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Abstract
Background The prevalence of metabolic syndrome is increasing worldwide. Clinical guidelines consider metabolic 
syndrome as an all or none medical condition. One proposed method for classifying metabolic syndrome is latent 
class analysis (LCA). One approach to causal inference in LCA is using propensity score (PS) methods. The aim of 
this study was to investigate the causal effect of smoking on latent hazard classes of metabolic syndrome using the 
method of latent class causal analysis.

Methods In this study, we used data from the Tehran Lipid and Glucose Cohort Study (TLGS). 4857 participants aged 
over 20 years with complete information on exposure (smoking) and confounders in the third phase (2005–2008) 
were included. Metabolic syndrome was evaluated as outcome and latent variable in LCA in the data of the fifth 
phase (2014–2015). The step-by-step procedure for conducting causal inference in LCA included: (1) PS estimation 
and evaluation of overlap, (2) calculation of inverse probability-of-treatment weighting (IPTW), (3) PS matching, (4) 
evaluating balance of confounding variables between exposure groups, and (5) conducting LCA using the weighted 
or matched data set.

Results Based on the results of IPTW which compared the low, medium and high risk classes of metabolic syndrome 
(compared to a class without metabolic syndrome), no association was found between smoking and the metabolic 
syndrome latent classes. PS matching which compared low and moderate risk classes compared to class without 
metabolic syndrome, showed that smoking increases the probability of being in the low-risk class of metabolic 
syndrome (OR: 2.19; 95% CI: 1.32, 3.63). In the unadjusted analysis, smoking increased the chances of being in the 
low-risk (OR: 1.45; 95% CI: 1.01, 2.08) and moderate-risk (OR: 1.68; 95% CI: 1.18, 2.40) classes of metabolic syndrome 
compared to the class without metabolic syndrome.
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Background
The American Heart Association and the National Heart, 
Lung, and Blood Institute have considered metabolic syn-
drome as presence of three or more metabolic syndrome 
components, including Increased waist circumference 
(abdominal obesity), hypertriglyceridemia, low HDL cho-
lesterol, impaired fasting blood sugar, and hypertension 
[1, 2]. The metabolic syndrome prevalence is increasing 
worldwide and its prevalence varies in different parts of 
the world depending on environmental factors, sex, age, 
race and ethnicity [3, 4]. In Asian countries, the preva-
lence of this syndrome is between 10 and 20% [5–7]. The 
metabolic syndrome prevalence in Iranian youth is dra-
matically high, ranging from 4.8 to 24.5%. Interestingly, 
its prevalence in the elderly was significantly higher than 
in the young and 49.5% reported [8]. The risk of death, 
stroke and heart attack in people with metabolic syn-
drome is 2 to 3 times higher than healthy people. Also, 
metabolic syndrome increases the risk of diseases such as 
diabetes, cardiovascular disease, fatty liver, asthma, ovar-
ian cysts and a number of cancers [9, 10].

Although metabolic syndrome is traditionally recog-
nized as an ‘all or one’ condition, it is unknown whether 
this definition is accurate and to date has not been vali-
dated [11]. A proposed method for classifying metabolic 
syndrome is latent class analysis (LCA). LCA is a model 
that shows that there is a latent classification variable that 
divides population into latent classes [12]. Latent classes 
are created to show unobserved heterogeneity among 
individuals according to observed variables [9, 13]. Meta-
bolic syndrome does not have a standard diagnostic test 
and the use of LCA can help to identify more [11].

Smoking is one of the major causes of mortality and 
disease in the world [14] and is responsible for about 
7.2 million deaths per year. Moreover, smoking is one of 
the modifiable risk factors for non-communicable dis-
eases such as cardiovascular disease and type 2 diabetes 
[15].

