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Abstract 

Introduction Even though cadmium (Cd) exposure and cellular senescence (telomere length) have been linked 
in previous studies, composite molecular aging biomarkers are more significant and reliable factors to consider 
when examining the connection between metal exposure and health outcomes. The purpose of this research 
was to assess the association between urinary cadmium (U-Cd) and whole-body aging (phenotypic age).

Methods Phenotypic age was calculated from chronological age and 9 molecular biomarkers. Multivariate linear 
regression models, subgroup analysis, and smoothing curve fitting were used to explore the linear and nonlinear 
relationship between U-Cd and phenotypic age. Mediation analysis was performed to explore the mediating effect 
of U-Cd on the association between smoking and phenotypic age.

Results This study included 10,083 participants with a mean chronological age and a mean phenotypic age of 42.24 
years and 42.34 years, respectively. In the fully adjusted model, there was a positive relationship between U-Cd 
and phenotypic age [2.13 years per 1 ng/g U-Cd, (1.67, 2.58)]. This association differed by sex, age, and smoking sub-
groups (P for interaction < 0.05). U-Cd mediated a positive association between serum cotinine and phenotypic age, 
mediating a proportion of 23.2%.

Conclusions Our results suggest that high levels of Cd exposure are associated with whole-body aging.
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Introduction
Cadmium (Cd) is a toxic heavy metal that is ubiquitous 
in the environment and poses a major public health chal-
lenge [1, 2]. The major sources of Cd exposure for the 

general population are tobacco smoke, diet, and work-
place exposure [3–5]. Excessive exposure to Cd may lead 
to renal tubular dysfunction and abnormal bone metabo-
lism [6–8]. In addition, there is evidence that Cd expo-
sure induces oxidative stress, leading to elevated levels of 
inflammation and mitochondrial damage [9, 10].

Population aging is a global issue, with one-fifth of the 
world’s population expected to be 65 or older by 2030. 
Healthy life expectancy, on the other hand, is growing 
more slowly than total life expectancy [11, 12]. Although 
everyone ages, the pace at which biological aging occurs 
varies, and inequalities in aging rates between indi-
viduals manifest as differences in mortality and dis-
ease vulnerability [13]. Several aging metrics based on 
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molecular factors, such as DNA methylation age, have 
been proposed [14], pro-inflammatory cytokines [15], 
and telomere length [16]. In addition, ‘phenotypic aging 
measures’ derived from clinical biomarkers have been 
shown to be better predictors of whole-body aging and 
outcomes than actual age in representative population 
data [17–19].

Cd exposure has emerged as a significant contributor 
to the development of several diseases of aging, includ-
ing diabetes [20], cardiovascular disease [21, 22], and 
osteoarthritis [19], as a result of the toxic effects of Cd 
on various metabolic organs [23]. Evidence from epide-
miological studies and animal studies suggests that Cd 
exposure contributes to oxidative stress and stimulates 
the production of cytokines [24, 25], even though the 
exact mechanisms underlying these associations are still 
unknown. A recent study investigating the association 
between urinary metals and telomere length in the US 
population showed a negative association between U-Cd 
and telomere length [26].

To the best of our knowledge, no population-based 
investigation has studied the relationship between Cd 
exposure and phenotypic age. As a result, we conducted 
a cross-sectional study using data from the National 
Health and Nutrition Examination Survey (NHANES) to 
examine the link between Cd exposure and phenotypic 
age in a typical U.S. population.

Methods
Study population
The National Center for Health Statistics (NCHS) con-
ducts the well-known National Health and Nutrition 
Examination study (NHANES), a cross-sectional study 
that is nationally representative [27–29]. All research 
participants provided written agreement at the time of 
recruitment, and the NCHS Research Ethics Review 
Board approved the study’s methodology. Over 10 sur-
vey cycles in a period of twenty years (1999–2018), the 
survey was carried out. A total of 19,004 participants 
with U-Cd data were initially enrolled in the study, as 
were 8,915 participants without phenotypic age data and 
6 participants with missing urinary creatine data. The 
study ultimately included 10,083 participants (Fig. 1).

Cadmium exposure
In this study, urinary cadmium (U-Cd) levels were used 
as a Cd exposure assessment because it is considered a 
proxy for cumulative Cd exposure, reflecting the accumu-
lation of Cd in the kidneys and other tissues [30]. U-Cd 
levels were measured by inductively coupled plasma 
mass spectrometry (ICP-MS), U-Cd concentration cor-
rected by urinary creatinine [31, 32].

