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Abstract 

Background: The purpose of this paper is to study how the Delta variant spread in a China city, and to what extent 
the non-pharmaceutical prevention measures of local government be effective by reviewing the contact network of 
COVID-19 cases in Xi’an, China.

Methods: We organize the case reports of the Shaanxi Health Commission into a database by text coding and 
convert them into a network matrix. Then we construct a dynamic contact network for the corresponding analysis 
and calculate network indicators. we analyze the cases’ dynamic contact network structure and intervals between 
diagnosis time and isolation time by using data visualization, network analysis method, and Ordinary Least Square 
(OLS) regression.

Results: The contact network for this outbreak in Xi’an is very sparse, with a density of less than 0.0001. The contact 
network is a scale-free network. The average degree centrality is 0.741 and the average PageRank score is 0.0005. 
The network generated from a single source of infection contains 1371 components. We construct three variables of 
intervals and analyze the trend of intervals during the outbreak. The mean interval (interval 1) between case diagno-
sis time and isolation time is − 3.9 days. The mean of the interval (interval 2) between the infector’s diagnosis time 
and the infectee’s diagnosis time is 4.2 days. The mean of the interval (interval 3) between infector isolation time and 
infectee isolation time is 2.9 days. Among the three intervals, only interval 1 has a significant positive correlation with 
degree centrality.

Conclusions: By integrating COVID-19 case reports of a Chinese city, we construct a contact network to analyze the 
dispersion of the outbreak. The network is a scale-free network with multiple hidden pathways that are not detected. 
The intervals of patients in this outbreak decreased compared to the beginning of the outbreak in 2020. City lock-
down has a significant effect on the intervals that can affect patients’ network centrality. Our study highlights the 
value of case report text. By linking different reports, we can quickly analyze the spread of the epidemic in an urban 
area.
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Background
The outbreak of coronavirus disease (COVID-19) pan-
demic sweeps the world in late 2019 [1–3]. By 2022, dif-
ferent variants of the virus evolved, such as Delta and 
Omicron, triggering several waves of worldwide infection 
[4, 5]. Having documented 617 million COVID-19 cases, 
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more than 6.5 million deaths have been reported world-
wide by October 2022.

The analysis of existing studies on COVID-19 is mostly 
based on epidemiology, virology and medicine, involving 
virus case studies, transmission model construction, gene 
sequencing, and clinical diagnosis [1, 5–7]. Studies estab-
lishing contact networks between confirmed cases based 
on infection routes are less [8].

Human social network plays a significant role in the 
spread of viruses. Viruses spread along with human 
movement and aggregation, thus creating contact net-
works [9–11]. Several studies have been conducted to 
analyze the spread of various viruses in populations 
from a network perspective, such as sexually transmit-
ted diseases [9], AIDS [12], and the Plague [10]. These 
studies have found that the mode of transmission of dif-
ferent viruses makes the structure of the contact net-
work very different. For example, for HIV through sex, 
blood and mother-to-child contact, the network struc-
ture is simple and sparse [12]. However, for airborne 
viruses such as novel coronavirus, the network struc-
ture is complex [3].

There are some studies based on real-world data 
describing the contact network at the beginning of the 
COVID-19 outbreak in different regions, such as China 
[3], Korea [8], and India [13]. However, these studies only 
conducted based on data from first wave of the epidemic, 
when people lack systematic intervention policies, drug 
treatments and vaccines, and the viruses they analyzed 
were not emerging delta or omicron variants.

In December 2021, a new wave of an outbreak caused 
by a Delta variant leaked from a Pakistani flight was 
reported in Xi’an, China. The outbreak infected more 
than 2000 people and was the largest COVID-19 out-
break in China since the Wuhan outbreak in 2020. By 
reviewing this outbreak, we can better know how the 
Delta variant spread, and to what extent preventive meas-
ures be effective.

