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Abstract 

Background:  With more than 160 000 confirmed COVID-19 cases and about 30 000 deceased people at the end of 
June 2020, France was one of the countries most affected by the coronavirus crisis worldwide. We aim to assess the 
efficiency of global lockdown policy in limiting spatial contamination through an in-depth reanalysis of spatial statis‑
tics in France during the first lockdown and immediate post-lockdown phases.

Methods:  To reach that goal, we use an integrated approach at the crossroads of geography, spatial epidemiology, 
and public health science. To eliminate any ambiguity relevant to the scope of the study, attention focused at first on 
data quality assessment. The data used originate from official databases (Santé Publique France) and the analysis is 
performed at a departmental level. We then developed spatial autocorrelation analysis, thematic mapping, hot spot 
analysis, and multivariate clustering.

Results:  We observe the extreme heterogeneity of local situations and demonstrate that clustering and intensity are 
decorrelated indicators. Thematic mapping allows us to identify five “ghost” clusters, whereas hot spot analysis detects 
two positive and two negative clusters. Our re-evaluation also highlights that spatial dissemination follows a twofold 
logic, zonal contiguity and linear development, thus determining a “metastatic” propagation pattern.

Conclusions:  One of the most problematic issues about COVID-19 management by the authorities is the limited 
capacity to identify hot spots. Clustering of epidemic events is often biased because of inappropriate data quality 
assessment and algorithms eliminating statistical-spatial outliers. Enhanced detection techniques allow for a better 
identification of hot and cold spots, which may lead to more effective political decisions during epidemic outbreaks. 
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Background
With the worldwide expansion of COVID-19 in the spring 
of 2020, people were urged to rethink their relationship with 
space and their everyday environment. Social distancing, 
isolation, quarantine and community containment created 
an infinity of invisible barriers that might be considered as 
a general “rebordering” process affecting space and society. 
Against this, some analysts support the idea that “viruses 
know no borders” [1, 2], meaning that travel bans and fences 
are inappropriate measures for attaining the objective of 
protecting people against a respiratory virus.

The legitimacy and acceptability of quarantine and self-
protection initiatives is widely discussed in the literature 
today, especially since the 2000s and SARS-related expe-
riences, with mitigated and contradictory conclusions 
[3–6]. Mass quarantine is often regarded as a controver-
sial measure, but the isolation and treatment of symp-
tomatic individuals are expected to be more effective 
responses to emerging epidemics.

In fact, isolation strategies imply partitioning space in 
a variety of ways. The operation is as challenging as pre-
venting the spread of germs, mainly because human soci-
eties are built on proliferating intertwined relationships 
taking the form of contacts, flows, and exchanges [7]. In 
social terms, boundaries tend to depress interactions to 
such a point that forced immobility, limited exchanges, 
and deficient communication are signs often associated 
with decay or even death [8].

These considerations lead us to the question of how the 
coronavirus crisis has been managed in epidemiological 
and geographical terms [9]. Dozens of countries world-
wide have been forced to stringent lockdown decisions, 
be they limited to cities, counties, regions, or even entire 
states. The variety of answers adopted by national or local 
authorities diversely impacted by the pandemic produced 

complex situations: regions and population groups 
affected by similar levels of contamination could be con-
strained by severe movement restrictions or, rather the 
opposite, allowed to move freely. Such seemingly incon-
sistent decisions derive from the configuration of health 
systems, diverging legal frameworks, diversely stratified 
decision-making processes, but also from the inability 
to identify emerging clusters. Uncertainty in this area 
produces deleterious effects, such as global “blind” deci-
sions, the effectiveness of which is not guaranteed. This 
“sideration” effect associated with seemingly inconsistent 
decisions is sometimes assimilated with chaos or phase 
transition [10, 11].

France is one of those countries which adopted for a time 
global lockdown as the best way to wage war against the 
coronavirus (March 17-May 11, 2020) [12]. The conditions 
for this stringent lockdown were fixed by Decree 2020–293, 
March 23 [13]. People were effectively placed under house 
arrest. Outdoor circulation was authorized within a dis-
tance of one kilometer from home for a period of one hour 
a day. All economic and social activities were idled, with the 
exception of essential services such as health care, energy 
and supply trade, food shops, and all activities open to spe-
cial arrangements such as remote work (education, bank, 
insurance, etc.). A number of industrial facilities, ware-
houses, and wholesale markets were authorized to operate 
but decisions were taken on a case-by-case basis, which 
contributed to creating confusion. Breach of the obligation 
was penalized by a fine. The lockdown was global, e.g. the 
whole country was affected by the anti-epidemic measures 
without local exception in metropolitan France.