Phenotypic age
The phenotypic age was determined using chronological 
age and nine biomarkers: albumin, creatinine, glucose, 
C-reactive protein, lymphocyte percentage, mean cell 
volume, erythrocyte distribution width, alkaline phos-
phatase, and white blood cell count [18]. Laboratory 
methods for measuring these biomarkers are as follows:

Albumin: Measured using fluorescence immunoas-
say.
Creatinine: Assessed by Jaffe kinetic method.
Glucose: Measured using the glucose oxidase-perox-
idase method.
C-reactive protein: Quantified using a high-sensitiv-
ity enzyme-linked immunosorbent assay (ELISA).
Percentage of lymphocytes: Calculated using flow 
cytometry.
Mean cell volume: assessed using an automated 
hematology analyzer.
Erythrocyte distribution width: Analyzed using an 
automated hematology analyzer.
Alkaline phosphatase: Measured using colorimetric 
assay.
Leukocyte count: Counted using an automated cell 
counter.

Covariates
Covariates for this study were identified based on the lit-
erature on metal exposure and biological aging [33–35], 
including age, sex, education level, race, PIR (ratio of 
family income to poverty), BMI, smoking status (ever/
never), sleep disorder, serum cotinine, cancer status, 
klotho, waist circumference, diabetes status, triglycerides 
and LDL-C (low-density lipoprotein cholesterol).

Statistical analysis
All analyses were performed with R (version 4.2) and 
Empowerstats (version 5.0) [36, 37]. All statistical analy-
ses were conducted weighted according to the NHANES 
guidelines. Missing covariate data were addressed using 
multiple imputation. To examine the demographic fea-
tures of the individuals by U-Cd quartile, the chi-square 
test and t-test were utilized. Multivariate linear regres-
sion models were used to examine the linear associations 
between U-Cd and phenotypic age. The non-linear rela-
tionship between U-Cd and phenotypic age was inves-
tigated by smoothing curve fitting (penalized spline 
method) after logarithmic transformation of U-Cd [38]. 
Subgroup analyses and interaction tests were used to 
examine differences in the above correlations across 
gender, BMI, diabetes and age. Cd is a component of 
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cigarette smoke [39], and Cd is also thought to be asso-
ciated with aging [40]. Given that serum cotinine serves 
as an established biomarker for cigarette smoke exposure 
[41], to establish a foundation for mediation as described 
by Baron & Kenny [42], we first examined:

The association between cotinine (independent vari-
able) and U-Cd (mediator).
The association between cotinine (independent vari-
able) and phenotypic age (dependent variable).
The results of these foundational analyses are pre-
sented in Table S1  of the supplementary material. 
Following the establishment of these associations, 
we conducted a mediation analysis to ascertain the 

extent to which Cd exposure mediates the relation-
ship between serum cotinine and phenotypic age. 
The proportion of the effect mediated by Cd expo-
sure was calculated using the formula (mediated 
effect/total effect) × 100%.

Results
Baseline characteristics
The mean (SD) age and phenotypic age of the 10,083 par-
ticipants were 42.24 (21.55) years and 42.34 (21.93) years, 
with 49.76% of male participants. The mean U-Cd and 
serum cotinine was 0.33 (0.44) ng/g. The characteristics 
of the study population according to the quartiles of the 

Fig. 1 Flow chart of participants selection. NHANES, National Health and Nutrition Examination Survey
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U-Cd are depicted in Table 1. Participants in the higher 
urinary Cd quartiles were more likely to be older, female, 
non-Hispanic black, and smokers; have higher rates of 
diabetes and cancer; have higher serum cotinine levels, 
triglyceride levels, LDL-C levels, BMI, and waist circum-
ference; and have lower educational levels and household 
income.

Associations between cadmium exposure and biological 
aging
Table 2 presents the results of multivariate linear regres-
sion models between U-Cd (ng/g) and phenotypic age 

(year). In the crude model, there was a positive correla-
tion between U-Cd and phenotypic age, and the effect 
values were much higher than in the other models [13.97 
(12.90, 15.05)], which mainly stemmed from the fact that 
the chronological age was not adjusted in Model 1. In the 
fully adjusted model, each 1 ng/g increase in U-Cd phe-
notypic age was associated with a 2.13-year increase in 
phenotypic age [2.13 (1.67, 2.58)]. When U-Cd was sub-
sequently converted to quartiles and trend was tested, 
participants in the top quartile had phenotypic ages that 
were 1.6 years older than participants in the bottom 
quartile in the fully adjusted model [1.60 (1.00, 2.21)]. 

