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Abstract 

Background  More than one-third of individuals experience post-acute sequelae of SARS-CoV-2 infection (PASC, 
which includes long-COVID). The objective is to identify risk factors associated with PASC/long-COVID diagnosis.

Methods  This was a retrospective case–control study including 31 health systems in the United States 
from the National COVID Cohort Collaborative (N3C). 8,325 individuals with PASC (defined by the presence 
of the International Classification of Diseases, version 10 code U09.9 or a long-COVID clinic visit) matched to 41,625 
controls within the same health system and COVID index date within ± 45 days of the corresponding case’s earliest 
COVID index date. Measurements of risk factors included demographics, comorbidities, treatment and acute charac‑
teristics related to COVID-19. Multivariable logistic regression, random forest, and XGBoost were used to determine 
the associations between risk factors and PASC.

Results  Among 8,325 individuals with PASC, the majority were > 50 years of age (56.6%), female (62.8%), and non-
Hispanic White (68.6%). In logistic regression, middle-age categories (40 to 69 years; OR ranging from 2.32 to 2.58), 
female sex (OR 1.4, 95% CI 1.33–1.48), hospitalization associated with COVID-19 (OR 3.8, 95% CI 3.05–4.73), long 
(8–30 days, OR 1.69, 95% CI 1.31–2.17) or extended hospital stay (30 + days, OR 3.38, 95% CI 2.45–4.67), receipt 
of mechanical ventilation (OR 1.44, 95% CI 1.18–1.74), and several comorbidities including depression (OR 1.50, 95% 
CI 1.40–1.60), chronic lung disease (OR 1.63, 95% CI 1.53–1.74), and obesity (OR 1.23, 95% CI 1.16–1.3) were associ‑
ated with increased likelihood of PASC diagnosis or care at a long-COVID clinic. Characteristics associated with a lower 
likelihood of PASC diagnosis or care at a long-COVID clinic included younger age (18 to 29 years), male sex, non-
Hispanic Black race, and comorbidities such as substance abuse, cardiomyopathy, psychosis, and dementia. More 
doctors per capita in the county of residence was associated with an increased likelihood of PASC diagnosis or care 
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at a long-COVID clinic. Our findings were consistent in sensitivity analyses using a variety of analytic techniques 
and approaches to select controls.

Conclusions  This national study identified important risk factors for PASC diagnosis such as middle age, severe 
COVID-19 disease, and specific comorbidities. Further clinical and epidemiological research is needed to better under‑
stand underlying mechanisms and the potential role of vaccines and therapeutics in altering PASC course.

Keywords  Post-acute sequelae of SARS-CoV-2, PASC, Long-COVID, COVID-19, Risk factors

Background
Globally, over 500 million individuals have confirmed 
cases of COVID-19, including 86 million in the United 
States (U.S.) [1, 2]. Although COVID-19 has resulted in 
short-term complications and deaths [3], long-term con-
sequences are poorly understood. Many of those infected 
have developed long-term complications, commonly 
known as post-acute sequelae of SARS-CoV-2 infection 
(PASC) or long-COVID. The World Health Organiza-
tion (WHO) defines long-COVID as the illness that 
occurs in people with a history of probable or confirmed 
SARS-CoV-2 infection, usually within 3 months from the 
onset of COVID-19 with symptoms that last for at least 
2 months [4]. Long-COVID symptoms and complications 
include fatigue, cognitive dysfunction, post-exertional 
malaise, shortness of breath, depression, and many others 
[5, 6]. Although it is difficult to estimate the true rate of 
PASC or long-COVID, nearly one-third of individuals in 
the U.S. have long-COVID [7–9].

Considerable research effort is geared toward identi-
fying risk factors for PASC. Studies have identified that 
female sex, increased age, greater viral load, severity of 
acute illness, and comorbidities are associated with an 
increased likelihood of PASC [10–12]. Although age > 70 
was associated with increased likelihood of PASC diag-
nosis, recent data suggests that younger people aged 
35 to 69 are at the highest risk of PASC [13]. The role 
of comorbidities in PASC risk needs to be explored in 
greater detail. Moreover, some prior studies relied on 
self-reported data captured through mobile app-based 
or web-based surveys, which can result in selection and 
responder bias [6, 10]. Although social determinants of 
health (SDoH) such as poverty and access to healthcare 
are important risk factors for adverse COVID-19 out-
comes, [14–17] their association with PASC is not well 
characterized [18, 19].

