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Abstract 

Background Insomnia predisposes the aging population to reduced quality of life and poor mental and physical 
health. Evidence of the association between polluted fuel use and insomnia symptoms is limited and is non-existent 
for the Indian population. Our study aimed to explore the link between polluted fuel use and insomnia symptoms 
in middle-aged and older (≥ 45 years) Indian populations.

Methods We utilized data from nationally representative Longitudinal Aging Study in India (LASI) Wave 1. Participants 
with complete information on fuel use, insomnia symptoms, and covariates were included. Insomnia symptoms were 
indicated by the presence of at least one of three symptoms: difficulty in initiating sleep (DIS), difficulty in maintain-
ing sleep (DMS), or early morning awakening (EMA), ≥ 5 times/week. Survey-weighted multivariable logistic regres-
sion analyses were conducted to evaluate the association between polluted fuel use and insomnia symptoms. We 
also assessed the interaction of association in subgroups of age, gender, BMI, drinking, and smoking status.

Results Sixty thousand five hundred fifteen participants met the eligibility criteria. Twenty-eight thousand two 
hundred thirty-six (weighted percentage 48.04%) used polluted fuel and 5461 (weighted percentage 9.90%) reported 
insomnia symptoms. After full adjustment, polluted fuel use was associated with insomnia symptoms (OR 1.16; 95%CI 
1.08–1.24) and was linked with DIS, DMS, and EMA (OR 1.14; 95%CI 1.05–1.24, OR 1.12; 95%CI 1.03–1.22, and OR 1.15; 
95%CI 1.06–1.25, respectively). No significant interactions for polluted fuel use and insomnia symptoms were 
observed for analyses stratified by age, sex, BMI, drinking, or smoking.

Conclusions Polluted fuel use was positively related to insomnia symptoms among middle-aged and older Indians. 
Suggestions are offered within this article for further studies to confirm our results, to explore underlying mechanisms, 
and to inform intervention strategies.
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Background
Approximately 2.4 billion  people worldwide are con-
tinuously dependent on polluted fuels (such as kerosene, 
charcoal, coal, crop residue, wood, and dung) for domes-
tic purposes, most of them are rural residents in low- and 
middle-income countries (LMICs) including India [1]. 
59% of the Indian population lacks access to clean cook-
ing [2]. The incomplete combustion of polluted fuels 
generates a range of health-damaging pollutants, includ-
ing fine particulate matter smaller than 2.5  μm   (PM2.5), 
carbon monoxide (CO), black carbon (BC), becoming 
the primary source of household air pollution (HAP) 
[3]. Currently, HAP relating to polluted fuel is consid-
ered to be the main contributor to particulate exposure 
in LMICs [4]. These small particulates can penetrate the 
lungs and enter the bloodstream, causing health hazards 
via mucociliary dysfunction, impaired immune response, 
and decreased oxygen-carrying capacity of blood [4]. 
Several recent studies have indicated that polluted fuel 
exposure is correlated with and a risk factor for stroke, 
ischemic heart disease, respiratory infections, chronic 
obstructive pulmonary disease (COPD), and respiratory 
tract cancer [5, 6]. Moreover, HAP sourced from polluted 
fuel is the tenth leading risk factor for attributable disa-
bility-adjusted life years (DALYs) [7]. According to World 
Health Organization, estimates of 3.2 million premature 
deaths per year are attributable to the HAP generated by 
the use of polluted fuels, with about 0.8 million Indians 
dying prematurely of HAP in 2020 [8].

Insomnia is clinically diagnosed based on the self-
report of experiencing difficulties in falling and staying 
asleep or waking up earlier than intended associated 
with daytime functional deficits given adequate opportu-
nity to sleep. This pattern must persist for at least 3 days 
per week and for at least three months [9]. Insomnia has 
grown into a global epidemic, affecting approximately 
10% to 20% of the general population, of which about half 
experience insomnia chronically [10]. In India, insomnia 
is prevalent in approximately 15% of  middle-aged and 
older populations [11], and it often occurs comorbidly 
with  mental distress, cognitive deficits, cardiovascular 
disorders, and metabolic syndrome and is associated 
with direct, indirect, and intangible medical and occupa-
tional costs [12, 13].