On June 22, the day when primary and second-
ary schools reopened, the number of diagnosed cases 
reached 160  000 and the number of deaths was about 
30  000. With 454 deaths per million inhabitants, the 
country stood in sixth position among the most impacted 
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places worldwide -leaving aside microstates such as San 
Marino and Andorra. This average result conceals a 
much more complex reality where local extreme situa-
tions compensate for areas almost entirely spared by the 
virus. The national crisis has been acute, and the strin-
gent lockdown strategy adopted by the government has 
been hotly disputed [5]. Some observers find that the 
lockdown was very effective in reducing the spread of the 
disease [14], others think that the price to be paid was 
really heavy, especially in economic terms.

While most scientific studies focus on assessing the 
extent of the spread through more or less conventional 
geo-epidemiological models with the intent to simulate 
further infection developments -SEIR compartmental 
models or agent-based models, out of many examples-, 
we believe that thoroughly re-analyzing official statistics 
about COVID-19 is the best way to support public health 
decision-makers. Modeling is an excellent option when the 
conditions of collection and processing of data are fully 
specified and mastered, which is not the case with many 
COVID-19 official databases. When these conditions are 
not met, modeling -and especially the array of methods 
used in the area of epidemiology- often produces errors, 
hence the inability of COVID-19 models to “predict” 
future disease developments, particularly in spatial terms 
[15]. To put it otherwise, data quality assessment is a firm 
condition for studying the epidemic further. A number of 
studies used heterogeneous data resources erroneously, 
particularly at an international scale level, which produced 
inconsistent results despite the introduction of highly effi-
cient algorithms and modeling techniques.

We hypothesize that the debate has been biased in dif-
ferent ways. (1) The attention placed on deaths (mortality, 
lethality, morbidity, fatality) has left aside other relevant 
indicators able to address active epidemic propagation 
[16, 17]. (2) Through their crucial role in managing the 
crisis and defeating the pandemic, health structures and 
care systems have imposed their own rationale [18, 19]. 
(3) We assume that the most advanced mathematical 
models cannot compensate for degraded initial statistics, 
which often produces mixed results [20, 21]. (4) Scale is a 
problematic topic. Most epidemiological research follow 
a micro or macro scale approach, but intermediate levels 
are neglected. This is a major shortcoming for surveillance 
authorities whose mission is the pursuit of excellence in 
care for persons through territorial management.

Against other studies that use the number of deaths 
and confirmed COVID-19 cases in conjunction with 
low-quality and “almost random” socio-demographic 
or environmental covariates -e.g., whose relation-
ship with the epidemic is more suspected than con-
firmed [16, 22]-, we take as a premise that introducing 

ancillary data into simulation models might be more 
effective once spread patterns are better identified. 
This could break the cycle of powerlessness for national 
authorities who realize little benefits from macro-scale 
infectious disease simulation tools or micro-scale inter-
personal contamination models.

Our objective is to assess the efficiency of public lock-
down policy in limiting spatial contamination through 
the analysis and use of official statistics in France dur-
ing the first epidemic outbreak and its immediate after-
math. Considering the organic relationships between 
health care, national security, and statistical production 
systems, particular attention will be paid to the under-
standing of data quality because of frequent misuses of 
statistics [23, 24]. This study is positioned at the cross-
roads of geography, geomatics engineering, spatial epi-
demiology, and health sciences [25].

Early epidemic detection is a key opportunity for the 
authorities. During the emergence phase of a disease, 
efficient measures can still be adopted and implemented, 
not only in the area of health prevention, but also 
through geographic-based containment decisions. Global 
lockdowns are last resort solutions; they should be taken 
as evidence of a failure of prevention policies. During the 
first COVID-19 outbreak worldwide, few countries man-
aged to contain the spread of the virus. One important 
reason that led to this pandemic may come from our 
inability to use geographic-based tools to isolate popu-
lation at the local level. Indeed, whether this is due to a 
technologic, conceptual or logistic gap of knowledge, it 
appears clearly nowadays that addressing the early spread 
of pathogens across defined areas would be useful before 
infected populations develop symptoms and eventually 
be treated in hospital units. This supposes that mass, 
vs. random, vs. targeted testing be conducted as early as 
possible among broader sections of the population, be 
it through direct population testing or indirect environ-
mental detection.