Table 1 Basic characteristics of participants by urinary cadmium quartile

Mean ± SD for continuous variables: the P value was calculated by the weighted linear regression model

(%) for categorical variables: the P value was calculated by the weighted chi-square test

Abbreviation: Q Quartile, PIR Ratio of family income to poverty, BMI Body mass index, LDL-C Low-density lipoprotein cholesterol

Characteristics Urinary Cadmium quartile (ng/g) P-value

Q1 (< 0.095)
N = 2520

Q2 (0.095–0.198)
N = 2504

Q3 (0.199–0.408)
N = 2530

Q4 (> 0.409)
N = 2529

Age (years) 33.54 ± 17.21 40.74 ± 18.75 47.13 ± 17.77 54.08 ± 15.59 < 0.001

Phenotypic age (years) 33.61 ± 17.57 41.29 ± 18.98 47.24 ± 17.75 53.49 ± 15.64 < 0.001

Sex, (%) < 0.001

 Male 49.84 51.98 50.73 45.16

 Female 50.16 48.02 49.27 54.84

Race/ethnicity, (%) < 0.001

 Non-Hispanic White 70.41 65.86 67.45 64.25

 Non-Hispanic Black 6.78 10.50 11.99 15.35

 Mexican American 10.04 11.24 8.79 7.41

 Other race/multiracial 12.77 12.39 11.77 12.98

Education level, (%) < 0.001

 Less than high school 20.00 22.66 25.15 31.66

 High school 21.68 22.94 24.08 26.61

 More than high school 58.32 54.40 50.77 41.72

Smoking, (%) < 0.001

 Ever 33.71 36.48 47.42 64.53

 Never 66.29 63.52 52.58 35.47

Cancer, (%) < 0.001

 Yes 5.45 9.26 10.95 13.92

 No 94.55 90.74 89.05 86.08

Diabetes, (%) < 0.001

 Yes 4.75 7.35 9.45 10.39

 No 94.21 91.39 87.57 87.38

Borderline 1.04 1.26 2.98 2.23

BMI (kg/m2) 26.78 ± 6.54 28.70 ± 6.67 29.29 ± 6.81 28.87 ± 6.86 < 0.001

Waist circumference (cm) 91.86 ± 16.85 97.50 ± 17.40 99.54 ± 16.76 99.61 ± 16.25 < 0.001

PIR 3.10 ± 1.62 3.04 ± 1.63 2.97 ± 1.63 2.74 ± 1.58 < 0.001

Triglycerides (mg/dL) 100.02 ± 76.60 112.73 ± 74.40 122.91 ± 89.35 134.96 ± 119.06 < 0.001

Klotho (pg/mL) 815.73 ± 313.40 831.34 ± 271.82 817.82 ± 277.08 813.23 ± 303.24 0.823

LDL-C (mg/dL) 99.63 ± 31.73 107.69 ± 35.76 115.25 ± 35.75 117.04 ± 35.26 < 0.001

Serum cotinine (ng/mL) 29.92 ± 95.40 36.25 ± 101.03 51.32 ± 122.73 98.92 ± 153.72 < 0.001
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Additionally, all models showed a significant linear trend 
(P for trend < 0.01).

The subgroup analysis revealed that the link between 
U-Cd levels and phenotypic age was not consistent, 
despite the fact that a positive relationship occurred 
in all categories (Table 3). The results of the interaction 
test indicated that gender, age, and smoking modified 
the association between U-Cd levels and phenotypic age 
(P for interaction < 0.05). For participants who smoked, 
this positive linear association was strong and significant 
[2.27 (1.75, 2.78)], whereas in non-smokers, the associa-
tion was not significant [0.97 (-0.02, 1.95)].

In addition, smoothed curve fitting further confirmed 
the nonlinear relationship between U-Cd and pheno-
typic age (Fig. 2). After stratification by smoking status, 
the nonlinear relationship between U-Cd and pheno-
typic age for participants who smoked showed a trend 
toward covariance with the nonlinear relationship for all 
participants, while non-smokers showed significant dif-
ferences. Considering that smoking is one of the main 
sources of Cd exposure and that serum cotinine levels are 
a valid indicator of an individual’s smoking behavior and 
exposure, mediation analysis was further used to explore 
the role of U-Cd in mediating the relationship between 
serum cotinine and phenotypic age. U-Cd had a signifi-
cant indirect effect (mediation effect) with a mediation 
ratio of 23.2% (Table 4).

