
Zeng et al. BMC Public Health          (2023) 23:726  
https://doi.org/10.1186/s12889-023-15641-8

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Public Health

Effects of high‑heeled shoes on lower 
extremity biomechanics and balance in females: 
a systematic review and meta‑analysis
Ziwei Zeng1, Yue Liu1, Xiaoyue Hu1, Pan Li1 and Lin Wang1*    

Abstract 

Background  High-heeled shoes (HHS) are widely worn by women in daily life. Limited quantitative studies have 
been conducted to investigate the biomechanical performance between wearing HHS and wearing flat shoes or 
barefoot. This study aimed to compare spatiotemporal parameters, kinematics, kinetics and muscle function during 
walking and balance between wearing HHS and flat shoes or barefoot.

Methods  According to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement, 
PubMed Medline, Cochrane, EMBASE, CINAHL Complete and Web of Science databases were searched from the 
earliest record to December 2021. A modified quality index was applied to evaluate the risk of bias, and effect sizes 
with 95% confidence intervals were calculated as the standardized mean differences (SMD). Potential publication bias 
was evaluated graphically using funnel plot and the robustness of the overall results was assessed using sensitivity 
analyses.

Results  Eighty-one studies (n = 1501 participants) were included in this study. The reduced area of support requires 
the body to establish a safer and more stable gait pattern by changing gait characteristics when walking in HHS com-
pared with walking in flats shoes or barefoot. Walking in HHS has a slight effect on hip kinematics, with biomechanical 
changes and adaptations concentrated in the knee and foot–ankle complex. Females wearing HHS performed greater 
ground reaction forces earlier, accompanied by an anterior shift in plantar pressure compared with those wearing flat 
shoes/barefoot. Furthermore, large effect sizes indicate that wearing HHS resulted in poor static and dynamic balance.

Conclusion  Spatiotemporal, kinematic, kinetic and balance variables are affected by wearing HHS. The effect of spe-
cific heel heights on women’s biomechanics would benefit from further research.
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Background
High-heeled shoes (HHS) have been widely worn among 
women throughout several centuries all over the world. 
HHS is a type of footwear where the heel is higher than 

the forepart and usually features a narrow toe section, 
curved plantar area and a stiff heel cap [1]. Previous 
evidence showed that 37% to 69% of women wear HHS 
daily and that 59% of women wear them for 1–8  h per 
day [2, 3]. However, wearing HHS has been reported to 
be related to hallux valgus, musculoskeletal pain and 
first-party injuries, with the incidence of injuries almost 
doubling from 2002 to 2012 (7.1% to 14.1%) [4–6]. There-
fore, identifying the risk factors associated with the inci-
dence of these injuries is essential to protect foot health 
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and implement prevention strategies, such as reduced 
foot length and increased arch height [7], increased knee 
varus moment [8] and decreased postural stability [9].

Most studies have confirmed that the effects of wear-
ing HHS are not limited to the foot–ankle complex. The 
kinematic effects are transmitted up the lower extremity 
in a chain reaction [1, 10], ultimately leading to changes 
in spatiotemporal outcomes [11–13], kinematics [11, 
14–20], kinetics [12, 21, 22], muscle activity [7, 23–25] 
and energy expenditure [16, 26]. The available evidence 
suggests that walking in HHS requires a special neural 
control that differs from that used in barefooted walk-
ing [27]. HHS alter the alignment of the body, thus influ-
encing the body’s centre of gravity (COG) and adversely 
affecting gait biomechanics and postural stability, impair-
ing static and dynamic balance, and increasing the risk of 
falls for HHS wearers [9, 28–31].

Various studies have investigated the effect of HHS on 
gait, posture and relevant injuries on young women [1, 
5, 32–34]. A meta-analysis found that walking in HHS 
increased knee flexion moment, flexion angle and varus 
moment during the early stance phase [35]. However, to 
date, meta-analyses of the effects of HHS on gait spati-
otemporal outcomes, joint kinematics, kinetics, muscle 
activity and balance in female have been lacking. Changes 
in women’s gait parameters when wearing HHS and the 
associated neuromuscular and biomechanical adapta-
tions can provide accurate and effective recommenda-
tions for future efforts to eliminate the negative effects 
of high heels [1]. Therefore, the aim of this review is to 
collect the available evidence to investigate the effects of 
wearing HHS on lower limbs biomechanics and balance 
in females and provide guidance for further research in 
this area.