Here, we propose to retrospectively re-analyze the data 
we had in hands at the time of the first French lockdown 
using a geographic-based approach, including clustering 
and mapping processes, to improve preparedness toward 
future pandemics. Specifically, we studied the spread of 
the virus using spatial autocorrelation, thematic map-
ping, hot spot clustering, and multivariate analysis. This 
work shall be seen as a contribution to the development 
of common tools, methods and strategies able to improve 
detection and monitoring systems, so that policy-makers 
can assess local epidemic status and trigger most appro-
priate responses. These methods can readily be adapted 
to virtually any location worldwide.
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Methods
COVID‑19 metrics, indicators, and maps
Selecting the most appropriate statistical-spatial variables 
supposes at first to get insight into the French statistical 
system developed under the authority of Santé Publique 
France (France Public Health) and the French Ministry 
of Health and Solidarity [26]. Although WHO data col-
lection about COVID-19 started January 11 [27], France 
begins to develop its own statistical database on March 
3, e.g., 14  days before the general lockdown is declared 
(March 17). The observation system is not immediately 
operational and gains momentum through a stepwise 
process. The number of core indicators is very limited 
and based almost exclusively on data gathered through 
hospital units or associated services (SOS médecins, bio-
medical analysis laboratories). Public communication 
focuses on the number of reported hospital admissions, 
admissions in intensive care units, and deaths, through 
the form of an official dashboard associating raw figures, 
graphs, and maps.

Core information is provided by the ARS (Regional 
Health Agencies) network based on data from local hos-
pital units and health services. Public dissemination is 
ensured at the department and region levels, thus reflect-
ing the administrative structure of the ARS [28]. These 
are agencies created in April 2010 following an important 
reform of the health care system (PNR, National Reform 
Program, Law HPST (Hospital, Patients, Health, Territo-
ries) dated July 21, 2009). French regional divisions derive 
from Law NOTRe (New Territorial Organization of the 
Republic) of August 7, 2015, which granted enhanced 
competencies to regions encompassing a larger number 
of departments. The COVID-19 management system 
derives from these earlier reforms.

A “vigilance map” developed by the authorities and 
color-coded green-orange-red defines alert levels and 
subsequent lockdown enforcement measures [26] 
(Fig. 1). Figures and maps are thus used as a justification 
for further political and administrative decisions whose 
limits are ultimately defined by the government. Local 
prefectures whose mission is to maintain law and order 
and safeguard internal security are granted with enforce-
ment powers. The regional prefects are also chairmen of 
the Supervisory Board of the ARS. 

Assessing the quality of official statistics
These databases call for various comments about poten-
tial uses, limitations, and significance, all the more so as 
data collection procedures are not detailed by the author-
ities. This implies for us to evaluate the relevance and 
usefulness of statistical information ex-post:

(1)	 In the absence of any information at a sub-depart-
mental level, many geographical analyses are sim-
ply impossible to carry out. Unlike other countries, 
there is for instance no way to address urban vs. 
rural discrepancies as regards the virus spread in 
France [29]. More refined data exist, but they are 
not released publicly. Public information mainly 
comes from the network of hospital units belong-
ing to the official list of frontline medical centers, or 
from the list of biomedical city labs. Such a limita-
tion is even starker for intra-urban analysis.

(2)	 This fundamental lack of data on the issue produces 
a side effect. The official geography of COVID-
19 is entirely driven by administrative vector fea-
tures. The coronavirus seemingly shows respect 
for departmental and regional boundaries whose 
demarcations constrain dissemination patterns. The 
vigilance map elaborated by Santé publique France 
is a primary example of how the government and 
public administrations have the upper hand on the 
epidemic [30]. The switch from one color-coded 
classification to the next one is most often done at a 
regional level, which means that the epidemic pro-
ceeds bureaucratically.