In previous studies, regression methods have often 
been used to investigate the relationship between smok-
ing and metabolic syndrome and adjust for confounding 
variables [15–17]. An alternative approach for confound-
ing adjustment is exposure modeling with propensity 
score (PS) methods. PS which is the conditional probabil-
ity of exposure, given the set of measured confounders 
[18, 19] can be used in different procedures for balance of 
confounding variables among exposure groups, including 
matching, stratification, inverse probability-of-treatment 

weighting (IPTW), and use of the PS as a covariate [20–
34, 83].

Although regression models are widely used in prac-
tice, PS methods are preferred for inferring causality 
for the following reasons: First, it is easier to determine 
whether the exposure models are adequately specified in 
terms of yielding covariate-balancing propensity scores 
using standardized differences. Second, these methods 
effectively emulate a randomized experiment without any 
reference to the outcome. Third, the overlap in the distri-
bution of confounders can be explicitly assessed between 
two exposure groups [20].

Any analysis of observational data, including the effect 
of an exposure on latent class members, is subject to con-
founding and here we apply an approach to causal infer-
ence in LCA using PS methods. Therefore, the aim of this 
study was to investigate the causal effect of smoking on 
the latent hazard classes of metabolic syndrome using 
latent class causal analysis.

Methods
Participants
In this study, we used data from the Tehran Lipid and 
Glucose Cohort Study (TLGS), designed to investigate 
risk factors of non-communicable diseases. TLGS is an 
ongoing study that started in 1998 and performed in 
several phases. The current study was based on a sam-
ple of 4857 participants. We used the third phase data 
(2005–2008) as the baseline, and participants aged over 
20 with complete information on the variables includ-
ing age, gender, physical activity, marital status, educa-
tion, job and smoking status were selected. In the third 
phase, people with metabolic syndrome criteria were 
excluded, that is, people who had 3 or more metabolic 
syndrome components. We measured the metabolic syn-
drome components to obtain latent classes of metabolic 
syndrome in the fifth phase data. (2011–2014). The TLGS 
main project has been approved by the IRB of the Iranian 
National Scientific Research Council and the Research 
Institute for Endocrine Sciences, Shahid Beheshti Uni-
versity of Medical Sciences, under the Helsinki Declara-
tion and an informed consent form was obtained from all 
participants [35, 36]. The ethics committee of the School 
of Health, Tehran University of Medical Sciences (code of 
IR.TUMS.SPH.REC.1398.032) has approved this project.

.

Conclusions Based on the results, the causal effect of smoking on latent hazard classes of metabolic syndrome can 
be different based on the type of PS method. In adjusted analysis, no relationship was observed between smoking 
and moderate-risk and high-risk classes of metabolic syndrome.

Keywords Cohort studies, Smoking, Metabolic syndrome, Causal analysis, Latent class analysis, Propensity score
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Measures
Exposure and outcome
The exposure variable was smoking measured by asking 
the question: “is person smoking daily?”. The outcome 
variable was metabolic syndrome. Components measur-
ing metabolic syndrome, included abdominal obesity 
(waist circumference for men and women ≥ 95  cm), low 
HDL cholesterol (< 40  mg/dl in men or < 50  mg dl in 
women), hypertriglyceridemia (TG ≥ 150  mg/dl), hyper-
tension (systolic blood pressure ≥ 130 mmHg or diastolic 
blood pressure ≥ 85 mmHg) and impaired blood glucose 
(fasting blood glucose ≥ 100 mg/dl) [37–39].

Confounders
A causal-directed acyclic graph (cDAG) [40–48, 82] for 
the study population was created using the DAGitty pack-
age [49] (Fig. 1). The diagram shows the causal relation-
ships between exposure, outcome and covariates which 
was drawn based on the literature review. The minimally 
sufficient set for confounding adjustment, derived based 
on Pearl’s back-door criterion [50], included gender, age, 
physical activity, marital status, education, and job as well 
as the unmeasured variables income and alcohol. Frac-
tional polynomials were used to identify any nonlinear 

association between age and exposure (smoking) in the 
PS model [51–55].