Methods
The systematic review was conducted in accordance with 
guidelines provided by the Preferred Reporting of Sys-
tematic Reviews and Meta-Analysis (PRISMA) statement 
(PROSPERO registration number CRD42021291135) [36].

Search strategy
PubMed Medline, Cochrane, EMBASE, CINAHL Com-
plete and Web of Science electronic databases were 
searched from inception until December 2021. Full 
search terms and strategies are available in Additional 
file 1. No restrictions were set on literature type or publi-
cation status.

Eligibility criteria
Journal articles that evaluated the effects of HHS on 
lower extremity biomechanics and balance in healthy 
women were included, covering indicators such as gait 

spatiotemporal, joint kinematics, kinetics and muscle 
activity variables during horizontal walking, as well as 
static and dynamic balance variables. The specific inclu-
sion and exclusion criteria can be found in Additional 
file 2.

Study selection
All the studies searched were imported into EndNote 
X9 (Clarivate Analytics), and the duplicate articles were 
removed by a reviewer (ZZ). Each title and abstract 
were screened for eligibility inclusion by two independ-
ent reviewers (YL and XH). Then, the reference lists of 
all included articles were screened manually to iden-
tify any relevant studies that might have been missed 
by electronic searches. Any disagreements between the 
two reviewers were resolved with a consensus meet-
ing, if necessary, and the decision was made by a third 
reviewer (LW).

Data extraction
Study characteristics were extracted by one reviewer 
(ZZ) and verified by a second (YL) using a standard-
ized template, including (1) article details (authors 
name and year of publication), (2) participant charac-
teristics (sample size, age, body height, body mass and 
HHS  wearing  experience), (3) HHS used (heel height), 
(4) experimental characteristics (comparisons and walk-
ing speed) and (5) biomechanical variables investigated 
(spatiotemporal, kinematics, kinetics, muscle function 
and balance). Any discrepancies were discussed by all 
reviewers.

Assessment of risk of bias
A modified Downs and Black’s Quality Index (QI) 
tool with high reliability and validity was used by two 
reviewers (PL and XH) to assess the methodological 
quality [37]. According to the purpose of this review, 
the QI contains following four categories: study 
reporting (items 1–4, 6–7 and 10), external validity 
(items 11 and 12), internal validity (items 16, 18, 20, 22 
and 23) and power (item 27) [38, 39] (see Additional 
file  3). Articles with scores of 6 and below (≤ 40%), 
6–12 (40%–80%) and 12 and above (≥ 80%) were 
considered low, moderate and high quality, respec-
tively [40]. Discrepancies were discussed and resolved 
through a consensus meeting. If a consensus was not 
achieved, then a third reviewer (LW) served as the 
tiebreaker. The mean kappa agreement between the 
reviewers was 0.96.

Data analysis
Means and standard deviations for included vari-
ables were extracted to calculate the between-group 
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standardized mean difference (SMD) and 95% confi-
dence interval (95% CI) for study comparisons [38]. 
Meta-analysis for each outcome was performed using 
Review Manager (version 5.3, The Cochrane Collabora-
tion, Copenhagen, Denmark) with at least two studies 
with available data on HHS (≥ 3 cm) compared with flat 
shoes or barefoot [41]. When a study was conducted 
on females with and without experience wearing 
HHS, they were included in the meta-analysis as two 
groups of data. To include as much data as possible, 
when studies were reported for both limbs, they were 
treated as independent data. Heterogeneity was evalu-
ated using the I2 and Q statistics, where I2 > 50% or a 
significant Q statistic indicated statistical heterogene-
ity, when I2 values were > 50%, the random-effect model 
was applied for data analyses, otherwise the fixed-effect 
model was used [42]. The effect size was categorized as 
trivial (≤ 0.20), small (0.20–0.50), moderate (0.50–0.80) 
or large (≥ 0.80) [43]. Subgroup analysis was conducted 
based on different biomechanical variables. Sensitiv-
ity analyses were performed to investigate the robust 
of the pooled results and funnel plots were applied to 
evaluate the potential publication bias [44]. Statistical 
significance was set at p < 0.05.