Based on 2050 confirmed cases reports from Decem-
ber 09, 2021 to January 18, 2022 published by the Shaanxi 
Provincial Health Commission, we use network analysis 
techniques to construct and visualize the contact net-
work of cases and calculate the network indicators. The 
analysis of the contact network is key to understanding 
the spread of disease [3, 8, 14]. First, based on the net-
work structure, we can clarify the transmission path of 
the virus and assist in identifying hidden infection paths. 
Second, based on the diagnosis and isolation dates of 
pairs of infectors and infectees, we construct three varia-
bles of intervals and analyze the trend of intervals during 
the outbreak, which can help us to evaluate the effective-
ness of non-pharmaceutical measures and predict dis-
ease trends and health care demands [1, 15]. Third, we 

also discuss the effect of city lockdown on the intervals 
and network transmission capacity.

Methods
Study population and setting
Xi’an is the largest city in northwestern China and the 
capital city of Shaanxi Province, with an area of 10,108 km 
and a resident population of 12,952,900. Xi’an had no 
large-scale outbreak of COVID-19 before the outbreak in 
early 2022. The cumulative number of locally confirmed 
cases before the outbreak was only 263. The cumulative 
number of infections in this outbreak exceeded 2000 
cases.

Origin of the outbreak in Xi’an
On December 9, 2021, the first case of this outbreak was 
reported by the Shaanxi Provincial Health Commission. 
The first infected person was a staff member of the Inter-
national Passenger Isolation Hotel. Based on full genetic 
sequencing of the cases, all viruses from patients during 
this epidemic were Delta variants of SARS-CoV-2, which 
was highly homologous to the specimen of flight PK854 
confirmed passenger entering from Pakistan on Decem-
ber 4. After the outbreak, the local government isolated 
the confirmed cases and their close contacts, conducted a 
large-scale universal screening (nucleic acid test), and the 
city was into lockdown on December 23.

Data
The database was collected from the daily case reports 
published by the Shaanxi Provincial Health Commission 
on its official website, which was collected by a dedicated 
epidemiological investigation team. The daily reports 
reported information on cases’ age, sex, residence area,1 
diagnosis date, isolation date, and their infectors. Data 
began on December 9, 2021 and ended on January 18, 
2022. Since then, there are no new detailed confirmed 
cases reported. On January 20, 2022, the local govern-
ment began to reopen the city. The total number of cases 
is 2050.

Methods and indicators
We first organized the case reports into a database by text 
coding. The case reports were in text format, from which 
we extracted the corresponding variables and assign val-
ues. We reconstructed whole contact chains during the 
disease outbreak by analyzing the infection routes among 
cases. The raw data of transmission routes between con-
firmed cases were converted into a symmetrical square 

1 The residential area is based on the residential building of 18 districts of 
Xi’an, accurate to the building where the individual lives, but not to the floor 
or room.
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matrix (2050 × 2050). For example, if there is a text 
report that case A is an infector of case B, the value of 
row A and column B in the matrix is 1, otherwise 0. We 
visualized the matrix as a network where nodes were 
confirmed cases, ties were the infection routes between 
them.

The dynamics of the network have an important impact 
on the risk of infection, and the structure of dynamic net-
works is very different from that of static networks [16, 
17]. Therefore, we construct a dynamic contact network 
for the corresponding analysis. Then, we visualize the 
dynamic network and calculate network indicators as 
follows.

Degree centrality
It indicates the number of direct contacts of a case. This 
indicator has a high correlation with the virus’s basic gen-
eration number and can be used to measure the rate of 
transmission [18]. The formula is as follows, where i is 
the case, j is his contact and n is the network size. The a is 
the matrix where i and j are the elements.

PageRank score
PageRank algorithm considers both the number of direct 
contacts and indirect contacts of the diagnosed case 
through an iterative settlement [19]. Mathematically it is 
expressed as:

where  PRj is the PageRank value of the case j’s direct tied 
with the case i, nj indicates the number of cases directly 
connected to case j, Bi is the set of all nodes linked to 
the focal node j. The initial PageRank value is distributed 
equally to each actor based on the size of the network. 
The PageRank value on the right side of the equation is 
the PageRank value of the previous iteration. Since the 
PageRank score takes into account not only direct ties 
but also indirect ties, the value is more reflective of the 
patient’s position in the whole network [20]. The higher 
the PageRank score of a patient takes, the higher its risk 
of spreading the virus in the overall transmission network 
[3].