Statistical methods
Steps of causal inference in LCA using PS methods

Step 1: PS estimation and evaluation of overlap
PS, the probability of exposure conditional on confound-
ers [19], was estimated through logistic regression, with 
smoking as the response variable and confounders as 
predictors. We evaluated P̂S  overlap in the exposed and 
unexposed groups using a histogram. The correlations 
between the predictors were assessed with the correla-
tion matrix. The highest correlation was less than 0.3, so 
collinearity in the exposure model was not present.

Step 2: calculate IPTW and PS matching
Inverse probability-of-treatment weighting (IPTW)

IPTW was used to adjust for the minimally sufficient 
set of confounders. The rationale for weighting in IPTW 
is that over-represented persons (people with a high 
probability of exposure to cigarettes) take a low weight 
and under-represented persons (people with a low prob-
ability of exposure to cigarettes) take a high weight. Aver-
age treatment effect (ATE) in the whole population was 

Fig. 1 Causal diagram for the effect of smoking on MS
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estimated with weights equal to 1

P̂S
 for the smokers and 

1

(1−P̂S)for the non-smokers. The rationale behind the 
IPTW is that it produces a pseudo-population in which 
confounders do not predict the exposure anymore, and 
the causal effect of interest in the pseudo-population is 
the same as that in the population [56–58].

PS matching
A PS-matched dataset was created by matching, with-
out replacement, one unexposed person to one exposed 
based on the nearest value of P̂S  (± 0.05) [57]. Of note, a 
caliper width of 0.2 of the standard deviation of the logit 
of the PS [59] was deemed to be 0.25 which was consid-
ered too large for matching and thus was not included. 
The PS matching was performed using the R package 
Match It [60].

Step 3: evaluating balance of confounding variables between 
exposure groups
PS is a balancing score, so in persons with the same 
PS, the distribution of confounders should be similar 
between the exposed and unexposed. The correct speci-
fication of the PS model can be assessed based on the bal-
ance of measured confounders between exposure groups. 
The balance was evaluated in the matched sample for PS 
matching, and in the weighted sample for the IPTW. The 
standardized difference was used to compare the mean 
and proportion of continuous and binary confounders 
between the exposed and unexposed, respectively. The 
standardized difference for continuous confounders is 
defined as

 

d =
(
−
xexposed −

−
xunexposed)√

s2exposed+s2unexposed
2

where −
xexposed  and −

xunexposed  are the mean estimates 
and s2exposed  and s2unexposed  are variance estimates in the 
exposed and unexposed, respectively.

The standardized difference for binary confounders is 
defined as

 

d =
p̂exposed − p̂unexposed√

p̂exposed(1−p̂exposed)+p̂unexposed(1−p̂unexposed)

2

where p̂exposed  and p̂unexposed  are the proportion esti-
mates of the binary confounders in the exposed and 
unexposed, respectively.

Although there is no consensus on the cutpoint of 
the standardized difference for defining an important 
imbalance, a standardized difference of less than 0.1 was 
considered as an unimportant difference in mean or pro-
portion of confounders between exposure groups [20].

Step 4: Conduct LCA using the weighted or matched data set
LCA is a latent variable model that classifies homoge-
neous individuals. LCA is used to find groups in classi-
fied data, which are called latent classes. LCA has two 
parameters, class prevalence and item-response probabil-
ity. The probability of membership in each latent class is 
called class prevalence. Item-response probability is the 
conditional probability of “yes” response to metabolic 
syndrome components. The probability of “no” response 
can be calculated by subtracting item-response probabil-
ities from 1. These probabilities constitute the basis for 
interpreting and naming latent classes: class in which all 
the metabolic syndrome components have a probability 
less than 0.5 as without metabolic syndrome, one compo-
nent has a probability higher than 0.5 as low risk, two of 
components have a probability higher than 0.5 as moder-
ate risk, and three or more components have a probabil-
ity higher than 0.5 are considered high risk. To conduct 
LCA, five observed dichotomous variables (metabolic 
syndrome components) were used to classify metabolic 
syndrome as a latent variable.