Results
Search results
The initial electronic database searches identified 2483 
records (Fig.  1). After duplicates and screening of titles 
and abstracts were removed, 137 studies remained. An 
additional four records were included through cross-
referencing. After full-text screening, 81 articles met the 
eligibility criteria and were included in this review.

Quality assessment of included studies
Total scores from the QI and a breakdown for each cat-
egory for all included articles are shown in Fig.  2. The 
number of studies graded as low, moderate and high 
quality was 3, 63 and 15, respectively. The QI scores 
of assessed studies ranged from 5 to 14, with a mean 
(SD) = 10.95 (1.91) points.

Study characteristics
The sample sizes ranged from 3 to 71, with 15 being 
the most common (n = 14), and the mean (SD) was 18 
(12). The mean (SD) age of all participants was 25.08 
(4.08) years and 24.74 (4.19) years for studies included 
in the review and meta-analysis, respectively. Nine arti-
cles compared women with and without HHS wearing 

Fig. 1  Flowchart of the systematic review selection process
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experience [9, 16, 18, 31, 45–49]. In addition to several 
studies that used the subjects’ own HHS with different 
heel heights [17, 22, 50–56], the heel heights involved in 
this study ranged from 3 to 18  cm, with 9  cm (n = 11), 
10  cm (n = 11), 6  cm (n = 10) and 7  cm (n = 10) being 
most commonly used. The walking speed involved a wide 
range from 0.56 m/s to 1.61 m/s, with 1.3 m/s being the 
most frequent (n = 7) and the mean (SD) was 1.17 (0.21) 
m/s (see Additional file 4).

Effect of HHS on lower extremity biomechanics 
and balance
Spatiotemporal characteristics
Meta-analysis showed no statistically significant effects 
for wearing HHS on stance time, stride time, single leg 
support time and step frequency during level walking 

(p ≥ 0.10). Large effects indicated that walking in HHS 
resulted in shorter swing time (SMD = 0.65; 95% CI 0.33, 
0.97; p < 0.001), step length (SMD = 1.49 95% CI 0.88, 
2.11; p < 0.001), stride length (SMD = 0.78; 95% CI 0.44, 
1.11; p < 0.001), step width (SMD = 0.85; 95% CI 0.53, 
1.16; p < 0.001) and walking velocity (SMD = 0.75; 95% CI 
0.48, 1.03; p < 0.001). The subgroup analysis showed that 
walking with HHS provoked a longer double leg support 
time (percentage: SMD =  − 1.55; 95% CI − 1.89, − 1.20; 
p < 0.001; total: SMD =  − 0.88; 95% CI − 1.12, − 0.63; 
p < 0.001) (Fig.  3 and Additional file  5). No clear asym-
metries were identified in the funnel plots for the related 
parameters, except for step length and step width (see 
Additional file 6). For all relevant parameters, the exclu-
sion of individual studies did not trigger a significant 
change in the overall results in the sensitivity analyses.

Fig. 2  Methodological quality for the included studies
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Fig. 3  Meta-analysis of temporal characteristics during walking in high-heeled shoes compared with flat shoes or barefoot. IV inverse variance, CI 
confidence interval, HHS high-heeled shoes
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Kinematics
Hip
Meta-analysis showed a statistically significant increase 
in range of motion (ROM) (SMD =  − 1.59; 95% 
CI − 2.26, − 0.91; p < 0.001) during gait cycle when walk-
ing with HHS. HHS did not have a statistically signifi-
cant effect on peak flexion and extension during stance 
phase and gait cycle and flexion at foot strike (p ≥ 0.05) 
(see Additional file  5). For all relevant parameters, no 
clear asymmetries were identified in the funnel plots (see 
Additional file  6). In the sensitivity analyses, only the 
peak flexion angle during gait cycle showed a significant 
change in the overall result after removing the article 
written by Snow and Williams [15].