Contaminated air can impair essential cellular func-
tions and lead to aberrant accelerated epigenetic clocks, 
oxidative stress, and inflammation, impairing cen-
tral nervous system function, thereby contributing to 
insomnia [14]. The detrimental effects of ambient air 
pollution (AAP) on insomnia are evident from existing 
studies. Studies in China have reported links between 
long-term [15–18] and short-term [19] AAP and sleep 
disorders. Positive associations have also been observed 

of long-term AAP with overall sleep health among partic-
ipants from the UK Biobank [20]. And researchers have 
linked maternal  PM2.5  exposure with sleep disruption 
among Mexican preschoolers [21]. However, evidence of 
the association between HAP and sleep health remains 
sparse. Potential relationships between polluted fuel use 
and impaired sleep quality have been suggested by sev-
eral cross-sectional [22–24] and cohort [25, 26] studies 
in the Chinese population. Those studies solely focus on 
the Chinese population, with their ability to extrapolate 
to other populations restricted. Nevertheless, similar 
relationships remain unexplored in the Indian popula-
tion, despite the excessive dependence on polluted fuels 
in Indian households. Our study was conducted to assess 
the links of different fuel types with insomnia symptoms, 
employing the baseline data from the Longitudinal Age-
ing Study in India (LASI). We hypothesized that indi-
viduals relying on polluted fuels, in comparison to those 
utilizing clean fuels, would have higher prevalence rates 
of insomnia symptoms.

Methods
Data
Data for the study were drawn from the first wave of 
LASI, collected from 2017 to 2018. It is a national survey 
of 72,262 individuals aged ≥ 45  years and their spouses 
(irrespective of age), across all states and union territo-
ries of India excluding Sikkim [27]. LASI mainly focused 
on the health status and socioeconomic determinants 
and consequences of population aging [28]. LASI survey 
adopted a multi-stage stratified area probability cluster-
ing sampling design to reach the final sampling units. 
We utilized the Harmonized LASI data to investigate the 
individual, household, and community information of 
the same observation unit. The detailed study methodol-
ogy and microdata have been explained in the Harmo-
nized LASI report [29]. Ethical approvals for LASI were 
obtained from the Indian Council of Medical Research 
(ICMR) and all collaborating institutions, including the 
International Institute for Population Sciences (IIPS), 
Harvard T.H. Chan School of Public Health (HSPH), 
University of Southern California (USC), ICMR-National 
AIDS Research Institute (NARI), and Regional Geriatric 
Centres (RGCs). Informed consent was obtained from all 
survey participants prior to the first wave of panel sur-
veys. After removing participants with missing data on 
fuel use, insomnia symptoms, and covariates the total 
sample size for this study was 60,515 (see Fig. 1).

Fuel use
Detailed data about fuel types for cooking and non-cook-
ing purposes (e.g., boiling water, bathing, lighting, etc.) 
were collected. Clean fuels included Liquefied Petroleum 
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Gas (LPG), biogas, and electricity; polluted fuels con-
sisted of kerosene, charcoal, coal, crop residue, wood/
shrub, and dung cake.

Insomnia symptoms
Insomnia symptoms were identified by the presence of at 
least one of the symptoms: 1) difficulty in falling asleep; 
2) difficulty in staying asleep or getting back to sleep after 
awakening; 3) waking up earlier than intended. The fre-
quency of insomnia symptoms was also recorded, as 
never or rarely (0–2 times per week), occasionally (3–4 
times per week), and frequently (5 or more times per 
week). A participant was classified as having insomnia 
symptoms based on reporting at least one of the three 
symptoms occurring frequently (5 or more times a week). 
Correspondently, those reporting “experiencing difficulty 
falling asleep” frequently were classified as difficulty in 
initiating sleep (DIS), those reporting “experiencing diffi-
culty staying asleep or getting back to sleep after awaken-
ing” frequently were classified as difficulty in maintaining 
sleep (DMS), and those reporting “waking up earlier than 
intended” frequently were classified as early morning 
awakening (EMA).

Covariates
Covariates were chosen based on existing studies and 
LASI data availability. Demographic and socioeconomic 
covariates (age categories, sex, level of education, work-
ing status, marital status, living arrangement, economic 
status, religion, and caste) were included. Religion has 

been recognized as a social determinant of sleep. It may 
potentially impact sleep by modulating psychological 
distress, substance use, stress exposure, and allostatic 
load [30]. Economic status was trichotomized into - low, 
middle, and high - based on annual per capita household 
consumption [31]. Annual per capita household con-
sumption was calculated by dividing the total household 
consumption by the number of households. The total 
household consumption was the sum of expenditures on 
food, household utilities, fees, durable goods, education, 
transit, remittances, discretionary spending, and outpa-
tient and inpatient health care in the previous year. Caste 
was a hereditary social class of traditional Hindu soci-
ety, distinguished by relative degrees of wealth, inherited 
rank or privilege, occupation, and ritual  purity  or  pol-
lution [32]. Caste was classified into scheduled caste, 
scheduled tribal, other backward class, and none of the 
above in our study.