We conducted the LCA model in three types of data, 
original data, weighted data using IPTW, and matched 
data using PS matching. To select the best model, we 
compared LCA models 1 to 6 classes. Akaike’s Informa-
tion Criterion (AIC) [61], Bayesian Information Criterion 
(BIC) [62], Consistent Akaike’s Information Criterion 
(CAIC) [61], and Adjusted Bayesian Information Cri-
terion (ABIC) [63] were used to select the best model. 
Lower values of these indices indicate better model fit. 
Next, in each type of data, we examined the relationship 
between smoking and the latent classes of metabolic syn-
drome through multinomial logistic regression model 
and estimated the odds ratio (OR) with 95% confidence 
interval (CI) [64, 65]. The 95% CIs for the IPTW esti-
mates were derived using robust standard errors [66]. 
The 95% CIs for the PS matching was obtained based on 
nonparametric bootstrapping by 1000 repetitions with 
2.5th and 97.5th percentiles as 95% confidence limits 
[67].

Software
R software was used to perform IPTW and PS matching 
analyses and calculate the standardized differences for 
confounders. The PS matching was performed using R 
package Match It [60]. The R package tableone was used 
for calculating standardized differences for IPTW and 
PS matching [68]. SAS package PROC LCA was used to 
obtain LCA [69].

Results
Of the 4857 participants included in this study, 2959 
(60.9%) were female, and the mean (standard deviation) 
of age of participants was 39.10 (13.48) years, ranging 
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from 20 to 90. Moreover, there were 512 (10.5%) cigarette 
smokers at baseline. In the PS matching, 508 unexposed 
subjects were matched to 508 exposed subjects. The 
mean (SD) of inverse probability-of-treatment weights 
for ATE estimate was 2.02 (5.57). The baseline character-
istics of participants based on smoking have been shown 
in Table 1.

Figure  2 shows the P̂S  overlap in the exposed and 
unexposed groups using a histogram. Based on the fig-
ure, the distribution of P̂S  in the smoker and non-smok-
ers groups shows that there is sufficient overlap between 
two groups.

Table 2 represents the standardized differences for con-
founders in original, weighted and matched data. In the 
original data, eight variables had standardized differences 
above 0.1, but in both weighted and matched data, all 
variables had standardized differences less than 0.1, indi-
cating that a sufficient balance on the confounders was 
established between exposure groups.

Table  3 compared LCA models 1 to 6 classes in the 
original data, weighted data using IPTW, and matched 
data to select the best model. Based on this table, in 
the weighted data using IPTW, the four-class model 
had the lowest values of BIC, CAIC, and ABIC, and the 
five-class model had the lowest value of AIC. Based on 
the lower values of BIC, CAIC and ABIC indicators, we 
preferred the four-class model for the weighted data. In 
the matched data, the three-class model had the lowest 
values of AIC, BIC, CAIC and ABIC. Therefore, based on 
the lower values of these indicators, the three-class model 

was preferred. Based on the original data, the three-class 
model had the lowest values of BIC, CAIC and ABIC, and 
the four-class model had the lowest value of AIC. Based 
on lower values of BIC, CAIC and ABIC indicators, the 
three-class model was preferred.

Table  4 shows the item-response probabilities for the 
four-class, three-class and three-class metabolic syn-
drome models in the weighted data using IPTW, matched 
data, and original data. Probability higher than 0.5 was 
considered as high probability. Based on this table, the 
class without metabolic syndrome shows people who had 
a low probability (less than 0.5) of metabolic syndrome 
components: in the weighted, matched, and original data, 
they comprised of 22%, 30%, and 57% of the population, 
respectively. Based on Table 4 in the weighted data using 
IPTW, the low-risk class comprised of 31% of the pop-
ulation and included people at high-risk of abdominal 
obesity. The moderate-risk class comprised of 39% of the 
population and also included people who were at a higher 
risk for hypertriglyceridemia and low HDL cholesterol 
levels. The high-risk class comprised of 8% of the popula-
tion and included people who are at high-risk for all met-
abolic syndrome components except hypertension. In the 
matched data, the low-risk class comprised of 36% of the 
population and included people at high-risk for low HDL 
cholesterol. The moderate-risk class was comprised of 
34% of the population and included people at high-risk 
of abdominal obesity and hypertriglyceridemia. In the 
original data, the low-risk class comprised of 27% of the 
population and included people who are at high-risk of 
abdominal obesity. The moderate-risk class comprised of 
16% of the population and included people at high-risk 
for hypertriglyceridemia and low HDL cholesterol.

