, ***P ≤ 0.01
#The converse scenario could not be true because tuberculosis does not cause 
air pollution, that is, the shadow attractor constructed using PM2.5 data should 
not contain information to accurately reconstruct past TB incidence
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Two earlier cohort studies reported potential associa-
tion between PM2.5 and TB in Los Angeles city, USA and 
Taiwan province, China respectively [39, 40]. The results 
from time series studies on this issue contradicted one 
another. The inconsistent evidence may partly be due to 
the different methods, variable selection and time frames. 
A recent meta-analysis claimed that PM2.5 had neither 
long-term nor short-term TB risk (RR, 1.030; 95%CI, 
0.996–1.065 and RR, 1.031; 95%CI, 0.981–1.083 respec-
tively) [31]. However, this study argues that, the existing 

studies were restricted to a partial view of the phenome-
non. In this respect, our study departs from the literature 
by taking into consideration the information from both 
the province (piece) and country (whole puzzle) sides, 
relative to their characteristics, heterogeneous settings 
and common trend. To do so, we analyzed the data from 
31 provinces in China. Our findings could be convincing 
given the country’s sheer size and the allowance for tem-
poral diversity.

Fig. 3 Exposure-response relationship between PM2.5 and tuberculosis incidence in single-pollutant DLNM model. (A) Three-dimensional plot: the 
height of the hexahedron represents RR for the association between TB incidence and ambient PM2.5 exposure, while two bottom edges represent the 
full range of monthly mean PM2.5 concentration and the number of months delayed. (B) Contour plot: the red color gradient represents RR > 1, and the 
blue gradient represents RR < 1. (C) Cumulative effects of PM2.5 exposure for 15 months. (D-E) Pooled and cumulative effects with 10 µg/m3 increase in 
PM2.5 throughout 0–15 months. The reference level of PM2.5 is set as 15 µg/m3. Monthly mean temperature, precipitation and sunshine duration, and 
annual population density, GDP per capita, certified doctors and beds of medical institutions are added as time-varying local control variables. TB, tuber-
culosis; RR, relative risk
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Moving beyond correlation, we evaluated the causality 
between PM2.5 and TB with complementary strategies. 
To determine whether X causes Y: GC compares “knowl-
edge about Yt” vs. “knowledge about Xt and Yt” in predic-
tion of Yt+1 (forward looking) [41], while CCM compares 
“knowledge about MY” vs. “no knowledge about MY” in 
prediction of Xt (backward looking) [27]. GC can per-
form relatively well on short time series, while CCM 
generally prefer for longer time series (≥ 30 observations) 
[25]. The two seemingly opposite methods can yield simi-
lar causal inference in spite of the different assumptions 
[13]. Herein, GC or CCM (or both) were decided accord-
ing to the aims and data characteristics, rather than “lin-
ear vs. nonlinear model” gradient. We re-enforced the 
causal effect of PM2.5 on TB by employing GC and CCM 
on the long panel dataset. Our approach has an advan-
tage over the standard approach based on regression as it 
is free from issues concerning the exposure-confounders-
morbidity modeling and does not involve extrapolation.

It is worth noting that, from exposure-response rela-
tionship perspective, PM2.5 was positively associated 
with both TB incidence, with RR of 1.12 (95% CI: 1.03, 
1.22) per 10  µg/m3 increase, which was consistent with 
our results [42]. A regional study also demonstrated that 
long-term exposure to PM2.5 was significantly associ-
ated with higher TB incidence [43]. Increased exposure 
to PM2.5 contributed to a faster bacterial replication rate, 
indicating that M. tb exhibits increased reproductive 
activity, thus accelerating within-host endogenous reac-
tivation [44]. Elevated concentrations of PM2.5 may exert 
pressure on healthcare systems through an augmentation 
in TB incidence and associated treatment expenditures.

During 2006–2012, China’s new air pollution policies 
which interact with political incentives were introduced 
in the 11th Five-Year Plan. These policies have been effec-
tive in cutting pollutants emission. After the winter-long 

“PM2.5 crisis” in eastern China in 2013, the standards 
for air pollution control have been updated and further 
strengthened [45]. The observed co-movement between 
PM2.5 and TB incidence suggest a possible link between 
the air pollution control policies and health risk reduc-
tion. Therefore, TB prevention should not only focus on 
interrupting TB transmission, but also on monitoring air 
pollutants such as PM2.5. Establish real-time air quality 
monitoring systems to notify the public and policymak-
ers of elevated pollution levels, encouraging precaution-
ary measures. Allocate healthcare resources efficiently in 
regions with significant burdens of TB and elevated PM2.5 
levels.

This study has several limitations. First, the estimate 
for exposure-response relationship should be interpreted 
with caution. It cannot be extended to concentrations 
beyond the support of the data. Second, the effect of air 
pollution control policies on TB has not been tested. 
The counterfactual models such as difference-in-differ-
ences (DID) may be helpful for policy evaluation. Third, 
although the effects of PM2.5 to drive TB may be differ-
ent for new infection and reactivation, we could not test 
the hypothesis. It is usually difficult to judge whether 
an active TB case is from LTBI or uninfected individu-
als in routine practice. Last, we analyzed the impacts of 
PM2.5 at the province level, yet different cities and coun-
ties might be heterogeneous even within one province. 
Prospective spatially oriented causal research endeavors 
have the potential to yield novel insights for elucidating 
heterogeneity.

In summary, we demonstrate that ambient PM2.5 expo-
sure and tuberculosis incidence had a linkage which (1) 
is causal and ecologically important; (2) is independently 
detected in different provinces; and (3) follows an expo-
sure-response gradient. The take-home message is clear: 
to fight tuberculosis, we must also fight air pollution.
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increase in PM2.5)

Single-pollutant PM2.5 1.121 (1.095, 1.149)*

Multi-pollutant PM2.5 + PM10 1.209 (1.149, 1.273)*

PM2.5 + CO 1.112 (1.085, 1.139)*

PM2.5 + O3 1.292 (1.257, 1.327)*

PM2.5 + 
PM10 + CO

1.267 (1.189, 1.350)*

PM2.5 + PM10 + O3 1.208 (1.144, 1.277)*

PM2.5 + CO + O3 1.307 (1.271, 1.344)*

PM2.5 + 
PM10 + CO + O3

1.183 (1.108, 1.263)*

TB, tuberculosis; PM2.5, particulate matter of < 2.5 μm; PM10, particulate matter 
of < 10 μm; CO, carbon monoxide; O3, ozone. *P ≤ 0.05
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