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Abstract 

Background Internet gaming disorder (IGD) is receiving increasing attention owing to its effects on daily living and 
psychological function.

Methods In this study, electroencephalography was used to compare neural activity triggered by repeated presen-
tation of a stimulus in healthy controls (HCs) and those with IGD. A total of 42 adult men were categorized into two 
groups (IGD, n = 21) based on Y-IAT-K scores. Participants were required to watch repeated presentations of video 
games while wearing a head-mounted display, and the delta (D), theta (T), alpha (A), beta (B), and gamma (G) activi-
ties in the prefrontal (PF), central (C), and parieto-occipital (PO) regions were analyzed.

Results The IGD group exhibited higher absolute powers of  DC,  DPO,  TC,  TPO,  BC, and  BPO than HCs. Among the IGD 
classification models, a neural network achieves the highest average accuracy of 93% (5-fold cross validation) and 
84% (test).

Conclusions These findings may significantly contribute to a more comprehensive understanding of the neurologi-
cal features associated with IGD and provide potential neurological markers that can be used to distinguish between 
individuals with IGD and HCs.

Keywords Internet gaming disorder, Electroencephalography, Repetitive stimulations, Behavior addiction, Craving, 
Resting-state

Background
Internet gaming disorder (IGD) is generally defined as 
problematic and compulsive use of internet gaming, lead-
ing to significant impairment in social, educational, and/
or occupational activities. IGD has emerged as a social 
problem in adolescents and young adults because of its 
high prevalence and various possible comorbidities [1, 
2]. Additionally, IGD was included in Section III of the 
Diagnostic and Statistical Manual of Mental Disorders 
(DSM-5) and has been classified as a tentative disorder, 
warranting further research, and is fully recognized as 
an independent clinical disorder [3]. In 2019, gaming 

*Correspondence:
Laehyun Kim
laehyunk@kist.re.kr; dochiss@hanyang.ac.kr
1 Industry-Academy Cooperation Team, Hanyang University, 222, 
Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea
2 Center for Bionics, Korea Institute of Science and Technology, 5, 
Hwarang-ro 14-gil Seongbuk-gu, Seoul 02792, South Korea
3 Applied AI Research Lab, LG AI Research, 128, Yeoui-daero, 
Yeongdeungpo-gu, Seoul 07796, South Korea
4 Department of HY-KIST Bio-convergence, Hanyang University, 222, 
Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12889-023-15750-4&domain=pdf


Page 2 of 18Park et al. BMC Public Health          (2023) 23:816 

disorder (GD) was defined as a mental illness according 
to the 11th revision of the World Health Organization’s 
International Classification of Diseases (ICD-11) [4]. 
Furthermore, IGD was classified as being most similar 
to pathological gambling (or “gambling disorder”) by the 
DSM-5 and was defined as including the following nine 
criteria [5, 6]: (1) preoccupation with internet games (IG); 
(2) withdrawal symptoms from IG; (3) tolerance of and 
increasing engagement in IG; (4) unsuccessful attempts 
to stop or reduce IG; (5) loss of interest in other hob-
bies or activities; (6) gameplay (e.g. binge and continuous 
excessive gaming); (7) deception regarding the amount of 
time spent engaged in IG; (8) escape or relief from a neg-
ative mood; and (9) jeopardized or lost relationship, job, 
educational or career opportunity. Other studies have 
defined IGD as engaging in IG for over 14 hours per week 
for a minimum of one year [7] and reported IG as a major 
online activity [8].

Internet gaming is a popular and enjoyable activity. 
However, IGD has received increasing attention because 
of its negative effects on job and academic performance, 
normal daily life, and social and psychological function-
ing [3, 9]. Furthermore, IGD is known to be strongly 
associated with various comorbid psychological states, 
such as depressed mood [10] and anxiety [10, 11], psy-
chiatric disorders [12], attention deficit hyperactivity 
disorder [10, 11], and obsessive-compulsive disorder 
[10, 13]. Based on 37 cross-sectional studies, IGD is a 
serious issue worldwide, with a 1.4% prevalence in Nor-
way (among 16–74-year-olds), 1.6% in seven European 
countries (14–17-year-olds), 4.3% in Hungary (among 
15–16-year-olds), 5.5% in Germany (among 13–20-year-
olds), 8.5% in the United States (among 8–18-year-olds), 
17% in Iran (14–15-year-olds) [14], and 5.9% in South 
Korea (among 14–15-year-olds) [15]. Evidently, IGD is 
not a problem confined to individuals but a grave social 
issue that threatens society. Therefore, research dedi-
cated to relieving this condition is required.

First, an accurate and robust method for measuring 
symptoms in individuals with IGD should be developed; 
however, the lack of consistency in screening tools is a 
major issue in this field [16]. Consequently, several stud-
ies have tried to measure IGD characteristics using self-
reporting, behavioral responses, physiological responses, 
and brain function tests, as follows. (1) Several studies 
have proposed that a GD (or addiction) can be measured 
by self-reporting using the internet addiction test (IAT) 
[17], internet-related problem questionnaire [18], 7-item 
game addiction scale [19], and the video game addic-
tion test [20]. (2) Research into behavioral responses 
has found that individuals with IGD exhibit a decreased 
eye blinking rate and saccadic movement [21] and an 
increased number of regressions in eye movement [22]. 