Other sources of indoor pollution were assessed, 
including exposure to other indoor pollutants such as 
incense sticks, mosquito coils, liquid vaporizers/mos-
quito repellents/mats, fast cards/sticks/cakes, or expo-
sure to passive smoking indoors, and the responses were 
coded as “no” or “yes”. Five indicators of poor hous-
ing quality were chosen based on previous studies, as a 
low socioeconomic status (SES) marker [33], including: 
a) housing construction material (semi-pucca/ kutcha 
was coded as 1, pucca was coded as 0); b) sanitary facil-
ity (poor sanitation was coded as 1, improved sanitation 
was coded as 0); c) source of water (poor drinking water 

Fig. 1 Sample selection for the study
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source was coded as 1, improved drinking water source 
was coded as 0); d) electricity (without electricity was 
coded as 1, with electricity was coded as 0) and e) crowd-
ing (without separate bedroom was coded as 1, with 
separate bedroom was coded as 0). The total number of 
indicators of poor housing quality was calculated and 
classified as “0/1/ ≥ 2” indicators. Body mass index (BMI) 
was categorized as < 18.5, 18.5–23, 23–25, and ≥ 25  kg/
m2, according to the world health organization (WHO) 
criteria for Asian population [34]. Vigorous physical 
activity was defined as participation in running or jog-
ging, swimming, going to a health center/gym, cycling, 
digging with a spade or shovel, heavy lifting, chopping, 
farm work, fast bicycling, and cycling with loads and was 
classified by weekly frequency. The number of chronic 
diseases was classified into “0/1/2/3+” groups according 
to the sum of self-reported diseases. Chronic diseases 
included hypertension, diabetes, tumor, lung disease, 
chronic heart disease, stroke, arthritis, mental disease, 
Alzheimer’s disease, hypercholesterolemia, asthma, con-
gestive heart failure, heart attack, abnormal heart rate, 
osteoporosis, abnormal thyroid function, digestive dis-
ease, skin disease, kidney stone, presbyopia, cataract, 
glaucoma, myopia, hyperopia, tooth decay, and periodon-
tal disease. Drinking and smoking status was recorded as 
“never”, “ever” and “current”. Depression was screened 
through the 10-item Center for Epidemiologic Studies 
Depression Scale (CES-D-10), a short version of CES-D-
20 [35]. The 10 items of CES-D-10 analyzed seven nega-
tive items and three positive items. Each negative item 
had a score ranging between 0 to 3, and the scores of pos-
itive items were reversed. The sum of the scores for each 
item ranged from 0 to 30 and scoring more than ten was 
classified as depression in our study, which was verified 
to have good sensitivity in the previous study [36].

Statistical analysis
Considering the complex sampling design employed 
in LASI, all analyses conducted in this study incorpo-
rated sample weights. Descriptive statistics stratified 
by fuel use were calculated. Categorical variables were 
reported as weighted percentages, and continuous vari-
ables as weighted means, accompanied by correspond-
ing 95% confidence intervals (CIs). Differences between 
the groups were evaluated by the Kruskal Wallis H test 
for continuous variables and chi-squared tests for cat-
egorical variables. Survey-weighted multivariate logistic 
regression was employed adjusting for different sets of 
covariates to estimate the links of fuel use with insom-
nia symptoms and each of the three kinds of symptoms, 
including DIS, DMS, and EMA. No covariates were 
adjusted in unadjusted model. Model 1 adjusted for 
demographic and socioeconomic covariates, including 

age categories, sex, level of education, work status, mari-
tal status, living arrangement, place of residence, eco-
nomic status, religion, and caste. Model 2 adjusted for 
the covariates in model 1 and added biologic covariates, 
such as body mass index (BMI), vigorous physical activ-
ity, number of chronic diseases, drinking status, smoking 
status, and depression. Model 3 adjusted for the covari-
ates in model 2 and added environmental covariates, 
involving other indoor pollution and indicators of poor 
housing quality. We employed the likelihood ratio test 
and Hosmer-Lemeshow test to evaluate the goodness of 
fit of the fully adjusted model 3.

We also assessed the interaction of association between 
fuel use and insomnia symptoms in prespecified sub-
groups including age categories, sexes, BMIs, drinking 
status, and smoking status. Stratified logistic regression 
models were employed to perform subgroup analyses, 
and a log-likelihood ratio test was used to calculate the 
p for interaction. Data were analyzed via the statisti-
cal packages R (The R Foundation; http:// www.R- proje 
ct. org) and Empower (http:// www. empow ersta ts. com). 
Two-sided p-values of less than 0.05 were considered sta-
tistically significant.