Component number
Community detection is a key problem in graph min-
ing. Its main purpose is to partition the network into 
different subgraphs [21]. We use components to divide 

CD(i) =

n∑

j=1

aij

PRi =

j∈Bi

PRj

nj

the contact network into clusters or groups that have 
a high degree of internal cohesion and a low degree of 
external cohesion between different clusters. A com-
ponent is a set of nodes where any two nodes have a 
connected path, while there is no path between any two 
components [22].

Triadic census
We also count the number of different triadic structures 
in the network. The motifs of three nodes in a network 
are the basic units of the network [23]. The triadic census 
is a useful method to explore the micro-level structure of 
a network [24]. Analysis of subgraphs of three nodes (tri-
ads) is just well suited for examining social interactions 
in epidemiology since triads can reflect the micro-level 
spread pattern of an epidemic. For example, in a “linear” 
transmission pattern, all relations are one-directional, 
which is like case A transmitted to case B, B transmit-
ted to case C, and A did not have direct contact with C 
[25]. Since contact networks are undirected networks, 
there are four basic triadic structures, 003 (no contact 
relations between the three actors), 102 (only one rela-
tionship between three actors), 201 (two contact relation-
ships among three actors), 300 (full connected triadic) as 
shown in Fig. 1.

Intervals
Existing studies often use serial intervals to analyze the 
risk of disease transmission. The COVID-19 serial inter-
val is the time interval between the onset of symptoms 
in a primary (infector) case and that of a secondary 
(infected) case [1, 15].

However, because many cases were isolated before 
symptoms appeared, case reports do not show the time 
of symptoms’ onset. Based on the infection routes, we 
construct three intervals and calculate their distribu-
tions. Interval 1 is the time duration between the time of 
diagnosis and the time of isolation of a case. Interval 2 
is the time duration between an infector diagnosis time 
and infectee diagnosis time. Interval 3 is the time dura-
tion between an infector isolation time and an infectee 
isolation time which is the date that a confirmed case was 
isolated for being a contact.

We use Ordinary Least Square (OLS) regression mod-
els to test how intervals affect the transmission level of an 
infectee. The regression formula is expressed as:

where Y is the dependent variable (degree centrality 
and PageRank score), Interval is the independent vari-
able, Control variables include gender, age, severity of 
symptom, and resident  places1 that extracted from case 
reports. In total, 2050 samples entered into the regression 

Y = β0+ β1Interval + Control + ε
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analysis. One of the cases did not report age, which we 
coded as missing value. Intervals also had some miss-
ing values because some cases did not report the date of 
diagnosis and isolation.

Ethics
Ethical approval for this study was received from the 
Ethics Committee of Xi’an Jiaotong University Health 
Science Center (No. 2020–1217), and all methods were 
performed in accordance with the relevant guidelines 
and regulations. We anonymized all data.

Results
The mean age of cases is 35.90 years with a median of 
34 years. The mean degree centrality is 0.74 and the max-
imum number of contacts is 43. The mean value of the 
degree less than 1 represents the end of the outbreak. It 
means that one patient in the network of this outbreak is 
in contact with an average of 0.74 confirmed cases. The 
maximum value of degree centrality indicates that this 
outbreak had one case linked with 43 other confirmed 
cases. The mean PageRank score is 0.0005. At the begin-
ning of the outbreak in 2020, the average degree central-
ity of eight regions in China was 1.136 and the average 
PageRank score was 0.0093 [3]. There is slightly more 
male with a percentage of 54.54%. Most cases (94.19%) 
have a mild symptom. Eight cases are asymptomatic 

infections. The results of descriptive statistics are pre-
sented in Table 1.

Network visualization
Figure  2 shows the contact network of COVID-19 in 
Xi’an from December 9, 2021 to January 18, 2022.2 The 
nodes in the figure represent confirmed cases and the 
edges represent the contact relationships between them. 
A larger size indicates more cases in contact with the 
focal case. There are 2050 cases in the network and only 
759 edges, making the network very sparse, with a den-
sity close to 0. More than 900 components have only one 
node. The epidemiological investigation by the local gov-
ernment did not find some transmission route between 
confirmed cases that resulted in the isolated nodes pat-
tern in Fig.  2. After deleting the isolated nodes, we 
recalculated the network metrics. The average degree 
centrality is 1.399 and the average PageRank score is 
0.0009.