As a part of the NIH Researching COVID to Enhance 
Recovery (RECOVER) Initiative, we conducted this study 
to identify risk factors associated with PASC diagnosis 
using the National COVID Cohort Collaborative (N3C) 
data, the largest publicly available electronic health 
records (EHRs) for COVID-19 in the U.S. We evaluated 
the association of demographic, comorbidity, clinical 
course, and patient-level SDoH factors on PASC risk.

Methods
Data
N3C structure, access, and analytic capabilities have 
been described in detail previously [20]. The N3C col-
lects information from single- and multi-hospital 
health systems across the U.S. and stores data in a 
central location, the N3C data enclave. As of April 14, 
2022, it contained data from 72 health systems and > 4.9 
million individuals with COVID-19. For this study, we 
used a limited data set, which contains deidentified 
data, five-digit patient ZIP codes, and exact dates of 
COVID-19 diagnoses and service use (eMethods) [21].

Study design and cohort (Fig. 1)
The study cohort is based on 4,559,795 potentially 
eligible patients from 59 health systems who were 
diagnosed with SARS-CoV-2 infection or had a posi-
tive polymerase chain reaction (PCR) or antigen 
(AG) lab test for SARS-CoV-2. Of these, 3,884,477 
were adults (> 18  years of age). Individuals may have 
multiple SARS-CoV-2 infections, so we considered 
the earliest documented date of positive test or diag-
nosis as the COVID index date. An index date was 
required to determine the relative timing of infection 
and long-COVID diagnosis (International Classifica-
tion of Diseases, Tenth Revision, Clinical Modifica-
tion [ICD-10-CM] code U09.9) or long-COVID clinic 
visit. Not all health systems currently use U09.9 or 
have clinics dedicated to long-COVID treatment [22]. 
Therefore, we limited our cohort to patients from the 
31 health systems with at least one documented long-
COVID case using U09.9 or a long-COVID clinic visit 
between Oct 1, 2021 and Feb 28, 2022 (n = 1,490,823). 
We excluded patients who died within 45  days of the 
index date because by definition they would not be 
at risk of developing PASC (n = 1,467,804). Finally, in 
order for patients to have an adequate observation 
period after acute infection, we required them to have 
their index acute infection date between March 1, 2020 
and December 1, 2021 (N = 1,062,661). In this way, we 
employed a restrictive case definition to maximize the 
likelihood of selecting true cases of PASC from this 
base cohort.
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Case and control selection
In our primary analyses, we defined cases as those with 
a documented U09.9 diagnosis or a documented long-
COVID clinic visit flag in the N3C (n = 8,325). As a sen-
sitivity analysis, we also defined cases as 1) U09.9 only 
(n = 7,512) or 2) long-COVID clinic visits only (n = 1,241).

Controls were challenging to select because individu-
als may have had PASC but not received a diagnosis. We 
used three methods to identify controls, i.e., individuals 
without PASC. Our base analysis allowed any patient who 
was not a case to be considered as a possible matched 
control (not restricted controls). Additionally, for two 
control cohorts, we applied our previously developed 
computable phenotype (CP) model for long-COVID to 
refine our control patient pool [23]. We applied CP model 
to the 1,054,336 non-cases (1,062,661—8,325) to gener-
ate a predicted probability for U09.9 diagnosis or long-
COVID clinic visit. The models generate the predicted 

probability of PASC for 716,203 individuals who became 
eligible for matched control selection (eMethods).

1)	 Unrestricted controls (Method 1): All individuals who 
were not identified as cases became eligible (n = 1,054,336).

2)	 Restricted controls (Method 2): We excluded individ-
uals highly suspected of having long-COVID, defined 
as a predicted probability >= 0.75 based on the CP 
model of having a U09.9 diagnosis and having visited 
a long-COVID clinic. Overall, 621,374 individuals 
became eligible for controls.