(3) Some studies have shown that IGD is associated 
with physiological responses such as skin conductance 
responses [23], respiratory rate changes [21], reduction 
in the standard deviation of normal-to-normal inter-
vals [21] and high frequency of HRV [22, 24, 25]. (4) 
Other studies have identified the IGD phenomenon in 
electroencephalogram (EEG) oscillations, brain activ-
ity, event-related potentials (ERPs), and activity in func-
tional magnetic resonance imaging (fMRI). Participants 
with IGD show increasing delta and theta powers in the 
frontal area [23] and decreasing beta and gamma bands 
in the frontal and parietal lobes [26, 27]. In addition, the 
left and right dorsolateral prefrontal cortex (DLPFC), 
superior parietal lobe, and paralimbic and orbital frontal 
lobes are negatively associated with response inhibition 
performance in individuals with IGD [28, 29]. However, 
positive correlations have been observed in the activity 
of the prefrontal cortex, anterior cingulate cortex, inter-
hemispheric insula connectivity, right inferior temporal 
cortex, primary somatosensory cortex, inferior parietal 
lobule, middle occipital gyrus, and bilateral DLPFC [28, 
30, 31]. In an ERP study associated with inhibition func-
tion, participants with IGD showed that N2 latency at the 
central [32] and P3 latency at the midline centro-parietal 
areas [33] were delayed. The N2 amplitude in the frontal 
area [32] and late positive potential (LPP) in the centro-
parietal area [21] increased, and P3 amplitudes at the 
midline centro-parietal [33–35] and N1 amplitudes in the 
midline fronto-central regions [35] decreased compared 
with those in healthy controls (HCs). In fMRI studies, 
participants with IGD showed higher levels of activation 
in the lateral and prefrontal cortex, posterior cingulate 
cortex, right medial orbitofrontal cortex, bilateral sup-
plementary motor area, superior frontal gyrus, inferior 
frontal gyrus, precentral gyrus, temporal gyrus, left post-
central gyrus, striatum, precuneus, putamen, pallidum, 
left anterior cingulate (ACC), and left caudate than those 
in the HCs group, which was related to craving experi-
ence, risk-evaluation network, goal-directed behavior, 
default mode network, cognitive control network, and 
executive functions [29, 36–40]. These studies used stim-
uli or tasks to measure the responses of the IGD group, 
including the resting state [9, 25, 27, 33, 37, 41], playing 
online or video games [22, 24], watching online gameplay 
videos or images [36], viewing game videos or images 
[28, 30, 42, 43], Go/No-Go task [32, 38], cue reactivity 
task [21, 29], probability discounting task [38], oddball 
task [33–35], and Stroop task [31, 39].

Several previous studies have investigated the cortical 
activity associated with IGD to help diagnose, prevent, 
or treat the condition. However, these studies mainly 
attempted to confirm activation of the cortex in IGD 
based on non-repeated stimuli, including playing games 
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and viewing game videos or images. However, they did 
not examine the physiological responses to repeated 
stimuli. Some researchers contend that exposure to 
repeatedly presented stimuli over a short or long period 
may lower the thresholds of the visual sensory system, 
partly because of habituation effects [44–46]. However, 
the psychophysiological responses caused by repetitive 
stimuli should be investigated when examining the EEG 
correlates of specific diseases such as unconscious addic-
tion symptoms. Such addiction symptoms may arise from 
long-term exposure to visual or auditory stimulation 
via both conscious and unconscious pathways. Synaptic 
actions are activated by trains of neural impulses, and 
subtle but reliable changes can be observed at the cortical 
level. Repeated stimulation more reliably produces strong 
cortical activity than single stimulation in which informa-
tion is processed simultaneously along both conscious 
and unconscious pathways. In addition, dual processing 
in the cognitive control system reflects habituation and 
sensitization. Salient stimuli elicit both processes, and 
electrophysiological outputs reflect the summation of 
these processes. It has also been reported that cumulative 
physiological responses to repeatedly presented stim-
uli do not decrease in participants but rather increase 
[45, 47]. The tendency toward habituation responses is 
related to the presence of numerous identical repetitions, 
whereas sensitization responses present progressively 
stronger activation in response to repeated stimuli [48]. 
We considered that physiological responses to repeated 
stimuli in individuals with IGD might differ significantly 
from those in HCs because disorders or addictions are 
affected by differential habituation and sensitization 
between HCs and IGD groups in response to repeated or 
prolonged presentation of a stimulus [49, 50]. Thus, we 
investigated the EEG correlates of IGD using repeatedly 
presented stimuli, which can induce more robust cortical 
activity in IGD groups than in previous methods.

There are many previous studies on IGD based on rest-
ing state EEG [9, 25, 27, 34, 37, 41]; however, there are 
few studies regarding its use for IGD measurement or 
other practical uses in this context. Quantitative meas-
urement of IGD can have positive effects. Accordingly, 
this study aims to classify participants into HCs and IGD 
groups by conducting various machine-learning algo-
rithms. In order to better distinguish them, we deter-
mined the effect of repeated presentation of a stimulus 
(gameplay video) on HCs and IGD groups, based on their 
EEG responses. The hypothesis was as follows: view-
ing gameplay video could induce different neural activi-
ties in individuals from the HCs and the IGD group. As 
previously mentioned, these activities can be correlated 
to habituation and sensitization. In this study, we deter-
mined the spectral power as features of resting state EEG. 

We also hypothesized that the whole brain area and all 
frequency bands were subject to analysis because many 
previous studies on resting state EEG have reported dif-
ferences in several frequency bands on various areas. The 
whole brain was divided into three areas: prefrontal, cen-
tral, and parieto-occipital. The frequency bands included 
delta, theta, alpha, beta, and gamma bands.