Knee
Meta-analysis showed a statistically significant 
increase in flexion at foot strike (SMD =  − 0.42; 95% 
CI − 0.63, − 0.22; p < 0.001) and flexion during mid-stance 
(SMD =  − 0.71; 95% CI − 0.97, − 0.45; p < 0.001), but a 
decrease in peak flexion (SMD = 0.61; 95% CI 0.05, 1.16; 
p 0.03) and ROM (SMD = 1.12; 95% CI 0.39, 1.85; p 0.003) 
during gait cycle and flexion at toe-off (SMD = 0.84; 95% 
CI 0.53, 1.15; p < 0.001) when walking with HHS. HHS 
did not have a statistically significant effect on peak 
flexion during stance phase and peak extension during 
stance phase and gait cycle (p ≥ 0.10) (see Additional 
file 5). For all relevant parameters, no clear asymmetries 
were identified in the funnel plots (see Additional file 6). 
In the sensitivity analyses, only the peak flexion angle 
during gait cycle showed a significant change in the over-
all result after removing the articles written by Snow and 
Williams [15] and Di Sipio et al. [57].

Foot–ankle complex
Meta-analysis showed a statistically significant greater 
plantarflexion in peak plantarflexion during stance phase 
(SMD = 2.37; 95% CI 1.41, 3.33; p < 0.001) and gait cycle 
(SMD = 2.17; 95% CI 1.15, 3.18; p < 0.001), peak dorsiflex-
ion during stance phase (SMD = 2.99; 95% CI 1.99, 4.00; 
p < 0.001) and gait cycle (SMD = 1.56; 95% CI 0.62, 2.50; p 
0.001) and plantarflexion at foot strike (SMD = 2.64; 95% 
CI 1.47, 3.80; p < 0.001) and toe-off (SMD = 1.08; 95% 
CI 0.65, 1.51; p < 0.001) when walking with HHS. Con-
versely, ROM decreased statistically significantly dur-
ing gait cycle (SMD = 1.71; 95% CI 1.06, 2.36; p < 0.001). 
HHS did not have a statistically significant effect on the 
rearfoot angle at foot strike and peak inversion during 
stance phase (p ≥ 0.10) (see Additional file 5). For all rele-
vant parameters, no clear asymmetries were identified in 
the funnel plots (see Additional file 6). In the sensitivity 

analyses, only the rearfoot angle at foot strike showed a 
significant change in the overall result after removing the 
article written by Ebbeling et al. [16].

Kinetics
Hip
Meta-analysis showed no statistically significant effect 
of HHS on peak flexion moment and peak extension 
moment during gait cycle (p ≥ 0.08) (see Additional 
file 5). For all relevant parameters, no clear asymmetries 
were identified in the funnel plots (see Additional file 6). 
In the sensitivity analyses, only the peak extension 
moment during gait cycle showed a significant change 
in the overall result after removing the article written by 
Esenyel et al. [13].

Knee
Meta-analysis showed a statistically significant increase in 
peak flexion (SMD =  − 0.59; 95% CI − 0.93, − 0.26; p < 0.001) 
and extension (SMD =  − 0.40; 95% CI − 0.76, − 0.04; p 0.03) 
moments during gait cycle when walking with HHS. HHS 
did not have a statistically significant effect on peak adduc-
tion and abduction moments during gait cycle (p ≥ 0.32) 
(see Additional file 5). For all relevant parameters, no clear 
asymmetries were identified in the funnel plots (see Addi-
tional file 6). In the sensitivity analyses, only the peak exten-
sion moment during gait cycle showed a significant change 
in the overall result after removing the articles written by 
Esenyel et al. [13] and Lee et al. [58].

Foot–ankle complex
Meta-analysis showed a statistically significant decrease 
in peak plantarflexion moment during gait cycle 
(SMD = 0.90; 95% CI 0.38, 1.42; p < 0.001) when walking 
with HHS. HHS did not have a statistically significant 
effect on peak dorsiflexion moment during gait cycle 
(p = 0.37) (see Additional file 5). For all relevant param-
eters, no clear asymmetries were identified in the funnel 
plots and the exclusion of individual studies did not trig-
ger a significant change in the overall results in the sensi-
tivity analyses (see Additional file 6).