3)	 More restricted controls (Method 3): We included 
individuals highly suspected of not having long-
COVID (predicted probability <= 0.25) based on the 
CP model of having a U09.9 diagnosis and a long-
COVID clinic visit. Overall, 496,073 individuals 
became eligible for controls.

Fig. 1  Cohort selection diagram
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In each of the above three methods, we randomly 
matched 1 case to 5 controls without replacement 
from the same health system and COVID index date 
within ± 45  days of the corresponding case’s earliest 
COVID index date. In the “unrestricted” method, We 
matched 8,325 cases to 41,625 controls in the “unre-
stricted” method, and 8,322 cases to 41,610 controls in 
the “restricted” and “more restricted controls” methods.

Risk factors
We used existing literature [10–12], clinical expertise, 
and availability of information in the N3C to identify 

potential risk factors for PASC that are identifiable in 
EHR data (Table  1 and Supplemental eTable  1 for full 
list). We used information before COVID-19 diagnosis 
date to identify an individual’s age, gender, race/ethnic-
ity (non-Hispanic White, non-Hispanic Black, Hispanic, 
Asians, others, and unknown), obesity (a diagnosis of 
obesity or a body mass index [BMI] >  = 30), smoking 
status, substance abuse status, and comorbidities. We 
included 17 common comorbidities used in the Charl-
son Comorbidity Index [24] and additional comorbidi-
ties and treatments (e.g., use of corticosteroids) which 
are considered risk factors for severe acute COVID-19 as 

Table 1  Cohort Characteristics for PASC Cases defined by U09.9 or long-COVID clinic visit and three sets of controls

a Only captured for individuals hospitalized for COVID-19
b The restricted samples (Methods 2 and 3) lose 3 cases due to not having sufficient controls (< 5 available controls). Comorbidities shown in this Table are selected. A 
comprehensive stratification by comorbidities is in the Supplement

PASC
(N = 8325)b

Method 1
Unrestricted controls 
(N = 41,625)

Method 2
Restricted controls 
(N = 41,610)

Method 3
Most restricted 
controls 
(N = 41,610)

Demographics
Age (Mean[SD]) 52.3 (15.5) 47.5 (18.4) 46.8 (17.8) 48.1 (18.2)

Sex

  Female 5225 (62.8%) 23,090 (55.5%) 24,112 (57.9%) 24,530 (59.0%)

  Male 3096 (37.2%) 18,481 (44.4%) 17,482 (42.0%) 17,051 (41.0%)

Race/ethnicity

  White non-Hispanic (NH) 5707 (68.6%) 26,490 (63.6%) 27,818 (66.9%) 27,654 (66.5%)

  Hispanic 835 (10.0%) 4851 (11.7%) 4430 (10.6%) 4452 (10.7%)

  Black NH 1235 (14.8%) 6244 (15.0%) 6455 (15.5%) 6538 (15.7%)

  Asian NH 136 (1.6%) 883 (2.1%) 921 (2.2%) 953 (2.3%)

  Other race NH 54 (0.6%) 314 (0.8%) 267 (0.6%) 292 (0.7%)

  Unknown 340 (4.1%) 2765 (6.6%) 1636 (3.9%) 1645(4.0%)

Comorbidities Prior to COVID Index Date
  Chronic Lung Disease 2404 (28.9%) 5717 (13.7%) 6956 (16.7%) 6816 (16.4%)

  Complicated Diabetes 1210 (14.5%) 3582 (8.6%) 4377 (10.5%) 4336 (10.4%)

  Congestive Heart Failure 573 (6.9%) 1530 (3.7%) 2007 (4.8%) 1910 (4.6%)

  Hypertension 3365 (40.4%) 10,894 (26.2%) 13,528 (32.5%) 13,698 (32.9%)

  Kidney Disease 1262 (15.2%) 3616 (8.7%) 4503 (10.8%) 4388 (10.5%)

  Obesity 4691 (56.4%) 16,575 (39.8%) 19,588 (47.1%) 19,430 (46.7%)