Discussion
In past studies on biological aging, researchers have 
focused mainly on genetic factors and less on metal expo-
sure. In this study, we provide two new findings based on 
a representative population in the United States. First, 
greater Cd levels were linked to biological aging, with 
each 1 ng/g rise in U-Cd related with a 2.13-year increase 
in phenotypic age. Also, Cd exposure had a mediating 
effect in the positive association of smoking on pheno-
typic age, with a 23.2% mediating proportion.

Table 2 The associations between urinary cadmium (ng/g) and phenotypic age (year)

Model 1: no covariates were adjusted. Model 2: age, gender, and race were adjusted. Model 3: age, gender, race, BMI, smoking, alcohol drinking, diabetes, cancer, PIR, 
triglycerides, klotho, serum cotinine and LDL-C were adjusted

Abbreviation: PIR Ratio of family income to poverty, BMI Body mass index, LDL-C Low-density lipoprotein cholesterol

Exposure Model 1 [β (95% CI)] Model 2 [β (95% CI)] Model 3 [β (95% CI)]

Urinary cadmium (continuous) 13.97 (12.90, 15.05) 1.89 (1.52, 2.26) 2.13 (1.67, 2.58)

Urinary cadmium (quartile)

 Quartile 1 reference reference reference

 Quartile 2 6.26 (4.86, 7.66) 0.32 (-0.17, 0.81) 0.04 (-0.57, 0.65)

 Quartile 3 13.99 (12.63, 15.34) 0.79 (0.31, 1.28) 0.36 (-0.23, 0.95

 Quartile 4 23.38 (22.03, 24.74) 2.04 (1.53, 2.56) 1.60 (1.00, 2.21)

P for trend < 0.001 < 0.001 < 0.001

Table 3 Subgroup analysis of the association between urinary 
cadmium (ng/g) and phenotypic age (year)

Age, gender, race, BMI, smoking, alcohol drinking, diabetes, cancer, PIR, 
triglycerides, klotho, serum cotinine and LDL-C were adjusted

Abbreviation: PIR Ratio of family income to poverty, BMI Body mass index, 
LDL-C Low-density lipoprotein cholesterol

Subgroup Phenotypic age [β 
(95%CI)]

P for interaction

Sex 0.002

 Male 2.81 (2.15, 3.48)

 Female 1.42 (0.82, 2.02)

Age 0.016

 < 60 years 1.77 (1.22, 2.33)

 ≥ 60 years 2.93 (2.16, 3.71)

Race/ethnicity 0.619

 Non-Hispanic White 2.33 (1.77, 2.88)

 Non-Hispanic Black 1.85 (0.85, 2.85)

 Mexican American 1.38 (-0.57, 3.34)

 Other race/multiracial 1.60 (-0.00, 3.20)

Education level, n (%) 0.579

 Less than high school 2.55 (1.62, 3.48)

 High school 1.94 (1.22, 2.67)

 More than high school 2.31 (1.58, 3.03)

BMI 0.185

 < 24.9 kg/m2 2.44 (1.66, 3.22)

 25-29.9 kg/m2 1.67 (0.89, 2.44)

 ≥ 30 kg/m2 2.61 (1.86, 3.36)

Smoking, (%) 0.020

 Ever 2.27 (1.75, 2.78)

 Never 0.97 (-0.02, 1.95)

Cancer, (%) 0.278

 Yes 1.51 (0.16, 2.85)

 No 2.29 (1.82, 2.77)

Diabetes, (%) 0.088

 Yes 1.55 (0.29, 2.80)

 No 2.30 (1.84, 2.76)

 Borderline 2.10 (1.08, 3.22)
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Phenotypic age is considered to be a valid indicator 
of whole-body aging [43], has been found to be associ-
ated with a range of health outcomes, including osteo-
arthritis [19], diabetes, and overall mortality [44]. These 
health outcomes may be due to changes in physiological 
and metabolic functions as a result of biological aging, 
including cellular senescence [45], decreased DNA repair 
capacity [46], and chronic inflammation [47]. In addition, 
phenotypic age may also be used as a risk assessment tool 
to identify individuals who are at high risk of develop-
ing health problems due to smoking or cadmium expo-
sure [48]. For example, those with a higher phenotypic 
age than their actual age and with smoking or cadmium 
exposure may need to undergo more frequent health 
screenings or take more aggressive preventive measures. 
To our knowledge, this study is the first population-based 
study that investigated the association between Cd expo-
sure and phenotypic age, and our results are consistent 

with many studies that have investigated other biologi-
cal aging indicators [26, 49, 50]. Telomere shortening 
is an important mechanism of cellular senescence, and 
therefore telomere length is considered an important 
indicator of cellular senescence [51]. Patel et  al. investi-
gated the linear association of 461 variables, including 
environmental exposures, with telomere length, and their 
results showed that a total of eight of the 461 variables 
were associated with telomere shortening, including Cd 
exposure, C-reactive protein, and physical activity [49]. A 
cross-sectional study in China investigated the associa-
tion of Cd and lead concentrations in the placenta with 
telomere length and demonstrated that telomere length 
was not connected with lead and was negatively associ-
ated with Cd concentration [50].