Figure  3 shows the largest component extracted from 
the overall network, which is the largest transmission 
chain during the epidemic. The number of each node is 
the numeral order, a smaller number means the case was 
detected earlier. This component contains 64 confirmed 

Fig. 1 Examples of the triadic census in a network

2 We also make an animation of the dynamics of the contact network based 
on case-reported dates, see https:// youtu. be/ tuXlj alE0_k

https://youtu.be/tuXljalE0_k
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cases (3.12% of all cases) and 63 contact relationships 
(8.3% of all contact relationships). The longest chain of 
infection in the network has 6 steps, we marked one of 
them in red color. Based on the dates of the case reports, 
we speculate that case 5 in this chain first infected case 
12 and case 18, followed by case 12 and case 18 then 
infected other cases, respectively. The node with the 
highest degree centrality is a staff member of a local uni-
versity, diagnosed on December 18, 2021. This case went 
to several shopping malls in Xi’an, thus triggering a mass 
transmission.

Network indicators
Figure 4 demonstrates the distribution of degree central-
ity for all cases in Xi’an, showing a right-skewed distri-
bution. This means most cases have very few contacts. 
There are only three super-spreaders (number of trans-
missions > 10). The degree in this figure indicates the 
quantity of other confirmed patients that each patient 
has contact with.

The triad census is shown in Fig. 5. The percentage of no 
contact relationship between the three actors is 25.99% 
(n = 545,154). The percentage of only one relationship 
between the three actors is 73.93% (n = 1,550,928). The 
percentage of two contact relationships among three 
actors is 0.08% (n = 1752), and the percentage of full con-
nected triadic is 0% (n = 0). The triad census implies that 
the network is sparse, with the vast majority of the motifs 
containing only one or even no contact relations. Com-
bined with the large number of isolated nodes, we specu-
late that there are many hidden contagion paths that have 
not been detected by epidemiological investigation.

Intervals analysis
Figure  6 shows the distribution of intervals between 
case diagnosis time and isolation time. The mean value 
is − 3.91 days, with a minimum value of − 20 days and a 
maximum value of 1 day.

Figure  7 shows the distribution of intervals between 
the diagnosis time of the primary case and the diagno-
sis time of the secondary case. In general, the main dis-
tribution ranges between 0 and 21 days. The mean value 
is 4.20 days, meaning the infectee is diagnosed 4 days on 
average after the previous case was diagnosed.

Figure 8 illustrates the distribution of intervals between 
the primary case isolation time and the secondary case 
isolation time. The overall distribution ranged from 

Table 1 Descriptive statistics of Xi’an COVID-19 cases

Interval 1: the time between diagnosis time and isolation time. Interval 2: the time between the infector’s diagnosis time and the infectee’s diagnosis time. Interval 3: 
the time between infector isolation time and infectee isolation time

Variables N Mean Median S.D. Min Max

Age 2049 35.90 34 17.70 4 days 94

Degree centrality 2050 0.741 1 1.379 0 43

PageRank score 2050 0.0005 0.0004 0.0006 0.0001 0.0165

Interval 1 1483 −3.912 −3 3.427 −20 1

Interval 2 730 4.199 3 3.129 0 21

Interval 3 339 2.976 2 3.131 −8 17

Gender Male Female
2050 1118 (54.54%) 932 (45.46%)

Disease severity Asymptomatic infections Moderate Mild
2048 8 (0.39%) 111 (5.42%) 1929 (94.19%)

Fig. 2 Xi’an COVID-19 contact network (December 9, 2021 - January 
18, 2021)
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Fig. 3 The largest component of the contact network of the COVID-19 outbreak in Xi’an (December 18, 2021 - January 18, 2021)
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Fig. 5 Triad census of Xi’an contact network

Fig. 6 Distribution of intervals between the diagnosis time and the isolation time of confirmed cases (Interval 1)
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− 8 days to 17 days, with a mean of 2.98 days, indicating 
that a case is isolated for an average of about 3 days after 
his or her infectors were isolated.