Methods
Participants
Sixty-two male adolescents ranging in age from 14 to 
22 years (mean age, 19.31 ± 2.51 years) were recruited 
for this study. Internet-related disorder has emerged 
as a social problem in male adolescents, who tend to 
invest more time playing games than their female peers 
[51–53]. Therefore, only male adolescents were included 
in this study. They were required to respond to ques-
tionnaire items that measured IGD symptoms using 
the Korean version of Young’s Internet Addiction Test 
(IAT) [54], a translated and validated Korean version of 
the Internet Addiction Test (Y-IAT-K). According to the 
Y-IAT-K, 42 participants were assigned to two groups, 
as follows: (1) 21 HCs, ranging in age from 15 to 22 years 
(mean age, 19.65 ± 2.58 years), with a score of 40 or less 
and (2) 21 participants with IGD, ranging in age from 14 
to 22 years (mean age, 18.80 ± 2.33 years), with a score 
of 60 or above. Twenty participants who did not meet 
the inclusion criteria (Y-IAT-K score of 41–59) were 
excluded from this study. We used the independent sam-
ple t-test to confirm that there were no demographic dif-
ferences in terms of age between the two groups (t [39] = 
− 0.936, p = 0.355). We investigated the average gameplay 
hours per day for 1 week before the experiment in all par-
ticipants (HCs: 1.02 ± 1.46, IGD: 5.52 ± 2.95). Two-way 
analyses of variance (ANOVA) was applied in this study 
and required a sample size of 40 based on G*power cal-
culations (ANOVA: Repeated measures, between factors; 
effect size f = 0.40, α = 0.05, 1 − β = 0.80, number of group: 
2, number of measurements: 2, corr among rep measures: 
0.5). This study satisfied the sample size criteria with 84 
samples (pre- vs. post-resting state [within-participant 
factors], 42 samples; IGD group vs. HCs [between-partic-
ipants factors], 42 samples).

Participation was voluntary, and participants were 
paid US$ 53.07. All participants were right-handed and 
had no family or medical history of central nervous sys-
tem disease. By self-reported questionnaire including 
asking “Do you have any psychiatric disorder, including 
other addiction?”, we screened other psychiatric disor-
ders out, such as anxiety, attention deficit hyperactivity 
disorder (ADHD), obsessive-compulsive disorder, or sub-
stance/behavioral addictions. Especially, we tested their 
rate of anxiety, ADHD, depression, impulsiveness, and 
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aggression by the Korean-Beck Anxiety Inventory, Con-
ners-Wells’ Adolescent Self-Report Scale or Conners 
Adult ADHD Rating Scales-Self Report, Korean-Beck 
Depression Inventory-II, Barratt Impulsiveness Scale 
version 11, Aggression Questionnaire-Korean version, 
respectively. Finally, HCs had no psychiatric disorder and 
IGD group also had only IGD. The HCs had previously 
experienced the games used in this study at least once 
but did not enjoy the game. The IGD group preferred the 
games used in this study and enjoyed playing them. They 
were required to abstain from game-play, alcohol, smok-
ing, and caffeine for at least 24 hours before the experi-
ment and sleep according to their normal schedule. Each 
participant was informed of the experimental procedure 
(but not of the research purpose) before providing writ-
ten informed consent. The experiments were conducted 
in accordance with the Declaration of Helsinki, and all 
protocols in this study were approved by the institutional 
review board.

Stimuli and experimental procedure
Game videos were used in this study to increase the crav-
ing experience for internet gaming. The steps for select-
ing the stimuli are shown in Fig. 1 and described below. 
(1) First, as stimuli, we selected three top-ranking games 

from the best online games in 2017 based on online 
game ranking in Korea (Naver Inc., Korea), including 
the League of Legends (Riot Games Inc., USA), Sudden 
Attack (Nexon Inc., Korea), and FIFA Online 3 (Elec-
tronic Arts Inc., USA). We collected 72 video sources of 
game highlights and fantastic play scenes with numer-
ous hits. (2) We also amassed 72 neutral emotion vid-
eos associated with natural landscapes from an internet 
survey to recover the response to the game stimulus pre-
sented above. (3) Game and neutral stimuli were used 
to survey their suitability, based on subjective ratings 
(5-point scale), of 30 male adolescents (19.63 ± 2.33 years) 
for craving and relaxation experience, respectively. Fol-
lowing the subjective ratings, 72 stimuli (36 games and 
36 neutral videos) were selected based on their high 
craving and relaxation scores, as shown in Fig. 1. Subse-
quently, we recruited participants who enjoyed the game 
used in the experiment and excluded those who mainly 
enjoyed other games. Therefore, before the experiment, 
the participants were controlled such that there was no 
difference in their familiarity with the videos. The videos 
selected for this study are available at https:// youtu. be/ 
5JL3D VmXaJk.

Figure  2 illustrates the experimental procedure and 
environment. The participants watched the video 

Fig. 1 a Procedure for stimuli selection. b Examples of still images from the game (top; FIFA Online 3, Sudden Attack, and League of Legends) and 
neutral (bottom) videos

https://youtu.be/5JL3DVmXaJk
https://youtu.be/5JL3DVmXaJk
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stimuli using head-mounted display virtual reality 
(VR) devices (Oculus Rift S, Oculus VR Inc., USA) to 
increase their engagement with the content while sit-
ting on a comfortable chair. Thus, we tested the data 
in all channels using a simple test before the experi-
ment. No abnormalities in the EEG signals have been 
reported. The experiment consisted of watching neu-
tral and game videos for 25 s each and resting for 5 s 
between viewing each stimulus image (one trial). After 
viewing the game video in each trial, the participants 
were required to respond to their craving experience 
(5-point scale) to play a game. In this experiment, 36 
gameplay videos (three types of games × 12 examples) 
and 36 neutral videos were used. We applied coun-
terbalancing to the game types. As there were 12 dif-
ferent videos for each game type, the videos could be 
arranged randomly such that runs of the same type 
did not occur. In addition, 36 neutral videos were ran-
domly selected. Each trial consisted of watching one 
neutral video and one video game. The various stimu-
lus sets consisted of 36 trials organized in this man-
ner. Finally, we randomly selected one of the stimulus 
sets to use with a given participant. The trial intervals 
lasted 10 s, and the pre- and post-resting states were 
in a relaxed environment for 5 min each before and 
after the experiment. EEG signals were measured dur-
ing the experiment. As this study aimed to investigate 
the effect of the habituation process by repeated pres-
entation of a stimulus on the HCs and IGD groups, 
EEG activity was analyzed in the pre- and post-resting 
states for 5 min each. Spectral EEG activity (i.e., power 
ratio) in the post-resting state was compared to sub-
tle changes recorded in the pre-resting state. EEG data 
recorded during observation of gaming and neutral 
videos were not included in the data analysis.