Table  5 shows the causal effect of smoking on meta-
bolic syndrome latent classes in the weighted data using 
IPTW and matched data. Also, this table shows the effect 
of smoking on the metabolic syndrome latent classes in 
the original data. In the matched data, smoking increased 
the chances of being in the low-risk class of metabolic 
syndrome (OR: 2.19; 95% CI: 1.32, 3.63) compared to the 
class without metabolic syndrome. Based on the matched 
data, 95% CI was compatible with both increase and 
decrease chance of being in moderate-risk class of meta-
bolic syndrome. The same pattern of inconclusive CIs 
was seen for being in the low, moderate, and high risk 
class in the weighted analysis.

Discussion
In this cohort study, we investigated the causal effect of 
smoking on the latent hazard classes of metabolic syn-
drome by integrating causal inference methods in the 
LCA. Integration of PS methods in LCA provides a bet-
ter understanding of the causal mechanism of behavior 
or characteristics that are not directly measurable and 

Table 1 Baseline characteristics of the study participants
Characteristic Smokers, n (%) Non-smokers, n (%)
Gender (female) 74(14.5) 2885 (66.4)

Age, years, mean (SD) 40.89 (12.67) 38.89 (13.56)

Marital status

 single 102 (19.9) 918 (21.1)

 married 391 (76.4) 3233 (74.4)

 divorced 13 (2.5) 56 (1.3)

 widowed 6 (1.2) 138 (3.2)

Educational certificate

 elementary 57 (11.1) 592 (13.6)

 secondary school 98 (19.1) 641 (14.8)

 high school 264 (51.6) 2067 (47.6)

 associate degree 31 (6.1) 284 (6.5)

 BSc 56 (10.9) 653 (15.0)

MSc or higher degrees 6 (1.2) 108 (2.5)

Occupational status

 employed 378 (73.8) 1606 (37.0)

 student 11 (2.1) 291 (6.7)

 housewife 51 (10.0) 2039 (46.9)

 no work with income 46 (9.0) 325 (7.5)

 others 26 (5.1) 84 (1.9)

Physical activity (yes) 310 (60.5) 2812 (64.7)
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allows researcher to easily control for many confound-
ers simultaneously [56]. The most important advantage 
of using the causal inference approach to estimate each 
effect is that it allows researcher needs to ask a specific 
causal question. Average treatment effect (ATE) and 
average treatment effect in the treated (ATT) expresses 
different questions that differ in terms of the population 
to which we generalize the results. We first estimated 
ATE by IPTW, which ask” if everyone in the community 
smoked, what difference is expected in the pattern of 
metabolic syndrome compared to those who had never 
smoked”. We subsequently estimated ATT by PS match-
ing, which asks “among people who smoked, assuming 
they all did,, what difference is expected in the pattern of 
metabolic syndrome compared to those who had never 
smoked” none of them having smoked? We believe that 
ATT provides us with a more realistic feeling. In fact, 
to answer this question, we are comparing smokers in 
terms of actual behavior of smoking with their expected 

behavior if they do not smoke. Thinking about the 
expected effects of smoking in the whole population does 
not seem logical, because in practice, many people in a 
population do not smoke (since different people in soci-
ety have different behavioral characteristics). The results 
by PS matching, which considers exposed individuals, 
appear to be more plausible than the results of the IPTW, 
which measures the whole population.