  Uncomplicated Diabetes 1708 (20.5%) 5547 (13.3%) 6642 (16.0%) 6751 (16.2%)

Characteristics during Acute COVID Phase
  COVID-associated Hospitalization 3100 (37.3%) 6165 (14.8%) 6306 (15.2%) 6162 (14.8%)

  COVID-associated ED Visit 1564 (18.8%) 6468 (15.5%) 6060 (14.6%) 5865 (14.1%)

  Hospitalization stay (Mean [SD]) 5.6 (15.3) 1.1 (6.1) 1.1 (5.3) 1.0 (4.8)

COVID treatment

  Corticosteroidsa 2025 (24.3%) 3054 (7.3%) 2991 (7.2%) 2807 (6.7%)

  Remdesivira 1409 (16.9%) 1913 (4.6%) 1794 (4.3%) 1631 (3.9%)

  Vasopressorsa 601 (7.2%) 682 (1.6%) 703 (1.7%) 720 (1.7%)

  ECMOa 66 (0.8%) 35 (0.1%) 24 (0.1%)  < 20

  Mechanical Ventilationa 615 (7.4%) 450 (1.1%) 398 (1.0%) 404 (1.0%)

  AKI during COVID-associated Hospitalization 664 (8.0%) 1016 (2.4%) 1084 (2.6%) 1026 (2.5%)

  Sepsis during COVID-associated Hospitalization 614 (7.4%) 823 (2.0%) 835 (2.0%) 770 (1.9%)
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per the U.S. Centers for Disease Control (CDC) [25]. We 
also identified hospitalization for COVID-19, invasive 
mechanical ventilation use, extracorporeal membrane 
oxygenation (ECMO) use, vasopressor use, acute kidney 
injury diagnosis, sepsis diagnosis, remdesivir use, and 
total length of hospital stay (eMethods).

For SDoH, we used county-level variables from the 
Sharecare-Boston University School of Public Health Social 
Determinants of Health dataset [26]. Specifically, we used 
percent of households with income below poverty, percent 
of residents with college degree, percent of residents 19–64 
with public insurance, and physicians per 1000 residents 
[26]. These are all included as tertiles in the analyses.

Statistical analysis
We used descriptive statistics to compare PASC cases 
with the three non-PASC control cohorts, including 
counts and percentages for categorical variables and 
means and standard deviation for continuous variables.

We used multivariable logistic regression to determine 
associations between risk factors and PASC. We constructed 
three separate logistic regression models for the three 
cohorts of matched cases and controls. All patient character-
istics, with and without SDoH, were included as independ-
ent variables in the three models. We reported odds ratios 
(OR) and 95% confidence intervals (CI) for risk factors.

In addition to logistic regression, we used two machine 
learning methods, random forest (RF) [27] and XGBoost, 
to identify influential risk factors for developing PASC [28]. 
Machine learning methods provide the ability to investi-
gate massive datasets and reveal patterns within data with-
out relying on a priori assumptions such as pre-specified 
statistical interactions, specific variable associations, or 
linearity in variable relationships [29]. We conducted fea-
ture importance analysis for both RF and XGBoost models 
[30], and display SHAP (SHapley Additive exPlanations) 
plots [31] from the XGboost models (eMethods). All mod-
els included an indicator variable for missing race/ethnic-
ity. All analyses were conducted using Python 3.6.

Secondary and stratified analysis
For the unrestricted controls and PASC cases defined by 
U09.9 or a long-COVID visit (primary cohort), we per-
formed planned secondary analysis by including SDoH 
variables in logistic regression and two machine learn-
ing models. We performed stratified analysis by hospi-
talization status to assess whether risk factors differed for 
these two groups (eMethods).

Sensitivity analyses
To check the robustness of our results, we examined risk 
factors using the matched case–control design separately 
for cases identified: (a) using U09.9 diagnosis code and 

(b) based on long-COVID clinic visits, each with five 
matched controls. We refit each of the three model types 
in the above six cohorts of PASC cases and matched 
controls.