Data acquisition and signals processing
The EEG data were recorded at a sampling rate of 
2048 Hz from 64 channels mounted on an EEG electrode 
cap (Active-two, BioSemi S.V., Amsterdam, Netherlands) 
arranged in the international 10–20 montage, and the 
ground and reference electrodes were replaced by the 
common mode sense (CMS)/driven right leg (DRL), 
which is specific to BioSemi systems (cf. http:// www. 
biose mi. com/ faq/ cms& drl. htm for further information). 
To analyze the EEG signals, they were downsampled to 
512 Hz and re-referenced using a common average ref-
erencing (CAR) procedure. CAR was calculated by sub-
tracting each channel from the average potential over all 
channels at each time step. This is also known as remov-
ing the global background activity and maintaining the 
activity from local sources beneath the electrodes [55], 
whereas other resting-state EEG studies have applied 
the CAR procedure [56]. The EEG signals were then pro-
cessed using a band-pass filter (Butterworth type of order 
six) of 0.5–55 Hz. However, because EEG channels can 
be contaminated by noise such as ocular and muscular 
artifacts, these artifacts were removed from the EEG sig-
nals using artifact subspace reconstruction [57]. Among 
the total 5 min pre- and post-resting state data, we used 
only the first part, 2 min data for calculating power spec-
tral density (PSD). The PSD was analyzed using Welch’s 
method and the parameters were as follow: window size, 
5 seconds; window overlap size, 1 seconds; frequency res-
olution, 0.2 Hz. The EEG spectrum was divided accord-
ing to the frequency band into the following ranges: delta 
(D) 1–4 Hz, theta (T) 4–8 Hz, alpha (A) 8–13 Hz, beta 
(B) 13–30 Hz, and gamma (G) 30–50 Hz [58, 59]. Brain 
regions in this study were defined as the prefrontal  (FP1, 
 FPZ,  FP2, and  AFZ), central  (C3,  C1,  CZ,  C2, and  C4), and 
parieto-occipital areas  (PO3,  POZ,  PO4, and  OZ), and the 

Fig. 2 Experimental procedure (left) and environment (right)

http://www.biosemi.com/faq/cms&drl.htm
http://www.biosemi.com/faq/cms&drl.htm
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absolute powers from the averaged signals in each brain 
region were extracted. The EEG signals were measured 
before, during, and after stimulus presentation. However, 
the EEG data recorded during the observation of game 
and neutral videos were not included in the data analysis 
because this study aimed to investigate subtle changes in 
EEG activity between the pre- and post-resting states in 
the  HCS and IGD groups. All signal processing and data 
analyses were performed using EEGLAB, a toolbox in 
MATLAB Mathworks Inc., Natick, MA, USA).

Statistical analysis
This study was designed to compare changes in corti-
cal activity between the pre- and post-resting states 
(within-participants factor) between the IGD and  HCS 
groups (between-participants factor). Next, ANOVA 
was performed to investigate group-by-time interaction 
effects and each main effect on the EEG spectral power. 
Comparisons of subjective ratings (i.e., craving scores) 
between the  HCS and IGD groups were performed using 
the Mann–Whitney U test with a smaller sample size. To 
confirm practical significance, the effect size was calcu-
lated based on a two-way ANOVA (partial eta-squared, 
ƞp2) and Mann–Whitney U test (r). The standard par-
tial eta-squared (ƞp2) values of 0.01, 0.06, and 0.14 for 
effect size are generally regarded as small, medium, and 
large, respectively [60]. In the case of non-parametric 
tests (absolute value of r), standard values of 0.10, 0.30, 
and 0.50 for effect size are generally considered small, 
medium, and large, respectively [61]. The expected 
effect size as a partial eta-squared value (ƞp2) was 0.087 
(α = 0.05, 1 – β = 0.80, and total sample size = 84), as cal-
culated by G*power software. To correct inflated type I 
errors caused by multiple comparisons, statistical signifi-
cance was adjusted using the Benjamini–Hochberg (BH) 
false discovery rate (FDR) correction [62]. BH correction 
controls p-values more effectively than the traditional 
Bonferroni correction [62]. Additionally, the BH correc-
tion has been applied in many neurophysiological stud-
ies to handle the increasing rate of type I errors caused 
by multiple null hypothesis testing in a statistically valid 
manner [63]. In this study, the alpha level of 0.05 was 
used as the FDR criterion. As shown in the Results sec-
tion, the p-value for the prefrontal theta was the highest 
p-value smaller than the critical value (0.0228 < 0.0233). 
All values above this value (i.e. those with lower p-val-
ues) were considered significant. Therefore, the adjusted 
alpha level was 0.0228 after BH. Thus, we conducted a 
correlation analysis between significant EEG features, 
the Y-IAT-K, and craving scores using Spearman’s rank 
correlation. All statistical analyses were conducted using 
IBM SPSS Statistics 21.0, for Windows (SPSS Inc., Chi-
cago, IL, USA).