Results
Baseline characteristics
The descriptive statistics of eligible participants, stratified 
by fuel use, are summarized in Table 1. Among the 60,515 
participants, the weighted mean age was 57.58  years 
(95%CI 46.98–68.18 years). Twenty-eight thousand three 
hundred twenty-six (weight percentage 48.04%, 95%CI 
47.65%-48.44%) participants were using polluted fuels. 
Participants using polluted fuels were more inclined to 
be older, lower education level, employed, unmarried, 
living alone, residing in rural regions, lower economic 
status, Hindu, the scheduled castes and scheduled tribes, 
BMI < 23 kg/m2, regular physical activity, current smoker, 
and drinker, lower exposure to other indoor pollution, 
and poorer housing quality. Overall, the weighted preva-
lence of insomnia symptoms was 9.90% (95%CI 9.66%-
10.14%). A higher weighted prevalence of insomnia 
symptoms was reported among participants who relied 
on polluted fuels compared with participants who relied 
on clean fuels (weighted percentage 10.86% vs 9.01%, 
p < 0.001).

Fuel use and insomnia symptoms
Table 2 presents the associations of fuel use with insom-
nia symptoms and each of the symptoms. In the unad-
justed model, polluted fuel use was significantly related 
to the report of insomnia symptoms (OR 1.23; 95%CI 
1.17–1.30). After adjusting for demographic and socio-
economic characteristics (model 1), the relationship 

http://www.R-project.org
http://www.R-project.org
http://www.empowerstats.com
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Table 1 Weighted baseline characteristics of participants

Characteristics No. Overall Fuel use

Clean (n = 32,279) Polluted (n = 28,236) p-value

Age, years 60,515 57.58 (10.60) 57.32 (10.61) 57.87 (10.58) < 0.001*

Sex 0.343†

 Male 25,497 50.52 (50.12–50.91) 50.33 (49.78–50.88) 50.72 (50.14–51.29)

 Female 35,018 49.48 (49.09–49.88) 49.67 (49.12–50.22) 49.28 (48.71–49.86)

Level of education < 0.001†

 No schooling 27,804 51.93 (51.53–52.33) 38.52 (37.98–39.05) 66.44 (65.89–66.98)

 Less than 5 years complete 21,251 29.54 (29.18–29.91) 32.32 (31.80–32.84) 26.54 (26.03–27.05)

 5–9 years complete 8177 13.03 (12.76–13.30) 19.63 (19.20–20.08) 5.89 (5.62–6.16)

 10 or more years complete 3283 5.50 (5.32–5.69) 9.53 (9.21–9.86) 1.14 (1.02–1.27)

Working status < 0.001†

 Currently unemployed 30,396 43.89 (43.50–44.29) 48.05 (47.50–48.60) 39.39 (38.83–39.95)

 Currently employed 30,119 56.11 (55.71–56.50) 51.95 (51.40–52.50) 60.61 (60.05–61.17)

Insomnia symptoms < 0.001†

 No 55,054 90.10 (89.86–90.34) 90.99 (90.67–91.31) 89.14 (88.77–89.49)

 Yes 5461 9.90 (9.66–10.14) 9.01 (8.69–9.33) 10.86 (10.51–11.23)

Other indoor pollution < 0.001†

 No 6777 8.85 (8.63–9.08) 8.15 (7.85–8.46) 9.61 (9.27–9.95)

 Yes 53,738 91.15 (90.92–91.37) 91.85 (91.54–92.15) 90.39 (90.05–90.73)

Indicators of poor housing quality  < 0.001†

 0 22,691 34.98 (34.60–35.36) 50.77 (50.22–51.32) 17.91 (17.47–18.36)

 1 20,268 30.37 (30.00–30.73) 30.25 (29.75–30.76) 30.49 (29.96–31.02)

 ≥ 2 17,556 34.65 (34.27–35.03) 18.98 (18.55–19.41) 51.60 (51.03–52.18)

BMI, kg/m2 < 0.001†

 < 18.5 10,839 20.13 (19.81–20.45) 11.06 (10.72–11.41) 29.93 (29.41–30.46)

 18.5–23 22,449 38.00 (37.61–38.39) 32.85 (32.33–33.37) 43.57 (43.00–44.14)

 23–25 9164 14.67 (14.39–14.95) 17.19 (16.77–17.61) 11.95 (11.58–12.32)

 ≥ 25 18,063 27.21 (26.85–27.56) 38.90 (38.37–39.44) 14.56 (14.15–14.97)

Vigorous physical activity < 0.001†

 Everyday 14,991 27.60 (27.25–27.96) 24.57 (24.10–25.05) 30.89 (30.36–31.42)

 More than once a week 4417 7.59 (7.38–7.81) 5.25 (5.00–5.50) 10.13 (9.79–10.48)