Results
Study cohort
Among the 8,325 individuals with PASC, the major-
ity were > 50  years of age (56.6%), female (62.8%), and 
non-Hispanic White (68.6%) (Table  1). The most com-
mon comorbidities were obesity (56.4%), hypertension 
(40.4%), chronic lung disease (28.9%), and uncomplicated 
diabetes (20.5%). Compared to unrestricted controls 
(N = 41,625), PASC cases were older (mean age 52 [SD 
15.5] vs. 46 [SD 17.8] years), and greater proportion were 
male (37.2% vs. 44.4%) and non-Hispanic White (68.6% 
vs. 63.6%). The prevalence of all comorbidities was higher 
among PASC cases compared to controls, such as hyper-
tension (40.4% vs. 26.2%), chronic lung disease (28.9% vs. 
13.7%), and uncomplicated diabetes (20.5% vs. 13.3%). 
The rate of COVID-associated hospitalization was much 
higher among cases (37.3% vs. 14.8%) compared to all 
controls. We found similar patterns when comparing 
PASC cases with the less restrictive and more restrictive 
control cohorts (Table 1 and eTable 1).

Risk factors associated with PASC
Unrestricted controls (Primary analysis)
Using logistic regression (eFigure 2, eTable 2) we identi-
fied that age was a risk factor for PASC, with particularly 
high risk among individuals between 40 and 69  years 
(OR ranging from 2.32 to 2.58). Females had a greater 
likelihood of having PASC (OR 1.40, CI 1.33–1.48). 
Non-Hispanic Blacks (OR 0.78, CI 0.73–0.85), Hispan-
ics (OR 0.80, CI 0.73–0.87), and Asians (OR 0.80, CI 
0.66–0.97) had a lower likelihood of having PASC than 
non-Hispanic Whites. The top five comorbidities asso-
ciated with PASC were tuberculosis (OR 1.65, CI 1.03–
2.65), chronic lung disease (OR 1.63, CI 1.53–1.74), 
rheumatologic disease (OR 1.27, CI 1.11–1.46), peptic 
ulcer (OR 1.25, CI 1.07–1.46) and obesity (OR 1.23, CI 
1.16–1.30). Severe acute infection were the strongest 
predictors of PASC including extended hospital stays 
(31 + days, OR 3.38, CI 2.45–4.67), long hospital stays 
(8–30 days, OR 1.69, CI 1.31–2.17), COVID-associated 
hospitalizations (OR 3.8, CI 3.05–4.73), and mechani-
cal ventilation (OR 1.44, CI 1.18–1.74). Characteristics 
associated with a lower likelihood of PASC included 
psychosis, cardiomyopathies, metastatic cancer, mod-
erate to severe liver disease, substance abuse, tobacco 
smoking, and COVID-19 diagnosis during hospitaliza-
tion. In stratified analysis by sex, the results were similar 
to the main findings (eFigures 3 and 4). When stratified 
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by sex (eFigures 3 and 4), peak incidence varied slightly 
between women (50–59) and men (60–69). Women 
older than 70 appeared to have decreasing risk, but risk 
in men was stable.

The performance of XGBoost and logistic regression 
models was similar (both AUC 0.73), closely followed by 
RF model (AUC 0.69) (eTable  3). Risk factors for PASC 
identified by the XGBoost models had a similar direc-
tion compared to logistic regression models (Table  2, 
eTable 4). However, risk factors’ magnitude and order of 
importance varied between XGBoost and logistic regres-
sion. For example, invasive mechanical ventilation was 
ranked 6 by XGBoost versus 21 by logistic regression.

Restricted controls
eTable 5 and eTable 6 shows the importance of risk fac-
tors among less restrictive and more restrictive controls, 
respectively. For most patient characteristics, the direc-
tion and magnitude of the odds ratios were similar to 
the primary analysis (eTable  2). However, obesity was 
no longer significant when we used the less and more 
restrictive controls. Also, ECMO was associated with 
PASC when the more restrictive controls were used, but 
it was not a statistically significant factor when the unre-
stricted controls were used.