Furthermore, the results of the subgroup analysis of 
this study showed no association between U-Cd and 
phenotypic age in nonsmoking participants. In contrast, 
Demanelis et  al. found an inverse association between 
Cd and biomarkers of aging in a non-smoking popula-
tion [52]. These associations were significantly different 
from those in the smoking population, and these differ-
ences may stem from the increased levels of Cd exposure 
in humans due to smoking. The results of our mediation 
analysis showed that Cd exposure significantly medi-
ated the positive association between smoking (serum 
cotinine) and phenotypic age, mediating a proportion of 
23.2%. Cigarette smoke is thought to be an important fac-
tor in accelerating the aging process [53], and the asso-
ciation between nicotine metabolites and phenotypic 

Fig. 2 The nonlinear associations between urinary cadmium and phenotypic age. The solid red line represents the smooth curve fit 
between variables. Blue bands represent the 95% of confidence interval from the fit. A total participants; (B) Participants stratified by smoking

Table 4 Urinary cadmium as a mediator in the associations 
between serum cotinine (ng/mL) and phenotypic age (year)

Model was adjusted for age, gender, race, BMI, alcohol drinking, diabetes, 
cancer, PIR, triglycerides, klotho, and LDL-C.

Mediation effect Estimate 95% CI lower 95% CI upper P-value

Total effect 0.012 0.008 0.013 < 0.001

Mediation effect 0.003 0.002 0.004 < 0.001

Direct effect 0.009 0.005 0.010 < 0.001

Proportion medi-
ated

0.232 0.159 0.401 < 0.001
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age may be due in part to the presence of Cd in tobacco 
smoke. Even though our study was cross-sectional and 
we were unable to establish a causal link, this interpre-
tation is supported by the findings of the mediation 
analysis and a number of experimental studies [54, 55]. 
In addition, the mediating effect of Cd exposure between 
smoking and telomere length was also demonstrated in a 
cross-sectional study by Zota et al. using mediation anal-
ysis, but their measure of smoking utilized questionnaire 
variables, years of smoking (30 years, 30–59 years, > 60 
years) [56], whereas we investigated the mediating effect 
of smoking between Cd exposure and phenotypic age 
from a different perspective using the nicotine metabolite 
serum cotinine.

There are many biological aging mechanisms that have 
been linked to Cd exposure. It is believed that oxidative 
stress is the main cause of telomere shortening. High 
levels of guanine in telomeres, which are extremely vul-
nerable to reactive oxygen species, cause the produc-
tion of 8-oxo-7,8-dihydrodeoxyguanosine, which can 
cause DNA strand breaks and telomere wear [57–59]. 
In addition, Cd exposure is associated with higher lev-
els of inflammatory markers [60, 61], and inflammation 
may further induce oxidative stress to accelerate cellular 
senescence [62]. Finally, Cd has been shown to have the 
ability to interfere with the DNA repair system and can 
affect the stability of excision and mismatch repair sys-
tems [63].

Our research has several limitations. First, due to the 
cross-sectional study’s design, we were unable to estab-
lish a causal association between Cd exposure and bio-
logical aging. Furthermore, the variables related with 
biological aging are too complicated for us to account 
for all potential confounding factors, such as medication 
usage and food recall, which may significantly influence 
the results. Despite these shortcomings, our study pro-
vides a number of advantages. The current study is the 
first to investigate the association between Cd exposure 
levels and whole-body aging. In addition, a large repre-
sentative sample size was included in this study, which 
allowed us to stratify the analysis across multiple vari-
ables and reduce the error in the results of the subgroup 
analysis.

Conclusion
Cd exposure is positively associated with whole-body 
aging (phenotypic age). In addition, U-Cd mediated a 
positive association between smoking and whole-body 
aging. These results suggest that phenotypic age may 
be used as a risk assessment tool to identify individuals 
who are at high risk of developing health problems due to 
smoking or cadmium exposure.
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