 Once a week 2293 3.86 (3.71–4.02) 3.46 (3.27–3.67) 4.30 (4.07–4.54)

 1–3 times a month 3135 5.52 (5.34–5.71) 4.74 (4.51–4.98) 6.37 (6.09–6.66)

 Hardly ever or never 35,679 55.42 (55.02–55.81) 61.98 (61.44–62.52) 48.32 (47.75–48.89)

Number of chronic diseases < 0.001†

 0 13,958 23.29 (22.96–23.63) 18.09 (17.66–18.52) 28.93 (28.41–29.45)

 1 14,297 24.19 (23.85–24.53) 22.15 (21.69–22.61) 26.40 (25.90–26.91)

 2 12,398 20.60 (20.28–20.92) 21.70 (21.24–22.16) 19.41 (18.96–19.87)

 ≥ 3 19,862 31.92 (31.55–32.29) 38.07 (37.53–38.61) 25.26 (24.76–25.76)

Drinking status < 0.001†

 Never 50,435 82.58 (82.28–82.88) 85.04 (84.64–85.43) 79.93 (79.46–80.38)

 Current 5758 9.91 (9.67–10.15) 8.69 (8.38–9.00) 11.23 (10.87–11.60)

 Ever 4322 7.51 (7.30–7.72) 6.28 (6.01–6.55) 8.84 (8.52–9.17)

Smoking status < 0.001†

 Never 50,279 80.94 (80.63–81.25) 84.89 (84.49–85.28) 76.68 (76.19–77.16)

 Current 7741 15.02 (14.74–15.31) 11.43 (11.08–11.79) 18.90 (18.45–19.35)

 Ever 2495 4.04 (3.88–4.20) 3.68 (3.48–3.90) 4.42 (4.19–4.67)

Depression < 0.001†

 No 40,286 64.50 (64.12–64.88) 67.51 (66.99–68.02) 61.25 (60.69–61.81)
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Data were presented as weighted percentages or means (95% confidence intervals)

BMI Body mass index
* For continuous variable, p value was calculated by Kruskal Wallis H test
† For categorical variables, p value was calculated by chi-square test

Table 1 (continued)

Characteristics No. Overall Fuel use

Clean (n = 32,279) Polluted (n = 28,236) p-value

 Yes 20,229 35.50 (35.12–35.88) 32.49 (31.98–33.01) 38.75 (38.19–39.31)

Marital status 0.008†

 Married or partnered 47,302 79.17 (78.85–79.49) 79.37 (78.91–79.81) 78.96 (78.49–79.43)

 Widowed 11,793 18.68 (18.37–19.00) 18.35 (17.93–18.79) 19.04 (18.59–19.49)

 Others 1420 2.14 (2.03–2.26) 2.28 (2.12–2.45) 2.00 (1.84–2.17)

Living arrangement < 0.001†

 Co-residential living 58,576 96.83 (96.68–96.96) 97.62 (97.45–97.78) 95.97 (95.73–96.19)

 Separate living 1939 3.17 (3.04–3.32) 2.38 (2.22–2.55) 4.03 (3.81–4.27)

Place of residence < 0.001†

 Urban 20,725 31.05 (30.68–31.42) 52.15 (51.60–52.70) 8.22 (7.91–8.55)

 Rural 39,790 68.95 (68.58–69.32) 47.85 (47.30–48.40) 91.78 (91.45–92.09)

Economic status < 0.001†

 Low 20,593 36.99 (36.61–37.38) 24.75 (24.28–25.23) 50.23 (49.65–50.80)

 Middle 20,255 33.33 (32.96–33.71) 35.10 (34.58–35.63) 31.42 (30.89–31.96)

 High 19,667 29.68 (29.31–30.04) 40.14 (39.60–40.69) 18.35 (17.91–18.80)

Religion < 0.001†

 Hindu 44,524 81.26 (80.95–81.57) 79.92 (79.47–80.36) 82.71 (82.27- 83.14)

 Muslim 7135 12.03 (11.78–12.29) 12.09 (11.74–12.46) 11.97 (11.60–12.34)

 Christian 6036 3.10 (2.97–3.24) 3.44 (3.25–3.65) 2.73 (2.55–2.93)

 Others 2820 3.61 (3.46–3.76) 4.54 (4.32–4.78) 2.60 (2.42–2.79)

Caste < 0.001†

 Scheduled caste 10,265 19.90 (19.59–20.22) 16.23 (15.83–16.65) 23.87 (23.39–24.37)

 Scheduled tribal 10,745 8.65 (8.43–8.88) 4.14 (3.93–4.37) 13.52 (13.13–13.92)

 Other backward class 23,125 45.04 (44.65–45.44) 46.92 (46.37–47.47) 43.01 (42.44–43.58)