The trend of the average daily intervals of confirmed 
cases is shown in Fig. 9. We calculate the three intervals 

for each case per day based on the daily case reports and 
then average each of the three intervals for each day to 
obtain each node in the figure below. There is a downward 
trend in the negative differential between diagnosis dates 
and isolation dates (Interval 1). Interval 2 has an upward 

Fig. 7 Distribution of intervals between the diagnosis time of the primary case and the diagnosis time of the second case (Interval 2)

Fig. 8 Distribution of intervals between the primary case isolation time and the secondary case isolation time (Interval 3)
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trend, indicating a gradual increase in the intervals 
between the infectors’ diagnosis time and the infectees’ 
diagnosis time. Interval 3 has the same trend as interval 2.

We further compare whether there is a change in 
interval 1, interval 2 and interval 3 before and after the 
city lockdown by t-test. Results show that interval 1 
declines significantly after the lockdown (− 1.83 days vs. 
-4.06 days, p < 0.001). Interval 2 increases significantly 
after the lockdown (1.77 days vs. 4.34 days, p < 0.001), as 
well as interval 3 increases significantly after the lock-
down (1.58 days vs. 3.04 days, p < 0.05). These results still 
held after we excluded cases on the day of the city lock-
down, 1 day after the city lockdown and 2 days after the 
city lockdown. This suggests that these statistical findings 
are robust.

Table  2 shows the results of the OLS regressions, in 
which the number of contacts (degree centrality) is the 
dependent variable. Model 1 is the baseline model with 
only control variables, while models 2, 3, and 4 include 
interval 1, interval 2, and interval 3, respectively. Among 

the three intervals, only interval 1 has a significant posi-
tive effect on degree centrality, while the coefficients of 
intervals 2 and 3 are insignificant. Because the value of 
interval 1 was mostly negative, the coefficient indicates 
that the longer the case was isolated before diagnosis, 
the fewer people he/she infected. Compared with model 
1, the R-square of models 2, 3, and 4 are all improved to 
some extent, indicating that models with added inde-
pendent variables have better explanatory power.

Table  3 presents the results of the OLS regression, in 
which the PageRank score is the dependent variable. 
Model 1 is the baseline model with only control vari-
ables, and interval 1, interval 2 and interval 3 are added 
to models 2, 3 and 4, respectively. The effect of interval 
1 on the PageRank score is significantly positive, indi-
cating that the longer a case is isolated before diagnosis, 
the fewer direct and indirect contacts he or she has. The 
effect of interval 2 on the PageRank score is significantly 
negative, indicating that the longer the interval between 
diagnosis times of the case and his/her infectee, the lower 
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Table 2 OLS regression results, DV = degree centrality

Standard errors in brackets, * p < 0.05, ** p < 0.01, *** p < 0.001. Interval 1: the time between diagnosis time and isolation time. Interval 2: the time between the 
infector’s diagnosis time and the infectee’s diagnosis time. Interval 3: the time between the infector isolation time and the infectee’s isolation time

Variables Model 1 Model 2 Model 3 Model 4

Age 0.000146 −0.00000354 0.0000555 0.00119

(0.00176) (0.00131) (0.00146) (0.00110)

Gender (male = 0) 0106 0.0485 0.0591 0.00657

(0.0621) (0.0461) (0.0556) (0.0409)

Moderate disease (0 = Asymptomatic) 0.815* 0.615 1.263 0

(0.363) (0.441) (0.817) (.)

Mild disease (0 = Asymptomatic) −0.114 0.143 0.297 − 0.00711

(0.351) (0.431) (0.809) (0.117)

Interval 1 0.0446***

(0.00812)

Interval 2 −0.0233

(0.0129)

Interval 3 0.0120

(0.00800)

Residential areas controlled controlled controlled controlled

Constant 0.107 0.465 −0.279 0.941*

(1.051) (0.964) (1.142) (0.374)

N 2036 1480 727 337

R2 0.029 0.062 0.085 0.073

Table 3 OLS regression results, DV = PageRank score

Standard errors in brackets, * p < 0.05, ** p < 0.01, *** p < 0.001. Interval 1: the time between diagnosis time and isolation time. Interval 2: the time between the 
infector’s diagnosis time and the infectee’s diagnosis time. Interval 3: the time between the infector isolation time and the infectee’s isolation time

Variables Model 1 Model 2 Model 3 Model 4

Age 0.000000474 −0.000000252 0.000000316 0.000000313

(0.000000738) (0.000000598) (0.000000574) (0.000000560)

Gender (male = 0) 0.0000436 0.0000218 0.0000231 0.0000185

(0.0000260) (0.0000211) (0.0000219) (0.0000209)

Moderate disease (0 = Asymptomatic) 0.000398* 0.000320 0.000621 0

(0.000194) (0.000240) (0.000373) (.)