Classification
To determine the best classification algorithm for our 
features, we used three basic machine learning algo-
rithms: Discriminant Analysis (DA), Support Vector 
Machine (SVM), and Neural Network (NN) [64–67]. To 
train the above classifiers, the Classification Learner App 
from the MATLAB toolbox (2022b, Mathworks Inc.) 
was used. We obtained the parameters for each classifier 
using the hyperparameter optimizer in the classification 
learner application. The optimization options included: 
optimizer, Bayesian optimization; acquisition function, 
expected improvement per second plus; iterations, 100; 
and training time limit, no. The classifiers were validated 
5-fold cross-validation with cross-validated portion 
including shuffled samples and tested with tested por-
tion 0.3. We trained the above classifiers with optimized 
parameters. In this study, the number of features for clas-
sifiers were 15. And the number for total samples were 
168 by augmenting samples. Total samples were ran-
domly allocated to training, validation and test by using 
‘cvpartition’ function with hold out option (0.3) and kfold 
option (5-fold). Of these samples, 120 were allocated 
to training and validation, while the remaining 48 were 
designated as test samples. Sample augmentation was 
conducted by dividing 5-minute data into 2-minute seg-
mentation was conducted by dividing 5-minute data into 
2-minute segments with 50% overlap, and ensuring that 
the training, validation, and test samples did not include 
data from the same subjects. Validation accuracy was cal-
culated as the average accuracy for 5-fold cross-validated 
data, while test accuracy was determined as the average 
accuracy for test data on each fold. We also reported the 
area under the curve (AUC) of the ROC curve to repre-
sent its performance. Here, AUC is the area under the 
ROC curve (X-axis: 1 − specificity, Y-axis: sensitivity). 
The AUC value lies between 0 and 1, where 0 denotes a 
bad classifier and 1 denotes an excellent classifier [68].

Results
Craving scores
The Mann–Whitney U test demonstrated that the sub-
jective rating for craving experience (mean of 36 trials) 
was significantly higher in the IGD group than in the  HCS 
(3.76 ± 0.84 vs. 1.99 ± 0.54; U = 24.00, p < 0.001, r = 0.78, 
with a large effect size). In all trials, craving scores tended 
to be maintained without any significant differences, 
whereas both groups experienced repetitive game stim-
uli. The craving scores of the IGD group were higher than 
those of the  HCS group (Fig. 3).

EEG activity
In this study, the EEG features in the brain area were 
defined by the following abbreviations: (1) delta, theta, 
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alpha, beta, and gamma power in the prefrontal region: 
 DPF,  TPF,  APF,  BPF, and  GPF, respectively. (2) Delta, theta, 
alpha, beta, and gamma powers in the central region: 
 DC,  TC,  AC,  BC, and  GC, respectively. (3) Delta, theta, 
alpha, beta, and gamma powers in the parieto-occip-
ital region:  DPO,  TPO,  APO,  BPO, and  GPO. A two-way 
ANOVA was used for the entire EEG data set based on 
the results of the Shapiro–Wilk normality test (p > 0.05). 
Two-way ANOVA for delta power in the prefrontal, cen-
tral, and parieto-occipital regions revealed a significant 
main effect of the group in  DC  (F1, 38 = 7.711, p = 0.007, 
ƞp2 = 0.089) and  DPO regions  (F1, 38 = 7.031, p = 0.010, 
ƞp2 = 0.082), whereas  DPF showed no significant differ-
ence  (F1, 38 = 4.079, p = 0.049). The main effects of time on 
 DPF  (F1, 38 = 0.112, p = 0.739),  DC  (F1, 38 = 0.472, p = 0.494), 
and  DPO  (F1, 38 = 0.000, p = 0.988) were not significant. No 
significant group × time interaction was identified. In the 
post-hoc analysis for main effect of group, an independ-
ent samples t-test revealed that delta power in the IGD 
group was significantly larger than that in the HCs group 
in central (t [39] = − 2.777, p = 0.007) and parieto-occipi-
tal regions (t [39] = − 2.695, p = 0.009), as shown in Fig. 4.

Two-way ANOVA for theta power in the prefrontal, 
central, and parieto-occipital regions revealed a sig-
nificant main effect of the group in  TC  (F1, 38 = 5.506, 
p = 0.021, ƞp2 = 0.065) and  TPO regions  (F1, 38 = 10.153, 
p = 0.002, ƞp2 = 0.114), whereas  TPF showed no signifi-
cant difference  (F1, 38 = 5.085, p = 0.027, ƞp2 = 0.060). 
The main effects of time on  TPF  (F1, 38 = 1.246, 
p = 0.268),  TC  (F1, 38 = 0.021, p = 0.885), and  TPO  (F1, 

38 = 0.565, p = 0.455) were not significant. No significant 
group × time interaction was observed. In the post-hoc 
analysis for main effect of group, an independent sam-
ples t-test revealed that theta power in the IGD group 
was significantly larger than that in the HCs group in 
central (t [39] = − 2.415, p = 0.019) and parieto-occip-
ital regions (t [39] = − 3.184, p = 0.002), as shown in 
Fig. 5.

Two-way ANOVA for alpha power in the prefrontal, 
central, and parieto-occipital regions revealed no signifi-
cant results for the main effects of the group in  AFP  (F1, 

38 = 3.698, p = 0.058),  AC  (F1, 38 = 3.151, p = 0.080),  APO 
 (F1, 38 = 4.226, p = 0.043), or time in  AFP  (F1, 38 = 0.592, 
p = 0.444),  AC  (F1, 38 = 0.152, p = 0.698), and  APO  (F1, 

38 = 1.345, p = 0.250). In addition, no significant group × 
time interaction was found, as shown in Fig. 6.

Two-way ANOVA for beta power in the prefrontal, cen-
tral, and parieto-occipital regions revealed a significant 
main effect of the group in  BC  (F1, 38 = 5.768, p = 0.019, 
ƞp2 = 0.068) and  BPO regions  (F1, 38 = 10.272, p = 0.002, 
ƞp2 = 0.115), but  BPF showed no significant results  (F1, 

38 = 0.034, p = 0.854). The main effects of time on  BPF  (F1, 

38 = 0.017, p = 0.897),  BC  (F1, 38 = 0.483, p = 0.489), and  BPO 
 (F1, 38 = 0.051, p = 0.822) were not significant. No signifi-
cant group × time interaction was found. In the post-hoc 
analysis for main effect of group, an independent samples 
t-test revealed that beta power in the IGD group was sig-
nificantly larger than that in the HCs group in central (t 
[39] = − 2.480, p = 0.016) and parieto-occipital regions (t 
[39] = − 3.249, p = 0.002), as shown in Fig. 7.