In causal LCA, we first selected the model and obtained 
the relationship between smoking and metabolic syn-
drome latent classes by comparing the low, medium and 
high risk classes of metabolic syndrome with class with-
out metabolic syndrome through polynomial regression. 
Based on the results of unadjusted model, we considered 
the three-class model, which included people without 
metabolic syndrome (57%), people with low risk of meta-
bolic syndrome (26%) and people with moderate risk of 
metabolic syndrome (15%). Based on this model, smok-
ing increased the chances of being in the low-risk and 

Fig. 2 Histogram diagram of estimated propensity scores for the exposed and unexposed groups
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moderate-risk classes of metabolic syndrome compared 
to the class without metabolic syndrome. The purpose of 
adjustment and inclusion of IPTW and PS matching in 
the model is to analyze by re-weighing everyone based on 
IPTW or matching and removing confounders similar to 
a randomized controlled trial. Based on IPTW, no asso-
ciation was found between smoking and the metabolic 
syndrome latent classes.

In a study from the Czech Republic on 805 people in 
the age group of 18 to 65 years, the prevalence of meta-
bolic syndrome did not differ between smokers and non-
smokers [70]. In another study by Ishizaka et al. in Japan 
on 3687 people, smoking was not a predictor of meta-
bolic syndrome and no relationship was found between 
these two variables [71]. In a study by Santos et al. in 
Porto, Portugal on 2165 people in the age group of 18 to 
92 years, the prevalence of metabolic syndrome was not 
different in smokers and non-smokers [72]. Based on PS 
matching, smoking increased the chances of being in the 
low-risk class of metabolic syndrome compared to the 
class without metabolic syndrome. Previous studies have 
shown an association between smoking and metabolic 
syndrome, for example, in a multinational study with dif-
ferent ethnicities, non-Hispanic white, African-Ameri-
can, Hispanic, and American-Chinese, conducted in six 
U.S. regions, smoking increased the chances of develop-
ing metabolic syndrome compared to those who did not 
smoke [73]. In addition, Slagter et al. conducted a study 
in the Netherlands with 59,467 people, observed a higher 

Table 2 Standardized differences before (unadjusted) and after 
(adjusted) applying IPTW and use of PS matching
Confounder Origi-

nal 
data

Weighted 
data 
using 
IPTW

Matched 
data 
using PS 
matching

Gender (male) 1.248 0.020 0.011

Age (year) 0.184 0.018 0.016

Marital status

 single 0.030 0.015 0.019

 divorced 0.091 0.019 0.015

 widowed 0.138 0.030 0.077

Educational certificate

 elementary 0.076 0.087 0.006

 Secondary school 0.117 0.015 0.005

 associate degree 0.020 0.007 0.024

 BSc 0.122 0.006 0.006

 MSc or higher degrees 0.098 0.062 0.017

Occupational status

 student 0.223 0.002 0.026

 housewife 0.898 0.019 0.020

 no work with income 0.055 0.045 0.007

 others 0.171 0.013 0.038

 Physical activity 0.086 0.019 0.024
Abbreviations: IPTW, inverse probability-of-treatment weighting; PS, 
propensity score

Table 3 Summary of information for selecting number of latent classes for metabolic syndrome
Method No. of

Classes
AIC BIC CAIC ABIC N

ATE: Weighting 1 889 921.4 926.4 905.5 4857

2 371.3 442.7 453.7 407.7

3 175.9 286.2 303.2 232.2

4 99.2 248.4 271.4 175.3

5 78.6 266.7 295.7 176.6

6 78.7 305.8 340.8 194.6

ATT: Matching 1 141.9 166.5 171.5 150.7 1016

2 87.2 141.4 152.4 106.4

3 46.4 130.1 147.1 76.1

4 49.1 162.4 185.4 89.3

5 59.5 202.3 231.3 110.2

6 70.8 243.1 278.1 132

Original data 1 838.1 870.6 875.6 854.7 4857

2 294.7 366 377 331.1

3 75 185.3 202.3 131.3

4 50.5 199.8 222.8 136.7

5 59 247.2 276.2 155.1

6 70.7 297.8 332.8 186.6
Abbreviations: AIC, Akaike’s Information Criterion; BIC, Bayesian Information Criterion; CAIC, Consistent