Secondary analysis including SDoH
We repeated our primary analysis (U09.9 or long-COVID 
clinic model, unrestricted control cohort) by adding 
SdoH variables (Fig. 2, eTable 7). The number of medical 
doctors per 1000 residents in the county of residence was 
associated with PASC, indicating having access to health-
care services increases the likelihood of diagnosis and/or 
treatment at a long-COVID clinic. Other SDoH factors 
were not associated with PASC in logistic regression but 
were important features in the machine learning models 
(eFigure 5, Table 3).

Stratified analysis by COVID‑index hospitalization
To assess risk factors unique to less severe SARS-CoV-2 
infections, we stratified analysis by whether the patient 
was hospitalized at the time of COVID-19 index date 
(eTables  8–13). For the hospitalized sample, the strong-
est risk factors across LR, XGBoost, and RF models are 
possible markers of COVID-19 severity (e.g., ECMO, 
ED Visit, Mechanical Ventilation) and obesity. Living in 
a community with higher education increased likelihood 
of diagnosis or care at a long-COVID clinic (eFigure 4). 
For those not hospitalized at COVID index date, the fol-
lowing risk factors pre-COVID differ from hospitalized 
patients: systemic corticosteroid use and depression, 
peptic ulcer, or coronary artery disease diagnosis. When 
we limit to non-hospitalized patients during COVID-19 

index, some SDoH factors were also strong predictors 
including lower poverty and higher education communi-
ties (eFigure 6, eFigure 7). Some risk factors are common 
to both the hospitalized and non-hospitalized samples, 
including middle age (40–69), chronic lung disease, and 
white non-Hispanic race/ethnicity (eFigure 6, eFigure 7).

Sensitivity analysis: other definitions of PASC
We have described sensitivity analysis in detail in eRe-
sults. Overall, sensitivity analysis results based on only 
U09.9 definition or only long-COVID clinic visits were 
similar to the primary analysis.

Discussion
In this first large-scale US study of risk factors for PASC 
diagnosis or long-COVID clinic visit, we found that mid-
dle age (40 to 69  years), female sex, severity of acute 
infection (e.g., hospitalization for COVID-19, long or 
extended hospital stay, treatment for acute COVID-19 
during hospitalization), and several comorbidities includ-
ing depression, chronic lung disease, obesity, and malig-
nant cancer were associated with increased likelihood 
of PASC diagnosis or care at a long-COVID clinic. Risk 
factors associated with a lower likelihood of PASC diag-
nosis or care at a long-COVID clinic included younger 
age (18 to 29 years), male sex, non-Hispanic Black race, 
and comorbidities such as substance abuse, cardiomyo-
pathy, psychosis, and dementia. We also found that a 
greater number of physicians per capita in the county of 
residence were associated with an increased likelihood of 
PASC diagnosis or care. Our findings were consistent in 
sensitivity analyses using a variety of approaches to select 
controls and several robust analytic techniques.

Our findings add to the growing body of evidence iden-
tifying and characterizing PASC risk factors. Although 
females were less likely to die or be hospitalized due to 
acute COVID-19, [32, 33], they appear to have a greater 
risk of developing PASC. Our finding that there is a higher 
likelihood of PASC diagnosis among middle-aged individ-
uals is consistent with a recent United Kingdom Office for 
National Statistics analysis, but is in contrast with another 
report that found that older individuals were at the high-
est risk for PASC [8, 12]. Older adults are at greater risk 
of mortality from COVID-19 and older individuals may 
have died before developing PASC. Our analysis did not 
account for competing risk of death while studying PASC 
risk factors. Risk factors such as chronic lung disease, 
rheumatologic disease, and obesity were associated with 
both hospitalization and death due to COVID-19 and also 
increased risk of PASC diagnosis or care.