(3)	 Surprisingly, community/city medicine is evacuated 
from the COVID-19 observation system. The only 
exception is database 2, replaced by database 3 after 
May 13 (Fig. 1). Everything seems to happen inside 
the walls of a limited number of hospitals. Database 
4 is the only one relating sick population with hos-
pital admissions. The consequences of this situa-
tion are manifold and profound. The coronavirus is 
apprehended almost exclusively through the lens of 
critical pathological conditions requiring technical 
targeted therapy that cannot be achieved outside 
specialized hospital units. Asymptomatic people, 
infected individuals on home care -be they tested or 
not-, and low-risk populations remain hidden in the 
background.

(4)	 EHPAD (residential care facilities for dependent 
elderly persons) and EMS (medical-social health-
care institutions) counting a large number of casu-
alties have been left aside up to April 1 because of 
their specific position within the national health 
care system.

(5)	 To better understand what is at stake with these 
databases, it should be noted that the authorities 
take great care to avoid the term prevalence. Santé 
publique France produces two important indica-
tors: (a) the incidence rate, otherwise called epi-
demic activity, is defined as the number of posi-
tive tests per 100.000 inhabitants over one week; 
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(b) the RT-PCR test positivity rate is defined as 
the number of positive tests as a percentage of 
the number of tests conducted over one week. 
Prevalence defined as the number of infected 
people within the general population is never cal-
culated. Given that a very small number of tests 
have been conducted in France, prevalence as the 

only concept able to assess the global spread of 
the virus remains out of reach. In other words, the 
tested sample is so small that it should never be 
considered representative both in statistical and 
geographical terms. We have observed repeated 
confusion as regards these concepts, including in 
international databases [31–33].

Fig. 1  Santé publique France main databases and indicators about the COVID-19 epidemic, and derived vigilance map.  Source: Own elaboration 
based on data from Santé publique France, Etalab. There are five main databases to be used for COVID-19 monitoring. The sixth one derives from 
previous data 1–3 and supports decision making for the authorities in charge of defining legal requirements and concrete steps to be taken. These 
derived indicators serve, in turn, as a basis for further mapping through color-coded areas. The process is top-down and straightforward
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(6)	 To sum up, just like in other countries where inte-
grated care pathways have been developed, the 
entire observation system is based on monitoring 
the epidemic through the management of patients 
and among them the ones suffering from the worst 
COVID-19 forms. Figure  2 shows how much this 
process is narrow in scope and reductionist in 
nature both in statistical and spatial terms. 

Addressing COVID‑19 statistically
Given these constraints on statistical data, our attention 
will focus on three databases:

Database 1Hospital database (March 19-June 27) 
relating to the COVID-19 epidemic. This provides 
information about the COVID-19 situation in refer-
enced hospital units. Data are supplied at departmen-
tal and regional levels. There are four available varia-
bles: (1) daily number of newly hospitalized persons; 
(2) daily number of new intensive care admissions; 
(3) daily number of newly deceased persons; and 
(4) daily number of new home returns. Our atten-

tion focused on hospitalized persons and deceased 
patients.
Database 2 Diagnostic tests conducted in city labo-
ratories (March 10-May 26). There are two variables: 
total number of tests and positive tests. Data are 
supplied at a departmental level. The 3labos surveil-
lance system used an automated data transmission 
process conducted by three laboratories in charge 
of sample centralization (Eurofins, Biomnis, and 
Cerba). The system was operational during the gen-
eral lockdown. Update was stopped on May 29 2020 
for unexplained reasons.
Database 3Results of COVID-19 virological tests 
SI-DEP (May 13-June 27). The SI-DEP database is 
presented as a more finalized version of database 2 
although data collection takes a different form. Tests 
conducted in city laboratories and hospital units are 
mixed. Thus, there is no continuity with database 2. 
The system is still operational today.

For a full description of the above, see the corre-
sponding web pages of Santé publique France (see sec-
tion Availability of data and materials).

Fig. 2  Care pathways, general prevalence. Visible and invisible people from a statistical and geographical perspective.  Source: Own elaboration 
based on data from Santé publique France, INSEE. This flow chart should be read from top to bottom. On the left side and in green are the exits 
from care pathways. On the right side and in orange are to be found the visible individuals. The blue color introduces the geographical variable 
and also defines the interface between civil society and health care system. There is no information before testing. The authorities do not provide 
any further details about community medicine. The lower part of the chart depicts the procedure and arrangements for patient care. Some 
hospital units involved in the COVID-19 system at different degrees remain out of sight. Despite the number of cases observed, EHPAD and EMS are 
marginally present
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These datasets were downloaded from the govern-
mental online platform on June 30 2020. Most primary 
indicators show drawbacks implying different ex-post 
rectifications. These are conducted by Santé publique 
France. By definition, registered patients were tested 
positive, which motivated their inscription into the data-
bases. The actual cause of death reported in database 1 
is a much-disputed issue because of potentially associ-
ated comorbidities. This has given rise to the controversy 
about deaths “reported with COVID-19” or “caused by 
COVID-19”.