Akaike’s Information Criterion; aBIC, Adjusted Bayesian Information Criterion; ATE, Average treatment effect;

ATT, Average treatment effect in the treated
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prevalence of metabolic syndrome in smokers [17]. Sun 
et al. Conducted a meta-analysis of several cohort stud-
ies in different parts of Asia, Europe and North America, 
they found that smoking increases the risk of metabolic 
syndrome [74]. Also, an increased risk of metabolic syn-
drome associated with smoking, was observed in results 
of other studies in other parts of the world [1, 75–77]. 
The effects of smoking on the cardiovascular system can 
be caused by an increase in nicotine receptors. Nicotine 
receptor activation can secrete neurotransmitters and 
hormones such as vasopressin, growth hormone, dopa-
mine, serotonin and glutamate in the central nervous 
system, acetylcholine in the peripheral nervous system, 
and catecholamine and cortisol from the adrenal glands. 
All these molecules affect metabolism [78]. Also, stud-
ies show that smoking causes inflammation, which pre-
disposes to metabolic syndrome. Smoking increases the 
production of procytokines, decreases the level of anti-
inflammatory cytokines, and increases the pathological 
level of inflammatory-sensitive proteins such as Alpha 
1-antitrypsin and fibrinogen [79].

This study has some limitations. First, the validity of 
the causal analyses using this study relies on no unmea-
sured confounding. However, some confounders such 
as alcohol consumption and income were not available. 
Although we did not have income data, job and education 
variables were included in the model as suitable proxies 
for income. Alcohol is expected to have a positive rela-
tionship with smoking and also outcome: had adjusted 
for it, the effect estimate would have been even weaker 
than the current estimate. Second, there might have been 
some measurement bias as smoking was dichotomized 
and self-reported so subject to recall and under-report-
ing biases [80, 81]. Third, some adjusted confounders Ta
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Table 5 Odds ratios and confidence intervals for the relationship 
between smoking and latent classes of metabolic syndrome 
before (unadjusted) and after (adjusted) applying IPTW and use 
of PS matching

Classes Odds Ratio 95% Con-
fidence 
interval

ATE: Weighting No metabolic 
syndrome

reference reference

Low risk 0.487 0.185, 1.28

moderate risk 1.52 0.463, 4.98

High risk 0.918 0.266, 3.16

ATT: Matching No metabolic 
syndrome

reference reference

Low risk 2.19 1.32, 3.63

moderate risk 0.842 0.487, 1.45

Original data No metabolic 
syndrome

reference reference

Low risk 1.45 1.01, 2.08

moderate risk 1.68 1.18, 2.40
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like physical activity might have had measurement error 
leading to residual confounding. Fourth, the exclusion 
of the subjects with missing data on baseline confound-
ers might be subject to selection bias. However, only 10% 
of the participants were excluded for this reason with the 
mean age of 41 years and 57% female, which is somewhat 
similar to the people included in the study.

Conclusion
In summary, the results of this study showed that in 
unadjusted analyses, there were association between 
smoking and the chances of being in the low-risk and 
moderate-risk classes of metabolic syndrome compared 
to the class without metabolic syndrome, but after adjust-
ment with IPTW, no strong evidence of an association 
between smoking and metabolic syndrome latent classes 
was observed Based on PS matching, smoking increased 
the chances of being in the low-risk class of metabolic 
syndrome compared to the class without metabolic syn-
drome. The differences in results can be explained by 
no confounding adjustment in the unadjusted analysis 
as well as different effect targets for the IPTW and PS 
matched adjusted analyses.
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