Mild disease (0 = Asymptomatic) −0.0000190 0.000105 0.000340 0.0000545

(0.000188) (0.000235) (0.000369) (0.0000695)

Interval 1 0.0000208***

(0.00000308)

Interval 2 −0.0000110**

(0.00000356)

Interval 3 0.00000225

(0.00000335)

Residential area controlled controlled controlled controlled

Cons 0.000440 0.000587 0.000283 0.000785***

(0.000613) (0.000446) (0.000408) (0.000187)

N 2036 1480 727 337

R2 0.027 0.064 0.081 0.106
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the PageRank score of the case. The regression coefficient 
of interval 3 is positive but insignificant. Relative to the 
baseline model, the R square of the latter three regres-
sion models all improved, indicating an increase in the 
explanatory power of these models.

Discussion
The mean value of the degree centrality of the contact 
network is less than 1, indicating that the outbreak was 
effectively controlled through isolation and mass screen-
ing [11]. Because a large number of infection chains are 
not fully clarified, the contact network for this outbreak 
in Xi’an is very sparse, with a density of less than 0.0001, 
compared to 0.004 for the same area in early 2020 [11].

Based on a report from Shaanxi Health Commission,3 
this outbreak came from a single source, so its compo-
nent number should be one. But the components we find 
are much more than one. There are two possible reasons: 
the first is that there is a large hidden chain of transmis-
sion that was not detected; the second possibility is that 
the source of this outbreak is not just offshore, but that 
multiple sources exist, which is an indication that the 
outbreak existed long before the first case was reported 
on December 9, 2020. Since the data limitation, it needs 
further genetic sequencing to clarify this question.

Because of the very large difference in network size 
between the initial 2020 outbreak and the current 

outbreak (234 confirmed cases vs. 2050 confirmed cases), 
the number of components cannot be directly com-
pared. To compare the level of modules, we calculated 
the modularity scores of two contact networks by using 
the Louvain method [26, 27]. The modularity value of the 
2020 contact network (0.95) and the modularity value of 
the current epidemic (0.99) are similar, indicating a more 
consistent level of differentiation of the networks in the 
two different periods.

A power-law distribution would form a scale-free network 
[28]. We fit the distribution of degree centrality to deter-
mine whether the distribution of this outbreak is a power-
law distribution (aaplot program in Stata). The results of the 
fit are shown in Fig. 10. The fitted line is a straight line after 
taking the logarithm form, with an intercept term of − 0.86, 
a slope of − 2.70, and an R square of 98.9%, indicating that 
the distribution of degree centrality shows a power-law dis-
tribution. This indicates that the contact network is a scale-
free network, which is consistent with the previous analysis 
of the contact network in Seoul, Korea [8].

Scale-free networks imply that a few cases have more 
contacts and most cases have fewer contacts. These 
super-disseminators in this kind of network accelerate 
the spread of the virus [29]. For example, the key nodes 
for the spread of Ebola are these super-dispersers [29]. 
In such a network, the virus can quickly spread to the 
entire connected fraction and cause an outbreak even if 
each node is exposed to a limited number of other nodes 
[9]. On the other hand, such a network is structurally 

Fig. 10 Distribution of degree centrality in logarithmic coordinates

3 http:// sxwjw. shaan xi. gov. cn/ sy/ wjyw/ 202112/ t2021 1209_ 22034 43. html

http://sxwjw.shaanxi.gov.cn/sy/wjyw/202112/t20211209_2203443.html
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vulnerable, i.e., by removing a few nodes with a high 
degree of centrality from the network, the connectivity 
of the network is drastically reduced. By isolating hubs 
of contact networks, a network structural break can be 
caused, and virus transmission can be effectively con-
trolled [9].