Fig. 3 Results of subjective ratings for craving experience (mean and scores from 36 trials) in the healthy controls (HCs) and internet gaming 
disorder (IGD) groups (*** p < 0.001)
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Two-way ANOVA for gamma power in the prefrontal, 
central, and parieto-occipital regions revealed no signifi-
cant results for the main effect of the group in  GFP  (F1, 

38 = 0.378, p = 0.540),  GC  (F1, 38 = 0.667, p = 0.417), and 
 GPO  (F1, 38 = 4.151, p = 0.045) or time in  GFP  (F1, 38 = 0.010, 
p = 0.922),  GC  (F1, 38 = 0.639, p = 0.427), and  GPO  (F1, 

38 = 0.578, p = 0.450). No significant group × time interac-
tion was found, as shown in Fig.  8. The detailed results 
are shown in Table 1.

Classification
Feature design
In this study, we compared EEG power between the  HCS 
and IGD groups. We calculated and used “Power dif-
ference” as a feature for classification to clarify the dif-
ferences between EEG power in the post-resting and 

pre-resting states as post-resting EEG after undergoing 
the experimental protocol affected HC and IGD differ-
ently and each participant had different pre-resting state 
EEG.

The following features were used for classification: 
power ratio for all frequency bands over the entire brain 
area (15 features).

Performance
As shown in Table 2, we classified participants to distin-
guish between the  HCS and IGD groups. According to 
the three classifiers (DA, SVM, and NN), we achieved 
the following respective values for accuracy (0.87, 0.86, 

Power difference =Post EEG power (dB)

− Pre EEG power (dB)

Fig. 4 Comparisons of averaged delta power in prefrontal, central, and parieto-occipital regions between healthy control (HC) and internet gaming 
disorder (IGD) groups in both pre- and post-resting states. a Results of two-way ANOVA. b Electroencephalogram (EEG) topography in the delta 
band (1–4 Hz) in pre- and post-resting states
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and 0.93), sensitivity (0.85, 0.89, and 0.96), specificity 
(0.89, 0.85, and 0.91), and AUC (0.90, 0.89, and 0.94) on 
5-fold cross validation. On test data, the performance 
was respectively accuracy (0.73, 0.75, and 0.84), sensitiv-
ity (0.76, 0.77, and 0.82), specificity (0.73, 0.73, and 0.87), 
and AUC (0.80, 0.85, and 0.89). The ROC curves for three 
classification methods are shown in Fig. 9.

Discussion and conclusion
The primary aim of this study was to determine the 
electrophysiological features of individuals with IGD by 
comparing the EEG activity of the  HCS and IGD groups 
during the repeated presentation of a stimulus (game 
video). Participants were assigned to the  HCS and IGD 
groups based on their Y-IAT-K scores, and their craving 
scores for gaming were measured while performing the 
task. The subjective ratings for craving scores in the HCs 

and IGD groups indicated that participants in the IGD 
group experienced cravings for gaming, whereas those in 
the HCs group did not. We confirmed the results of the 
subjective rating of the craving experienced by classifying 
the two groups according to significant differences. EEG 
features showed significant differences between the IGD 
and HCs groups. Because these features were significant 
on two-way ANOVA on group effect, they could distin-
guish between the HCs and IGD groups, as well. Among 
the algorithms used to classify the participants into 
IGD and HCs groups, the NN algorithm demonstrated 
the highest average recognition accuracy of 93% (5-fold 
cross-validation) and 84% (test). Hence, NN was found to 
be the most suitable classifier for the IGD group.

The IGD group showed higher absolute powers of 
 DC,  DPO,  TC,  TPO,  BC, and  BPO than the HCs group after 
repeated presentations of the game stimuli. A two-way 

Fig. 5 Comparisons of averaged theta power in prefrontal, central, and parieto-occipital regions between healthy control (HCs) and internet 
gaming disorder (IGD) groups in both pre- and post-resting states. a Results of two-way ANOVA. b Electroencephalogram (EEG) topography in the 
theta band (4–8 Hz) in pre- and post-resting states
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ANOVA revealed that there was no statistically signifi-
cant interaction between the effects of group and time. 
The main effects of the group showed a significant dif-
ference, but time was not significant. These results can 
be interpreted to mean that the group did have a statis-
tically significant effect on absolute powers of  DC,  DPO, 
 TC,  TPO,  BC, and  BPO. Previous studies have reported 
that patients with addictive disorders exhibit flow expe-
riences with feelings of enjoyment arising from deep 
immersion (high-level attention) [69], dysfunction of 
behavioral inhibition in the prefrontal areas [21, 33–35]; 
and activation of the reward circuit (impaired executive 
control) [23, 41, 70, 71]. The present findings indicate a 
significant difference in delta, theta, and beta powers 
between the IGD and HCs groups, which is associated 
with a high-level attention state, based on previous study 
results. Delta, theta, and beta oscillations are strongly 

related to many cognitive processes including atten-
tion, memory operations, decision-making and action 
control, memory recognition, and mental workload in 
the frontal, central, temporal, and parietal regions [23, 
72–74]. In addition, changes in delta and beta activities 
are associated with behavioral inhibition [75, 76] and 
reward networks [77, 78], respectively. Thus, the changes 
in delta, theta, and beta powers found in this study can 
be interpreted as being strongly related to flow experi-
ence, dysfunction of behavioral inhibition, and activation 
of the reward circuit. Our results provide evidence that 
supports the potential use of changes in delta, theta, and 
beta powers as electrophysiological features of the traits 
investigated in this study, which is consistent with find-
ings from previous studies on patients with addictive dis-
orders as follows: (1) delta, theta [79], and beta powers 
[79, 80] are increased in gambling disorders; (2) delta [81, 

Fig. 6 Comparisons of averaged alpha power in prefrontal, central, and parieto-occipital regions between healthy control  (HC) and internet gaming 
disorder (IGD) groups in both pre- and post-resting states. a Results of two-way ANOVA. b Electroencephalogram (EEG) topography in the alpha 
band (8–13 Hz) in pre- and post-resting states
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82], theta [81], and beta powers [81, 83] are increased in 
alcohol use disorders; (3) delta, theta [84], and beta pow-
ers [85] are increased in food disorders; (4) beta [86] 
power is increased in smokers; and (5) theta [87] power is 
increased in cocaine users.