 None of the above 16,380 26.41 (26.06–26.76) 32.70 (32.18–33.22) 19.60 (19.15–20.06)

Table 2 Relationship between fuel use and insomnia symptoms

Unadjusted model: no covariates were adjusted

Model 1 adjusted for: age categories, sex, level of education, work status, marital status, living arrangement, place of residence, economic status, religion, caste

Model 2 adjusted for: model 1 plus body mass index (BMI), vigorous physical activity, number of chronic diseases, drinking status, smoking status, depression

Model 3 adjusted for: model 2 plus other indoor pollution, indicators of poor housing quality

OR Odds ratio, 95% CI 95% Confidence interval

Fuel use OR (95% CI)

Unadjusted model Model 1 Model 2 Model 3

Clean fuel Reference Reference Reference Reference

Polluted fuel

 Insomnia symptoms 1.23 (1.17, 1.30) 1.17 (1.10, 1.25) 1.17 (1.10, 1.25) 1.16 (1.08, 1.24)

 Difficulty in initiating sleep (DIS) 1.15 (1.07, 1.23) 1.15 (1.07, 1.25) 1.16 (1.07, 1.25) 1.14 (1.05, 1.24)

 Difficulty in maintaining sleep (DMS) 1.17 (1.09, 1.25) 1.14 (1.05, 1.23) 1.13 (1.05, 1.23) 1.12 (1.03, 1.22)

 Early morning awakening (EMA) 1.24 (1.16, 1.33) 1.15 (1.07, 1.25) 1.16 (1.07, 1.26) 1.15 (1.06, 1.25)
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remained significant (OR 1.17; 95%CI 1.10–1.25). Fur-
ther adjustment for biological covariates in model 2 did 
not alter this association (OR 1.17; 95%CI 1.10–1.25). 
Eventually, in the fully adjusted model 3, which addition-
ally adjusted for environmental covariates, the associa-
tion between polluted fuel use and insomnia symptoms 
persisted (OR 1.16; 95%CI 1.08–1.24, likelihood ratio test 
p < 0.05, and Hosmer-Lemeshow test p > 0.05). The links 
between different fuel types and each of the three kinds 
of insomnia symptoms, including DIS, DMS, and EMA, 
were also examined separately. In those fully adjusted 
models, consistent positive associations with polluted 
fuel use were observed for the three insomnia symp-
toms (OR 1.14; 95%CI 1.05–1.24 for DIS, OR 1.12; 95%CI 
1.03–1.22 for DMS, and OR 1.15; 95%CI 1.06–1.25 for 
EMA in model 3).

Subgroup analysis
To further assess the relationship between different fuel 
types and insomnia symptoms, we conducted hetero-
geneity analyses in different subgroups, the results of 
which are presented in Fig.  2. Our sample was strati-
fied by age categories, sex, BMI, drinking status, and 
smoking status. In general, the ORs of each subgroup 
were in accordance with the main association results, 
suggesting a positive link between polluted fuel use and 
insomnia symptoms. After full adjustment, no signifi-
cant interaction effect was observed in subgroup analy-
ses by age categories, sex, BMI, drinking, or smoking 
status for the associations between fuel use and insom-
nia symptoms (p = 0.817, 0.234, 0.798, 0.548, 0.426, 
respectively).

Fig. 2 Subgroup analysis of the association between fuel use and insomnia symptoms. OR: odds ratio; 95% CI: 95% Confidence interval; BMI, body 
mass index. Model 3 adjusted for: age categories, sex, level of education, work status, marital status, religion, place of residence, living arrangement, 
economic status, caste, body mass index (BMI), vigorous physical activity, number of chronic diseases, drinking status, smoking status, depression, 
other indoor pollution, and indicators of poor housing quality except for the subgroup variable
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Discussion
Nearly half of (weight percentage 48.04%) participants 
relied on polluted household fuels to meet their domes-
tic needs. Participants using polluted fuels tended to be 
older, lower education level, employed, unmarried, liv-
ing alone, residing in rural regions, lower economic sta-
tus, Hindu, the scheduled castes and scheduled tribes, 
BMI < 23 kg/m2, regular physical activity, current smoker, 
and drinker, lower exposure to other indoor pollution, 
and poorer housing quality. Approximately one in every 
ten middle-aged and elderly Indians (weight percentage 
9.90%) experienced at least one insomnia symptom ≥ 5 
times per week. Considering India’s substantial popu-
lation base, insomnia poses a considerable economic 
burden on the country’s healthcare system. Moreover, 
functional and cognitive decline related to insomnia con-
tributes to a decrease in the labor force [37], which would 
further strain the Indian economy that is already grap-
pling with the additional healthcare expenses. Polluted 
fuel use was found to be associated with self-reported 
insomnia symptoms among middle-aged and elderly 
Indians, highlighting the need for public health initia-
tives geared toward addressing household environments, 
with particular attention to cooking fuels, with an aim to 
help alleviate the burden of insomnia symptoms on the 
population. Intriguingly, although the ORs of the asso-
ciations between different fuel types and insomnia symp-
toms varied across subgroups, the p-value for interaction 
was found to be greater than 0.05, indicting no significant 
interactions for the associations between different fuel 
types and insomnia symptoms were observed for analy-
ses stratified by age, sex, BMI, drinking, or smoking sta-
tus. Consequently,  our results suggest a consistent and 
stable association of fuel use with insomnia symptoms 
across different age categories, sexes, BMIs, alcohol con-
sumption patterns, and smoking statuses.