By analyzing the diagnosis and isolation time of the 
network infection chains, we find that the mean value of 
the intervals (interval 1) between the diagnosis date and 
isolation date of patients is − 3.9 days. The longest inter-
val is only 1 day. This distribution indicates that the vast 
majority of cases were isolated before diagnosis based 
on their contact tracing information. A simulation study 
using data analysis and epidemiological interventions in 
four Nordic countries found that if the mean time inter-
val between symptom onset and isolation was reduced 
from 12 to 4 days, it resulted in an 85.2% reduction in 
infections and 88.8% reduction in deaths [30]. This sug-
gests that the intervention strategy of this outbreak in 
terms of reducing interval was effective. In our observa-
tion sample, most cases tested positive for nucleic acid 
even during the isolation period. Figure 9 and the t-test 
also show that interval 1 showed a decreasing trend 
after the city lockdown, which indicates that as various 
measures such as lockdown and universal nucleic acid 
test progressed, more and more cases were diagnosed in 
isolation.

The mean value of the time intervals (interval 2) 
between the diagnosis time of the infector and the time 
of the infectee is 4.2 days. For comparison, analysis of 
data from early 2020 of the COVID-19 outbreak in China 
showed a serial interval of 7.8 days in the early stage and 
2.6 days in the later stage [1]. However, vaccines and well-
established contact tracing techniques were not avail-
able at that time. The trend in Fig.  9  and the t-test we 
performed suggest that the city lockdown did not have 
an impact on reducing interval 2. For reference, Hu et al. 
(2021) found that reducing the delay in implementing an 
effective detection and follow-up program from 50 days 
to 10 days reduced infections and deaths by 35.2 and 
44.6% respectively [30]. This implies that the local health 
department should adopt more effective interventions 
during the outbreak, especially contact tracing, to reduce 
the interval between the infector’s diagnosis time and the 
infectee’s diagnosis time.

The mean value of intervals (interval 3) between the 
isolation time of the infector and infectee is 2.9 days. 
The smaller the number, the more efficient the public 
health department is in identifying and isolating the 
close contacts of confirmed cases and cutting off the 
source of infection. A negative value indicates that the 
infectee had been isolated before the infector was iso-
lated. Figure  9 and the t-test we performed illustrate 

that the city lockdown did not reduce the isolation 
intervals. Possibly, it is because most later cases are 
those people with long incubation periods. In summary, 
our results demonstrate that city lockdowns mostly 
stop the further spread of the virus but hardly enhance 
the efficiency of confirming and tracking those already 
infected people.

The regression results indicate that the shorter interval 
of the time to diagnosis and isolation of the case (inter-
val 1), the weaker the transmission capacity of the case. 
Therefore, effective and timely contact tracing and isola-
tion measures are efficient non-pharmacological inter-
ventions. The shorter the interval between the diagnosis 
time of the infector and infectee (interval 2), the higher 
the whole network centrality (PageRank score) of the 
infectee. We speculate that this may be due to sample 
selection bias. The infectee that was quickly tracked and 
diagnosed was most likely already in a relatively large 
chain of infection and therefore had more direct and 
indirect contacts.

Conclusion
We constructed a dynamic contact network between 
infector and infectee based on 2050 confirmed cases of 
COVID-19 (Delta variation) in Xi’an by end of 2021. The 
network is a scale-free network with an average degree 
centrality of 0.741. The network contains 1291 compo-
nents, and the largest component contains 64 cases and 
63 infection routes. There are multiple infection routes 
that were not detected in this outbreak. The mean inter-
val (interval 1) between case diagnosis time and isolation 
time is − 3.9 days. The mean of the interval (interval 2) 
between the infector’s diagnosis time and the infectee’s 
diagnosis time is 4.2 days. The mean of the interval (inter-
val 3) between infector isolation time and infectee isola-
tion time is 2.9 days. After the city lockdown, interval 1 
decreases, and interval 2 and interval 3 increase.

There are some limitations to our work. First, it lies 
in the fact that the epidemiological survey did not fully 
reveal all infection routes, so the contact network of our 
study is only a partial reflection of the real transmission 
network. Second, this contact network is only based on 
data from one area in China. Data from more areas can 
be integrated in the future for multi-regional comparison.
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