As mentioned above, because delta and theta powers 
are strongly related to cognitive processes and behavioral 
inhibition, HCs can be interpreted as having a low atten-
tion level and normal function for behavioral inhibition 
caused by the repeated presentation of game stimuli. In 
addition, theta oscillations are likely generated in the 
ACC and subcortical limbic structures such as the hip-
pocampus [88, 89], and decreasing theta oscillations are 
associated with low cognitive control [90, 91]. Moreover, 
decreasing delta oscillations have been reported to be 
related to mental workload [92, 93]. Thus, the low inter-
est (attention) in the stimuli and high mental workload 

of the participants in the HCs group indicated that they 
found repeated presentations of game videos boring and 
mental stress. The difference between the two groups was 
related to the degree of interest in the game; therefore, 
the EEG response to repeated presentation stimuli may 
be used as an electrophysiological feature to distinguish 
between the IGD and HCs groups.

Several previous studies related to pure resting-state 
EEG have reported that subjects suffering from IGD 
reveal increasing delta and theta powers in the fron-
tal area [23] and decreasing beta and gamma bands in 
the frontal and parietal lobes [26, 27]. This is inconsist-
ent with the findings of our study. The results of pure 
resting-state EEG may be different from our findings 
because disorders or addictions are affected by differen-
tial habituation and sensitization between IGD and HCs 
groups from repeated or prolonged presentation of a 

Fig. 7 Comparisons of averaged beta power in prefrontal, central, and parieto-occipital regions between healthy control (HC) and internet gaming 
disorder (IGD) groups in both pre- and post-resting states. a Results of two-way ANOVA. b Electroencephalogram (EEG) topography in the beta 
band (13–30 Hz) for in pre- and post-resting states
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stimulus [49, 50]. This study used repeated or prolonged 
stimulus to induce a distinct difference in the resting-
state EEG between the IGD and HCs groups. Repeated 
stimulation can lead to different habituation or sen-
sitization processes depending on the person’s inter-
est in stimulation, further enhancing cortical activity. 
Repeated stimulus paradigms generate stronger cortical 
activity than does a single stimulus. Moreover, repeated 
stimuli cause cumulative physiological responses to 
increase [49, 50]. For example, since the HCs group had 
little or no interest in the game stimuli, the habitua-
tion process (i.e., boredom or disinterest) was induced. 
In contrast, the IGD group, which had a high interest 
in game stimuli, induced a sensitization process (i.e., 
craving). Previous studies related to brain activity have 
reported EEG responses in the pure resting state. (1) 
The beta power in the IGD group was higher than that 

in the HCs group [82]. (2) Patients with IGD showed 
increased resting-state EEG in slow-wave activity, such 
as delta and theta, compared with HCs [94]. The results 
of previous studies were inconsistent, but their findings 
on the delta, theta, and beta powers were consistent 
with the results of the present study. These results sug-
gest that cortical activity is enhanced by the repeated 
or prolonged presentation of a stimulus. Generally, 
strict protocols are more distinctive between individu-
als and reproducible compared to those without tasks 
(i.e., resting-state) [95]. This suggests that the method 
proposed here can better induce electrophysiological 
responses in IGD groups than that proposed in previ-
ous studies and helps in distinguishing IGD from HCs. 
As mentioned above, because delta and beta powers are 
strongly related to behavioral inhibition and the reward 
circuit, our results can be interpreted as maintaining 

Fig. 8 Comparisons of averaged gamma power in prefrontal, central, and parieto-occipital regions between healthy control (HC) and internet 
gaming disorder (IGD) groups in both pre- and post-resting states. a Results of two-way ANOVA. b Electroencephalogram (EEG) topography in the 
gamma band (30–50 Hz) in pre- and post-resting states
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Table 1 Summary table of two-way ANOVA. The findings confirmed statistical significance is bolded (p < 0.0228)