Ground reaction forces
Meta-analysis showed a statistically significant increase 
in the first (SMD =  − 0.58; 95% CI − 0.88, − 0.28; 
p < 0.001) and the second (SMD =  − 1.11; 95% 
CI − 1.63, − 0.59; p < 0.001) peak vertical ground reaction 
force (GRF) and % time to the second peak vertical GRF 
(SMD =  − 0.78; 95% CI − 1.14, − 0.43; p < 0.001) when 
walking with HHS. HHS did not have a statistically sig-
nificant effect on % time to the first peak vertical GRF 
(p = 0.21) (see Additional file 5). For all relevant param-
eters, no clear asymmetries were identified in the funnel 
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plots and the exclusion of individual studies did not trig-
ger a significant change in the overall results in the sensi-
tivity analyses (see Additional file 6).

Plantar pressure
Meta-analysis showed a statistically significant increase in 
peak pressure under forefoot (hallux: SMD =  − 1.26; 95% 
CI − 1.54, − 0.98; p < 0.001; other toes: SMD =  − 1.52; 
95% CI − 2.08, − 0.95; p < 0.001; the first metatar-
sals: SMD =  − 1.45; 95% CI − 1.90, − 1.00; p < 0.001; 
the second and third metatarsals: SMD =  − 1.18; 95% 
CI − 1.54, − 0.82; p < 0.001; the fourth and fifth meta-
tarsals: SMD =  − 0.63; 95% CI − 1.09, − 0.17; p 0.007), 
but a decrease in peak pressure under the midfoot 
(total: SMD = 1.62; 95% CI 1.01, 2.23; p < 0.001; lat-
eral: SMD = 1.67; 95% CI 1.08, 2.25; p < 0.001; medial: 
SMD = 0.61; 95% CI 0.18, 1.04; p 0.006) and heel (lat-
eral: SMD = 0.81; 95% CI 0.39, 1.24; p < 0.001; medial: 
SMD = 1.42; 95% CI 0.66, 2.19; p < 0.001) when walking 
with HHS. HHS did not have a statistically significant 
effect on peak pressure under total heel (p = 0.07) (see 
Additional file  5). For all relevant parameters, no clear 
asymmetries were identified in the funnel plots (see 
Additional file  6). In the sensitivity analyses, the peak 
pressure under the medial midfoot showed a significant 
change in the overall result after removing the article 
written by Guo et al. [59] and the peak pressure under the 
total heel showed a significant change in the overall result 
after removing the article written by Penny et al. [60].

Meta-analysis showed a statistically significant increase 
in impact force (SMD =  − 1.25; 95% CI − 2.02, − 0.49; 
p 0.001), maximum force in the hallux (SMD =  − 1.71; 
95% CI − 2.30, − 1.12; p < 0.001) and other toes 
(SMD =  − 1.84; 95% CI − 2.48, − 1.20; p < 0.001) when 
walking with HHS. Conversely, a statistically significant 
decrease in maximum force was observed in the heel 
(lateral: SMD = 0.70; 95% CI 0.45, 0.94; p < 0.001; medial: 
SMD = 1.11; 95% CI 0.40, 1.83; p 0.002) (see Additional 
file 5). For all relevant parameters, no clear asymmetries 
were identified in the funnel plots and the exclusion of 
individual studies did not trigger a significant change in 
the overall results in the sensitivity analyses (see Addi-
tional file 6).

Meta-analysis showed a statistically significant 
increase contact area in the hallux (SMD =  − 2.09; 
95% CI − 2.70, − 1.47; p < 0.001) and other toes 
(SMD =  − 1.97; 95% CI − 2.64, − 1.30; p < 0.001), but a 
decrease in contact area in the heel (lateral: SMD = 0.26; 
95% CI 0.02, 0.50; p 0.03; total: SMD = 0.28; 95% CI 0.10, 
0.46; p 0.002) when walking with HHS. HHS did not 
have a statistically significant effect on contact area in 
the medial heel (p = 0.08) (see Additional file  5). For all 

relevant parameters, no clear asymmetries were identi-
fied in the funnel plots (see Additional file 6). In the sen-
sitivity analyses, only the contact area in the lateral heel 
showed a significant change in the overall result after 
removing the article written by Shang et al. [61].

Lower extremity muscle function
Nineteen studies investigated the effects of HHS on mus-
cle function. However, the differences in the studied mus-
cles and indexes were not sufficient for the meta-analysis.