The idea is to mirror hospital metrics with the closest 
approximation to a prevalence indicator, e.g., test results. 
The advantage of database 2 is double: it allows focusing 
on community medicine, with an all-embracing dimen-
sion on civil society, and it provides the best proxy for 
general prevalence. Unfortunately, this database is sup-
pressed on May 26.

Timing is determined both by data availability and the 
chronology of events. Figure  3 provides an overview of 
the COVID-19 legal management process. The analysis is 
completed once the most important movement restraints 
are lifted at the end of June with schools reopening and, 
simultaneously, the beginning of summer holidays and 
people regaining mobility. All cards are then reshuffled. 
July 10 might be seen as a symbolic-legal date. The March 
10-May 26 period (database 2) is thus crucial because it 
covers the worst phase of the epidemic. At both ends of 
the curve daily deaths in hospitals are about one hundred. 

We intend to map the epidemic at a sub-national level. 
The scale adopted must always be as accurate as possible 
(department). The solution to be favored will be to map 
the closest approximation to a prevalence indicator (tests 
and positive tests), voluntarily leaving aside the manage-
ment of patients within hospital units. For an enhanced 
clarity and comparability of results, all indicators will 

Fig. 3  Brief chronology of COVID-19-related events in France (January-July 2020, first epidemic outbreak).  Source: Own elaboration based on data 
from Santé publique France
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refer to the local population estimates (2020) provided by 
the INSEE (National Institute of Statistics and Economic 
Studies). Besides, we assume that composite, standard-
ized indicators are not the most appropriate variables to 
consider with databases that are so degraded. For that 
reason, we will use raw isolated data within which out-
liers are readily identifiable. The idea is to avoid adding 
mathematical artifacts and blurring information through 
the development of complex indices. This strategy is an 
adaptation to the paucity and low reliability of informa-
tion. Furthermore, attention focuses on metropolitan 
France because French overseas departments present a 
very different epidemiological and ecosystem profile, and 
suffer from a flawed statistical coverage. The number of 
metropolitan departments entering the analysis is 96.

Mapping and clustering
Processing will take place in three stages:

(a) Spatial autocorrelation

At first, with the intent to quantify the spatial rela-
tionships between department features, we generated a 
spatial weights matrix to be used as an input for further 
statistical developments. Modeling spatial relationships 
was made using the K-nearest neighbors’ option because 
of the varying size of feature units (the smallest units 
-Paris and its periphery- represent only 1 to 2% of the 
area covered by the largest metropolitan departments) 
and because of large variations in the spatial distribution 
of data. The K number of neighbors was fixed to eight. 
This method is also deemed to be more effective with 
data values that are not normally distributed, e.g., when 
known biases exist.

Then we calculated spatial autocorrelation (Global 
Moran’s I) using the ratio of cumulated data to total pop-
ulation (‰), with the intent to keep global population 
as a constant reference rather than focusing on infected 
people or sick patients. This inferential statistic takes as 
a reference the null hypothesis (randomly distributed 
attributes) and computes expected and observed index 
values. From this, the algorithm derives a z-score and 
p-value for each chosen variable. If the p-value is statisti-
cally significant, the null hypothesis is rejected. A posi-
tive z-score means that the spatial distribution is more 
clustered than a random distribution. With a negative 
z-score, the distribution is more spatially dispersed than 
would be expected.

These operations are intended to assess the overall pat-
tern and trend of our data.