Publications on air pollution and sleep disruption have 
focused on AAP [15–19]. A few studies conducted in 
China have explored the link of fuel use with sleep health. 
Chen et  al. carried out a case-control study in Hainan, 
China of 1616 participants and found that exposure to 
polluted fuel use was linked to poor sleep quality at the 
oldest-old age (≥ 80  years), with cooking ventilation in 
those kitchens possibly attenuating the relationship in 
that the increased airflow might offset the detrimental 
effect of the incomplete combustion of polluted fuels 
[25]. Chair et al. performed a large cross-sectional analy-
sis of 283,170 adults using the China Kadoorie Biobank 
Study, reporting that household polluted fuels were cor-
related with sleep disturbance [22]. Yu et  al. declared 
that continuous usage of polluted fuels was related to 
shorter sleep time among individuals aged over 45 years 
(n = 8668) employing China Health and Retirement 

Survey [26]. Liao et  al. in a study enrolling 28,135 rural 
participants in Henan, China, observed associations of 
poor sleep with combined fuel types and cooking time, 
which were modified by either natural (open windows 
or doors) or mechanical (exhaust hoods/fans) kitchen 
ventilation [23]. Wei et  al. performed a cross-sectional 
study of 2197 employees in a Machinery Company in 
Liuzhou, China, and showed that there was an exposure-
dose association between oil fumes and poor sleep [24]. 
Although our main findings regarding the association 
between polluted fuel and insomnia symptoms align with 
those of the Chinese studies, there are still variations that 
can be attributed to cultural factors. For example, we 
observe a significant urban–rural conundrum in India, 
as documented in existing literature [38], in terms of 
the utilization of polluted fuels. Our study indicates that 
approximately 91.78% (weighted 95%CI 91.45–92.09) of 
Indians using polluted fuels reside in rural areas, while 
the proportion in China is approximately 71.5% [26]. 
Despite the Indian government’s cooking energy pro-
gram - Pradhan Mantri Ujjwala Yojana (PMUY) scheme 
– which has been launched to increase India’s LPG adop-
tion [39], our findings suggest that a considerable num-
ber of  rural Indian households still rely on traditional 
polluted fuels,  implying that addressing cooking energy 
in rural areas should be a primary focus for the Indian 
government. Additionally, our study reveals demographic 
differences in fuel utilization that also reflect India’s 
unique cultural characteristics, such as religion and caste. 
Specifically, participants using polluted fuels were pre-
dominantly Hindu and belonged to the scheduled castes 
and scheduled tribes, a finding that has not been previ-
ously reported.

Existing literature suggests the possible biochemi-
cal mechanisms underlying the link of polluted fuel 
use with insomnia. Disturbance of sleep regulation in 
the central nervous system (CNS) could be a potential 
explanation. Pollutants from polluted fuel smoke have 
been related to decreased volume of the prefrontal cor-
tex [40], cerebrovascular damage [41], and neurotoxic-
ity [42]. Such CNS damage might affect cerebral areas 
involved in sleep and ventilatory regulation and conse-
quently affect sleep quality. Exposure to air pollutants 
sourced from indoor polluted fuel use, such as  PM2.5, 
has been associated with lower levels of serotonin [43], 
which interacts with other neurotransmitters to modu-
late sleep and circadian rhythms, leading to alterations 
in sleep patterns [44]. Inhaled air pollutant particles 
and diverse environmental toxicants absorbed by such 
particles might be transferred into the brain via altered 
blood–brain barrier and translocation of nanoparti-
cles, initiating astrogliosis, microglial infiltration, and 
neuronal loss and causing inflammation in the brain 
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[45, 46]. Circulating inflammatory cytokines might also 
cross from the periphery to the brain indirectly by sys-
temic inflammation and neuroimmune cross-talk [47], 
ultimately triggering a cascade of neuroinflammation 
that affects the brain’s function and therefore influences 
sleep. Finally, both human and animal studies have 
proposed that pollutants from polluted fuel smoke are 
linked to increased expression of pathological markers 
of neurodegenerative diseases, e.g., alpha-synuclein, 
beta-amyloid and hyperphosphorylated tau [48], and 
may thus linked with the progression of neurodegen-
erative diseases. Besides, the mechanisms linking neu-
rodegeneration to circadian dysfunction and impaired 
sleep are elucidated [49] and suggested the progres-
sive nature of sleep disruption throughout the course 
of neurodegeneration [50]. Therefore, it is speculated 
that the potential neurodegenerative effects of pollut-
ants from HAP might be associated with the process of 
insomnia.