Balance
Meta-analysis showed a statistically significant increase 
in the time spent during the timed up and go test 
(SMD =  − 0.60; 95% CI − 0.81, − 0.40; p < 0.001) and 
mean anterior–posterior COP sway during standing 
(SMD =  − 0.88; 95% CI − 1.32, − 0.44; p < 0.001) when wear-
ing HHS. Conversely, a statistically significant decrease 
occurred in functional reach test score (SMD = 0.55; 95% 
CI 0.23, 0.87; p < 0.001), single leg stance time (SMD = 2.52; 
95% CI 0.95, 4.09; p 0.002) and limits of stability test scores 
(COG movement velocity: SMD = 0.61; 95% CI 0.24, 0.97; 
p 0.001; directional control: SMD = 0.39; 95% CI 0.19, 0.58; 
p < 0.001). HHS did not have a statistically significant effect 
on mean medial–lateral COP sway and mean medial–lat-
eral and anterior–posterior COP sway velocity during 
standing, and medial–lateral and anterior–posterior COP 
sway during walking (p ≥ 0.23) (see Additional file 5). For all 
relevant parameters, no clear asymmetries were identified 
in the funnel plots (see Additional file 6). In the sensitivity 
analyses, only the single leg stance time showed a significant 
change in the overall result after removing the article writ-
ten by Tomac et al. [62].

Discussion
The purpose of this systematic review was to explore the 
current evidence for the effects of HHS on lower limb 
biomechanics and balance in females to provide guidance 
for future research. This study showed a full evidence 
map of walking gait and postural control with HHS. The 
findings from this systematic review suggest that HHS 
significantly affect lower extremity biomechanics and 
balance in females (Fig. 4).

Reduced area of support when walking in HHS requires 
the body to establish a safer and more stable gait pattern 
by changing gait characteristics compared with walking 
barefoot or in flat shoes [13, 18, 63]. Shorter step length, 
stride length and flight time and greater time spent with 
the feet in contact with the ground contribute to this 
requirement and attempt to counteract the instability 
of walking in HHS, which was depicted in our findings. 
Furthermore, HHS have poorer cushioning properties 
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compared with flat shoes or trainer shoes, thus weak-
ening the GRF absorption ability and potential kinetic 
energy that lower extremities already process, thereby 
enabling a shorter step length [26]. The instability caused 
by HHS ultimately leads to a significant reduction in 
walking speed [10]. The findings on step frequency are 
inconsistent, with no significant differences in step fre-
quency in our study, possibly because the preferred walk-
ing speed of the participants had a large variation and 
part of the study was conducted on a treadmill at a fixed 
speed, whereas previous studies showed that walking 
at different speeds with HHS produces different walk-
ing characteristics [8, 64, 65]. In the funnel plot, the step 
length and step width showed a significant asymmetry, 
which indicates a large bias, therefore, the overall results 
need to be treated with caution.

The available evidence suggests that HHS have a slight 
effect on hip kinematics and kinetics during walking, 
with biomechanical changes and adaptations concen-
trated in the knee and ankle joints [19, 47]. As shown in 
our results, only ROM during gait cycle at the hip joint 
was significantly different between walking in HHS and 
flat shoes/barefoot. Compensatory changes in joint kin-
ematics are generated to better respond to the load, as 

evidenced by increased flexion of the proximal joint [47], 
supported by the increased flexion of knee joint at foot 
strike and during mid-stance in this study. Surprisingly, 
no significant increase occurred in the peak flexion of 
knee when walking in HHS, perhaps because both flat 
shoes and barefoot were regarded as control group and 
involved a wide range of heel heights (3 cm to 12 cm) in 
our study. The knee joint was already in a more flexed 
position at foot strike when walking in HHS may contrib-
ute to the reduction in knee ROM during gait cycle and 
flexion at toe-off. Decreased ROM is indicated as a stiff 
joint, showing significant loss of movement, which alerts 
HHS wearers should pay more attention to knee joint 
protection to prevent musculoskeletal injuries [19, 47, 
66]. Ankle maintains greater plantarflexion throughout 
gait cycle as a corollary to increased heel height. When 
HHS are worn, the resulting increased ankle plantarflex-
ion brings the GRF vector closer to the centre of the ankle 
and increases the vertical impact loading in gait [16, 48]. 
The increased load can be reduced by adaptive changes 
in the kinematics of the proximal joint or through direct 
absorption by the soft tissues [67]. Furthermore, wear-
ing HHS could lead to increased load on the ligaments 
and muscles surrounding the joints of lower limbs, 