Source Type III Sum of 
Squares

df Mean Square F p Partial 
Eta 
Squared

Delta PF Group 81.632 1 81.632 4.079 0.047 0.049

Time 2.243 1 2.243 0.112 0.739 0.001

Group*Time 20.945 1 20.945 1.047 0.309 0.013

C Group 46.208 1 46.208 7.711 0.007 0.089
Time 2.827 1 2.827 0.472 0.494 0.006

Group*Time 2.711 1 2.711 0.452 0.503 0.006

PO Group 70.055 1 70.055 7.031 0.010 0.082
Time 0.002 1 0.002 0.000 0.988 0.000

Group*Time 4.752 1 4.752 0.477 0.492 0.006

Theta PF Group 45.574 1 45.574 5.085 0.027 0.060

Time 11.169 1 11.169 1.246 0.268 0.016

Group*Time 28.545 1 28.545 3.185 0.078 0.039

C Group 34.008 1 34.008 5.506 0.021 0.065
Time 0.130 1 0.130 0.021 0.885 0.000

Group*Time 1.845 1 1.845 0.299 0.586 0.004

PO Group 69.754 1 69.754 10.153 0.002 0.114
Time 3.879 1 3.879 0.565 0.455 0.007

Group*Time 3.499 1 3.499 0.509 0.478 0.006

Alpha PF Group 63.293 1 63.293 3.698 0.058 0.045

Time 10.127 1 10.127 0.592 0.444 0.007

Group*Time 7.551 1 7.551 0.441 0.508 0.006

C Group 49.393 1 49.393 3.151 0.080 0.038

Time 2.375 1 2.375 0.152 0.698 0.002

Group*Time 0.596 1 0.596 0.038 0.846 0.000

PO Group 79.619 1 79.619 4.226 0.043 0.051

Time 25.340 1 25.340 1.345 0.250 0.017

Group*Time 0.279 1 0.279 0.015 0.903 0.000

Beta PF Group 0.442 1 0.442 0.034 0.854 0.000

Time 0.217 1 0.217 0.017 0.897 0.000

Group*Time 11.301 1 11.301 0.871 0.354 0.011

C Group 34.335 1 34.335 5.768 0.019 0.068
Time 2.876 1 2.876 0.483 0.489 0.006

Group*Time 3.480 1 3.480 0.585 0.447 0.007

PO Group 39.389 1 39.389 10.272 0.002 0.115
Time 0.195 1 0.195 0.051 0.822 0.001

Group*Time 1.184 1 1.184 0.309 0.580 0.004

Gamma PF Group 10.650 1 10.650 0.378 0.540 0.005

Time 0.270 1 0.270 0.010 0.922 0.000

Group*Time 16.167 1 16.167 0.574 0.451 0.007

C Group 4.500 1 4.500 0.667 0.417 0.008

Time 4.310 1 4.310 0.639 0.427 0.008

Group*Time 22.043 1 22.043 3.267 0.074 0.040

PO Group 38.533 1 38.533 4.151 0.045 0.050

Time 5.362 1 5.362 0.578 0.450 0.007

Group*Time 5.559 1 5.559 0.599 0.441 0.008
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the dysfunction of behavioral inhibition in the prefron-
tal area and activation of the reward circuit, even after 
exposure to repeated stimuli.

In this study, we attempted to develop a quantita-
tive method for the measurement of IGD and provide 
evidence to confirm its suitability for this purpose. If 
a quantitative diagnosis can be developed, it can have 
positive effects, such as (1) providing feedback to doc-
tors or therapist to treat symptoms, (2) allowing thera-
peutic restrictions on playing games to be rationally 

based on IGD level (i.e., time spent playing the games), 
and (3) decreasing the development of IGD in high-risk 
groups by early measurement of IGD.

This study had several limitations. (1) Because addi-
tional groups were not considered in the experimental 
design of this study, the pattern of EEG features found 
in this study may be related to other behavioral addic-
tions as well. IGD is also associated with depressed 
mood, anxiety, psychiatric disorders, attention defi-
cit hyperactivity disorder, and obsessive-compulsive 

Table 2 Performance of different types of classifiers discriminated by healthy control (HC) and internet gaming disorder (IGD) groups

Permutation tests were conducted for all the classifiers under each condition (10,000 cycles). The results for all feature conditions were as follows: (1) DA: validation 
accuracy, 0.87; p < 0.01; (2) SVM: validation accuracy, 0.86; p < 0.01; and (3) NN: validation accuracy, 0.93; p < 0.01. Figure 10 shows the distribution of the permutation 
test

Validation Test

Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC 

Discriminant Analysis 0.87 ± 0.04 0.85 ± 0.05 0.89 ± 0.04 0.90 ± 0.03 0.73 ± 0.04 0.76 ± 0.06 0.73 ± 0.09 0.80 ± 0.06

Support Vector Machine 0.86 ± 0.05 0.89 ± 0.07 0.85 ± 0.10 0.89 ± 0.04 0.75 ± 0.05 0.77 ± 0.06 0.73 ± 0.05 0.85 ± 0.06

Neural Network 0.93 ± 0.06 0.96 ± 0.05 0.91 ± 0.06 0.94 ± 0.03 0.84 ± 0.09 0.82 ± 0.08 0.87 ± 0.12 0.89 ± 0.04

Fig. 9 Receiver operating characteristics curves for three classifiers on (a) 5-fold cross-validation and (b) Test

Fig. 10 The distribution for the three classifiers for the permutation test (p < 0.01). a Discriminant Analysis. b Support Vector Machine. c Neural 
Network
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disorder. The possible comorbidity of IGD with other 
mental disorders should be considered when deter-
mining electrophysiological features of IGD. Thus, 
it cannot be conclusively stated that the findings of 
this study can distinguish IGD from other addictions 
or mental diseases; our findings require confirmation 
through further research. (2) Only male participants 
were included in this study because male adolescents 
tend to invest more time in playing games than female 
participants [53, 96]. The occurrence of IGD is higher 
in men than in women; however, IGD is also often 
reported in women. Thus, female participants should 
be considered in future studies on IGD. (3) The experi-
ment was conducted based on a VR environment. 
None of the participants had any VR experience prior 
to the experiment. Therefore, this inter-participant 
difference from the VR-effect might be low. Although 
some participants could adapt to VR better than oth-
ers, Pöhlmann et  al. [97] reported that the discom-
fort from VR caused different effects such as illusion 
strength. This point is known to cause inter-partic-
ipant differences according to degree of discomfort 
[97]. Therefore, the feelings of the participant after the 
VR experiment should be considered. (4) We believe 
that repeated presentation stimuli can give rise to 
different processes of habituation or sensitization 
depending on the person’s interest in stimuli of gam-
ing and neutral video, further enhancing cortical activ-
ity. However, while watching both gaming and neutral 
video, it is possible that the person suffering from IGD 
is unknowingly also addicted to screen (TV, moni-
tor, or mobile) regardless of the content type being 
watched. To clarify this issue, it is essential to sepa-
rately compare pre- and post-resting state EEGs when 
neutral and gaming videos are being watched.
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