In addition to the CNS, other systems have also been 
found to be involved in the relationship of polluted fuel 
use with insomnia. One plausible mechanism might be 
the links between polluted fuel use, respiratory disease, 
and insomnia. Inhaled particulates from HAP might 
deposit in the airway, causing oxidative stress, subse-
quently stimulating alveolar macrophages (AMs) and 
damaging alveolar epithelium [51]. Besides, AMs filled 
with pollutant carbon particles are linked to poor anti-
bacterial ability, thereby contributing to an increased risk 
of infection and immunodeficiency [52]. These pathologi-
cal changes in the respiratory system are associated with 
airflow obstruction, contributing to apnea and hypoxia, 
and further impacting sleep [53].

Another possible link between polluted fuel use and 
insomnia symptoms is cardiovascular autonomic dys-
function. Recent studies have extended associational 
evidence of polluted fuel use with adverse  cardiovas-
cular  effects through mediating pathways, including 
autonomic imbalance [54]. Meanwhile, sleep physiol-
ogy might be influenced by impaired autonomic control 
of the cardiovascular system, which may result in an 
imbalance of sympathetic or parasympathetic modula-
tion during the sleep-wake cycles, eventually perturb-
ing sleep [55]. Finally, mental factors might mediate the 
association between polluted fuel use and insomnia. Pol-
lutants sourced from polluted fuel use might be associ-
ated with multiple adverse mental health outcomes,  for 
instance, depression, anxiety, bipolar disorder, or suicide 
[56]. These negative emotional impacts caused by HAP 
sourced from polluted fuel could in turn influence fall-
ing asleep, a possibility supported by studies reporting 
a reciprocal relationship between mental disorders and 
sleep quality [57].

Limitations
Our study has limitations. The cross-sectional nature of 
baseline LASI data cannot guarantee causality. However, 
future follow-up studies of LASI may provide additional 
support for establishing longitudinal causality. Addition-
ally, the self-reported data on insomnia symptoms and 
other health conditions, such as chronic diseases, may be 
subject to reporting errors, including recall bias, idiosyn-
cratic interpretation, etc. besides, data selection of this 
study is restricted to variables collected in baseline LASI, 
data on cooking duration, kitchen ventilation, past fuel 
use, or stacking with other fuel types were not included 
in the LASI database, which may lead to under- or over-
estimation of the results. We also could not study the pol-
lutant concentration, exposure time, or lifelong effect due 
to the limitation of the data availability. Since exposure 
to polluted fuels is a crude proxy of HAP and there was 
no estimate of AAP exposure, measurement bias might 
exist. Finally, despite extensive adjustment for potential 
covariates, the influence of uncontrolled covariates can-
not be ruled out.

Strengths
However, our study has several strengths. To our knowl-
edge, this is the first attempt to explore the link between 
polluted fuel use and insomnia symptoms using very 
recent data available nationally representative of the 
Indian population, which allows us to generalize our 
findings to the full middle-aged and elderly population 
of India. Moreover, our analyses adjusted for multiple 
potential covariates. Thus, the results are robust and con-
ducive to policy formulation. Furthermore, our results 
indicate an association between polluted fuel use and 
insomnia symptoms, thus further suggesting the need for 
future longitudinal studies to explore potential toxicolog-
ical and biological mechanisms that underlie it.

Conclusions
Nearly half of the Indian population is regularly exposed 
to polluted fuel use, which is associated with insomnia 
symptoms among middle-aged and elderly Indians. Pol-
luted fuel use remains a major public health concern in 
India, with domestic inequalities driven by unbalanced 
developments. The implementation of national indoor 
environmental protection policies should be accelerated 
and reoriented to rural residents. More efforts are needed 
to shift to cleaner fuels and cooking technologies and 
could be combined with information campaigns to raise 
awareness of rural households. Future prospective study 
is warranted to validate our findings, to explore underly-
ing mechanisms, and to inform policy and practice.
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