Fig. 4  Summary of significant differences between HHS and flat shoes/barefoot biomechanics and balance found with meta-analyses. The up and 
down arrows represent greater and lower in HHS compared to flat shoes/barefoot, respectively. HHS high-heeled shoes; ROM range of motion; GRF 
ground reaction force; TUGT time up and go test; AP anterior–posterior; SLST single leg stance test; LoS limits of stability test
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which may trigger tendonitis of the muscle–tendon unit, 
inflammation of the bursa or progressive stretching of 
the ligaments around the joint [15]. Reduced ankle ROM 
in high-heeled gait possibly because continuous plantar-
flexion, which weakens the effect of the triceps surae on 
ankle joint and causes a reduction in the propulsion of 
ankle [68]. No differences were found in rearfoot move-
ment when comparing HHS with flat shoes, potentially 
due to the limited available data and hence the lack of 
statistical power [15, 16, 69].

To the best of our knowledge, several mechanisms may 
contribute to the increased knee peak flexion and exten-
sion moments during high-heeled gait. One mechanism 
is that the increased knee flexion at foot strike places 
the centre of the knee relatively more forward, increas-
ing the knee flexion torque from the vertical GRFs, hence 
the increased knee flexion moment may be a crucial 
compensatory mechanism to compensate for the rela-
tive instability caused by HHS, which also reflecting the 
crucial role of the knee in weight acceptance and shock 
absorbing [8, 13, 14, 70]. Moreover, the increase in peak 
knee flexion moment may partially compensate for the 
decrease in ankle moment, which is similar to the find-
ings of our study [24]. The increased heel height is 
accompanied by an increase in the distance between the 
centre of the knee and ground, thus extending the lever 
arm of the tibia, which requires greater knee extension 
moment to resist GRFs [13, 19, 35]. An existing chal-
lenge is to explain the lack of significant differences in 
peak adduction and abduction moments in the current 
study. One possible explanation is the inclusion of HHS 
with different constructions and heel heights, making the 
results more variable. In addition, a threshold adaptation 
of HHS on knee joint may exist, where unnatural load-
ing patterns are magnified when the heel height exceeds 
a certain value [15, 71, 72]. Although the peak ankle dor-
siflexion moment did not differ between the two groups, 
the reduction in peak plantarflexion moment when walk-
ing in HHS implies the presence of eccentric activity of 
the muscles around the ankle playing a role in maintain-
ing stability in the passive plantarflexion [47]. Specifi-
cally, the greater ankle plantarflexion obviously shortens 
fascicle length, Achilles tendon moment arm and fore-
foot lever arm, bringing GRFs closer to the centre of 
ankle and reducing the requirement for the plantarflex-
ion moment [13, 24, 73]. The plantarflexed position of the 
ankle also puts the gastrocnemius and soleus muscles in 
a shortened position, which is detrimental to the work of 
the muscles [13]. Therefore, to propel the body forward, 
ankle joint will generate greater power [24, 74].

Body is exposed to greater impact forces earlier 
and the dynamic loading on the musculoskeletal sys-
tem is increased in high-heeled gait [16]. The greater 

plantarflexion of ankle and the increased vertical GRFs 
exerted on the forefoot during stance as a result of the 
interior shift of the COG are the main contributors 
to these changes [15, 16]. In general, when the ankle is 
plantarflexed, the foot tends to supination and adduction 
[75]. Therefore, the increased plantarflexion of the ankle 
leads to reduced pronation during support with HHS, 
and part of the shock absorbing function of pronation 
may be lost, resulting in greater peak vertical GRF [15]. 
Peak pressure, maximum force and contact area are sig-
nificantly higher in the forefoot than in the midfoot and 
rearfoot when walking in HHS compared with walking 
in flat shoes or barefoot, supporting previous studies [64, 
76–78]. This finding suggests that HHS triggers a weight 
transfer mechanism that shifts plantar pressure to the 
forefoot, possibly due to the elevation of the heel causes 
a distinct anterior displacement of the COG of the body 
and reduces the cushioning effect of the arch [15, 64, 79]. 
The altered plantar pressure distribution may trigger arch 
deformation and Achilles tendon shortening, leading to 
discomfort and pain in the foot and the development of 
pathologies such as metatarsalgia and plantar fasciitis 
[55]. This finding also indicates that increased arch sup-
port and cushioning may improve walking ability and 
stability when walking in HHS, thereby providing a direc-
tion for the future design and development of HHS [80]. 
Specifically, the increased pressure exerted on the fore-
foot when walking in HHS may have a dramatic effect 
on the foot morphology, causing hallux valgus, varus 
deformity of the fifth toe and flattening feet [5, 6].