We previously established a machine learning phe-
notype [23] that used clinical features observed after 
COVID-19 infection to generate a probability for 
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Table 2  Comparison of feature importance for PASC models defined by U09.9 or long-COVID clinic visit and unrestricted controls 
(Comapring 8,325 cases with 41,625 controls; Top 15 positive and negative features)

This Table shows the top 15 features associated with increased risk and top 15 features associated with decreased risk. Complete models are shown in the 
Supplement. Unrestricted sample, U09.9 or long-COVID clinic visit target (see text). Grouped by median direction (increased/decreased) and ordered by mean rank. 
Model rank calculated based on sklearn.inspection.permutation_importance() (XGB/RF) or absolute ordered size of coefficient (LR). Mean rank is based on the rank of 
each model that had the variable in the model. Mint color indicates features associated with increased risk. Salmon color indicates features associated with decreased 
risk. An uncolored cell indicates that that feature was the reference group for the logistic regression model
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whether a patient currently has PASC. In contrast, 
the current analysis uses features selected from the 
acute phase of COVID-19 (such as pre-existing clini-
cal comorbidities and hospitalization characteristics 
at the time of the initial infection) to assess risk fac-
tors for the later emergence of PASC as indicated by a 
U09.9 diagnosis or long-COVID clinic visit. It is pos-
sible that individuals with greater access to healthcare 
may be more likely to have PASC diagnosis. We tried to 
control for this phenomenon by restricting to individu-
als who have at least one visit to a healthcare provider 
post-COVID in the CP model. The models in this anal-
ysis can be applied by clinicians to identify patients at 
risk for PASC while they are still in the acute phase of 
their infection and also to support targeted enrollment 
in clinical trials for preventing or treating PASC.

The association we found between more severe acute 
COVID-19 and increased likelihood of PASC is consistent 

with prior literature [34]. Individuals who were hospital-
ized for COVID-19 or received intensive treatment may 
have long-lasting effects on the brain, heart, lungs, and 
other organs [35–39]. Counterintuitively, we found that 
diabetes, a strong risk factor for worse outcomes after 
acute COVID-19, was associated with less likelihood of 
PASC diagnosis. Our previous work has demonstrated 
that glycemic control in patients with diabetes, as meas-
ured by pre-infection HbA1c levels, is an important risk 
factor for poor acute infection outcomes [40]. The level of 
granularity available in EHR data may not be sufficient to 
completely disentangle PASC risk associated with some 
comorbidities from PASC risk from SDoH and unmeas-
ured biological features. We found that a pre-existing 
diagnosis of depression was associated with a higher risk 
of subsequent PASC. Interestingly, however, prior diagno-
ses of other mental health diagnoses (e.g., psychosis) were 
associated with lower risk. Comorbid substance abuse 

Fig. 2  Forest plots from logistic regression for unrestricted controls with SDoH (PASC defined as U09.9 or long-COVID Clinic Visit)
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Table 3  Comparison of Feature Importance for PASC Models defined by U09.9 or long-COVID clinic visit and unrestricted controls 
with SDoH variables included (Comapring 8,325 cases with 41,625 controls; Top 15 positive and negative features)

This Table shows the Top 15 features associated with increased risk and top 15 features associated with decreased risk. Complete models are shown in the 
Supplement. Not restricted sample, U09.9 or long-COVID clinic visit target (see text). Grouped by median direction (increased/decreased) and ordered by mean rank. 
Model rank calculated based on sklearn.inspection.permutation_importance() (XGB/RF) or absolute ordered size of coefficient (LR). Mean rank is based on the rank of 
each model that had the variable in the model. Mint color indicates features associated with increased risk. Salmon color indicates features associated with decreased 
risk. An uncolored cell indicates that that feature was the reference group for the logistic regression model
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(also associated with lower likelihood of PASC diagno-
sis) with psychosis may explain some of this difference, as 
those with substance abuse disorders may have challenges 
accessing health care. Antidepressants and antipsychotics 
have differential immunomodulatory effects, which could 
also contribute to this observation. Another interesting 
finding is that we found patients with comorbidities such 
as cardiomyopathy, metastatic solid tumors, and liver dis-
ease that made them vulnerable to worse outcomes after 
acute COVID-19 had lower likelihood of PASC diagnosis. 
Although we cannot determine causality from this associa-
tion, this finding may be hypothesis-generating.