Although exploring the effects of HHS on muscle func-
tion was not possible through meta-analysis due to the 
lack of available data, to the authors’ knowledge, wear-
ing HHS does alter muscle activation patterns [7, 15, 24, 
80–85]. Wearing HHS is generally accepted to cause an 
imbalance in the intensity and timing of muscle activity 
around knee joint, as well as faster and greater synergistic 
contraction of the muscles around ankle [7, 85]. The gen-
erally increased muscle activity increases muscle energy 
expenditure, accompanied by increased muscle fatigue, 
which may induce a reduction in functional mobility dur-
ing prolonged walking in HHS. As a result, the ability to 
control the stability of the foot and COG in response to 
postural perturbations is constrained, thereby increasing 
the risk of ankle sprains and/or falls [7, 16, 85].

Our study shows that wearing HHS increases the ante-
rior–posterior COP sway and reduces the static and 
dynamic postural stability, which is consistent with previ-
ous research [7, 16, 86]. Changes in plantar somatosensory 
and proprioceptive afferents due to the greater plantarflex-
ion position of the ankle are thought to be one of the main 
factors that contribute to changes in COP sway [87]. Fur-
thermore, as the limits of the stability test are influenced 
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by a combination of the neuromuscular system, the skel-
etomuscular system and cognition, a decrease in score 
indicates that a decrease in postural control is accompa-
nied by an increased risk of falls [88]. As mentioned above, 
accelerated muscle fatigue is another factor that may affect 
postural control when walking in HHS [7, 16].

Several limitations should be considered when interpret-
ing the findings of this review. Firstly, no subgroup anal-
ysis based on heel type and height was conducted in the 
meta-analysis due to the amount of available data, hence 
the current findings may underestimate the actual impact 
of high heels on biomechanics. Related to this situation, 
most meta-analyses were influenced by high levels of het-
erogeneity as well as unrobust overall results for several 
parameters, which indicates that caution should be taken 
when generalizing the effects of HHS on lower limb bio-
mechanics and balance. In addition, three studies included 
older women, where age-related changes in body struc-
ture modified the biomechanical performance [23, 60, 
65]. Older women generally have more experience wear-
ing HHS, which contributed to the variability in outcomes. 
Long-term wearing of HHS also brings about adaptive 
changes in the biomechanics and control strategies of the 
human body [45, 89, 90]. Knowledge of the adaptive altera-
tions caused by long-term wearing of HHS may provide 
better theoretical support for footwear design, offer guid-
ance for novices in choosing HHS and effectively prevent 
high heel-related injuries [46]. Furthermore, various heel 
heights can affect everyone differently due to individual 
differences. Future studies should attempt to investigate 
more specific heel heights to determine the exact value/
range of the threshold adaptation and to minimize the 
local damage caused by wearing HHS.

Conclusion
Walking in HHS exerts significant effects on the kinemat-
ics and kinetics of the knee and foot–ankle complex, as 
evidenced by the gait profiles altered in this study. Elevated 
heels caused the body to be exposed to greater GRFs ear-
lier, accompanied by an anterior shift in plantar pressure. 
Furthermore, wearing HHS reduced static and dynamic 
postural control significantly. This meta-analysis provides 
comprehensive biomechanical data that may inform future 
efforts to mitigate the negative effects of wearing HHS on 
women in clinical practice. Moreover, more studies involv-
ing different heel heights and heel areas and long-term 
follow-up design are needed to confirm the changes in 
walking and balance caused by wearing HHS, as well as 
long-term neuromuscular adaptations, to provide a theo-
retical basis for maximizing the protection of women’s foot 
health and preventing HHS-related injuries.
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