The association we found between higher numbers of 
doctors per capita with PASC diagnosis or care under-
scores the importance of access to medical care. Given 
the disruption of medical care for both COVID and non-
COVID illnesses during the pandemic, it is important to 
improve access to care, particularly for minorities [41]. 
Our findings of lower likelihood of PASC diagnosis among 
non-Hispanic Blacks support this hypothesis. The focus of 
this study was to investigate patient-level factors and there-
fore we did not consider several SDoH that can impact 
PASC risk such as essential worker status, financial issues, 
housing, and isolation. These are excellent candidate vari-
ables for future study [42]. Future research is also required 
to delineate the complex relationship of individual vs. con-
textual factors in the diagnosis and care for PASC. Policy 
measures such as strengthening primary care, optimizing 
SDoH data quality, and addressing SDoH are required to 
reduce inequalities in diagnosis and care for PASC [17].

The US Government Accountability Office estimates 
that between 7.7 and 23 million US adults have PASC 
[43]. Given the potential clinical and economic conse-
quences, the US government has allocated over a billion 
dollars to study it [44]. Our study validates some find-
ings of prior studies on PASC risk factors and provides 
novel information including the impact of SDoH. With 
the sample size available in N3C, we can evaluate more 
risk factors simultaneously than previous studies. Also, 
this study can be used to generate hypotheses about pos-
sible mechanisms and potential treatments for PASC. For 
example, because this study found that rheumatological 
conditions are a risk factor for PASC, future studies can 
assess whether treatment for rheumatological conditions 
can alter the likelihood of PASC diagnosis.

Our study has several limitations. First, the N3C only 
contains EHR data, which has inherent limitations and 
may encode biases related to health care access and 
racism [22]. To get complete and accurate information 
on PASC diagnosis, we restricted cohort to health sys-
tems that used the ICD-10-CM code for PASC or had 
a Long COVID clinic visit at the time of the analysis. 

This limits the generalizability of our study findings to 
all health care systems within N3C or to the U.S. pop-
ulation, although it is likely that more U.S. health care 
systems now use the ICD-10-CM code as doctors and 
patients have gained understanding of PASC. There-
fore, our findings on risk factors may generalize to the 
broader US population. Second, our definition for select-
ing individuals with PASC is narrow, as it only includes 
those who received a long-COVID diagnosis or visited 
a clinic for long-COVID. Therefore, it is likely that we 
missed individuals who had symptoms or conditions 
associated with long-COVID but did not receive a PASC 
diagnosis code or have not visited a long-COVID clinic. 
However, this should not affect our results because we 
included true positives and attempted to include true 
negatives to determine risk factors. Third, because iden-
tification of individuals without PASC (controls) is not 
straightforward without clear definitions or biomark-
ers, we used three approaches to identify controls. Two 
of those leveraged our CP classification model for long-
COVID [23]. Importantly, however, model performance 
did not have clinically meaningful differences across dif-
ferent cohort selection methods. Fourth, further analy-
sis is needed to determine the role of SDoH and how it 
impacts individual-level risk factors for PASC. While 
research shows that county-level SDoH variables can be 
significant for patient-level analysis, more granular geo-
graphic unit or patient-level data would likely provide a 
greater understanding of the relationship between SDoH 
and PASC outcomes [45, 46]. Fifth, we did not evaluate 
the role of vaccines and therapeutics such as paxlovid for 
the likelihood of PASC diagnosis. Sixth, we did not eval-
uate the association of COVID-19 reinfection and PASC 
diagnosis or care. Seventh, we excluded children from 
this analysis because the burden and clinical features 
of COVID-19 may differ significantly between adults 
and children [47]. Eight, our study numbers should not 
be used to estimate the prevalence of PASC in general 
population as it only identifies individuals with clinical 
diagnosis of PASC or long-COVID clinic visits. Ninth, 
there may be a possibility of residual confounding in this 
study because we do not include all potential risk factors 
for PASC.

Conclusions
This national study using N3C data identified impor-
tant risk factors for PASC diagnosis such as middle age, 
severe COVID-19 disease, and comorbidities. Further 
clinical and epidemiological research is needed to bet-
ter understand underlying mechanisms and the potential 
role of vaccines and therapeutics in altering the course 
of PASC.
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