(b) Thematic mapping

Secondly, we produced a series of thematic maps illus-
trating spatial dissemination patterns for the two periods 

under consideration (lockdown and lockdown lifting). 
Processed data are those related to cumulated daily new 
cases, not overall daily cases. The difference between 
the two lies in contaminated individuals turning nega-
tive, the number of which is never recorded. Consider-
ing that interdepartmental variations are considerable, 
we adopted a specific discretization method based on a 
one-point standard deviation. The number of thresholds 
increases as statistical heterogeneity grows. Graduated 
colors represent the ratio of cumulated daily new cases to 
total population, and graduated symbols the raw number 
of cumulated new cases. We did not apply any normaliza-
tion technique to the ratio, to preserve data integrity and 
avoid removing spatial outliers, but we used the Natural 
Breaks (Jenks) discretization method to fix the size of 
symbols. Each specified period has its own symbology 
parameters, which means that we chose to promote an 
enhanced synchronic spatial discretization at the expense 
of diachronic comparison. This was a natural choice, 
given that each period has its own databases.

To understand the problem more clearly, it should be 
added that test-related data (purple and orange) are glob-
ally underestimated (Fig. 5 and 6). The number of identi-
fied positive people is too small to be representative of the 
population at large and of the overall contamination rate. 
In France, during the period March 10-May 26, 423 000 
tests were conducted, excluding the biological tests car-
ried out in hospitals. Considering that the French popu-
lation reaches 67 063 000 inhabitants, the overall testing 
rate over the peak crisis phase is only 6.3‰, with wide 
interdepartmental variations. Caution should be exer-
cised with these figures since false negative tests might 
achieve a rate of 10 to 40% depending on the adopted 
RT-PCR sampling method [34]. Furthermore, there is no 
way to eliminate multiple counting (people tested many 
times). Similarly, hospital-related information (blue and 
red) leave aside the cohort of sick people treated as out-
patients or by home care. EHPAD and EMS data do not 
appear and thematic mapping does not account for the 
temporal variability of the phenomena studied.

(c) Data clustering

Given the complexity of analytical result findings, we 
decided in the final phase to draw up a synthesis of rel-
evant information through the form of data clustering 
[35]. This venture might be seen as a second assessment 
of the coronavirus crisis during its most critical phase. 
In the absence of sufficient data consistency and because 
of a degraded significance of results, we stated that we 
would not map the post-lockdown situation as described 
by the SI-DEP database.

Based on most reliable outcomes, we selected two clus-
tering methods:
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(1)	 Hot Spot analysis (Getis-Ord Gi*) addresses spa-
tial variability through the calculation of z-scores 
and p-values for each department feature [36]. The 
resulting data allow for the determination of cold 
and hot spots whose characteristics are determined 
by constraint parameters. The goal was not here to 
identify outliers, hence the choice of this algorithm 
focusing on neighborhood associations. Unlike offi-
cial mapping, these associations are disconnected 
from the hierarchy of administrative networks. The 
conceptualization of spatial relationships is based 
on fixed distance and Euclidian distance is used. 
Each feature has at least one neighbor. Hot spot 
analysis was applied on two variables identified ear-
lier as the most significant inputs (positive tests and 
new hospital admissions).

(2)	 Multivariate clustering has been chosen to com-
plement the previous analysis and provide for a 
synthesis without neighboring constraints. This 
method detects feature similarity using K-Means 
and optimized seed locations [37]. The algorithm 
identified eight clusters, but we decided to narrow 
these results to three groups with the idea to map 
France on a three alert level basis, as Santé pub-
lique France did. Unlike Hot Spot analysis, multi-
variate clustering does not consider contiguity as a 
parameter, hence an easier detection of spatial out-
liers. For this procedure, four input variables were 

used (tests, positive tests, hospital admissions, and 
deaths).

SPSS statistics 26 (IBM) and ArcGIS pro 2.5 (ESRI) 
were used for statistical analysis, thematic mapping, and 
advanced clustering.

Results
Spatial autocorrelation
Global statistics weighted by the local estimated popula-
tion offer clear lessons (Table 1). At first, general preva-
lence remains at a low level. Average positive test rates 
only reach 0.5‰ during the peak crisis phase and 0.26‰ 
during the lockdown lifting period. But these are to be 
interpreted with regard to the low number of tests con-
ducted (maximum of 33 and 52‰ in both periods respec-
tively). We also observe a surprising reversal: during the 
first phase, the mean hospital admission rate is about 
three times higher than the positive tests rate, which 
shows to what extent dissemination has been underes-
timated. To put it otherwise, the pandemic was already 
at an advanced stage of development when the first key 
metrics started to be published. This will have many out-
comes in terms of spatial analysis. Identified clusters will 
not be the initial contamination areas, but further “meta-
static” sites. This is confirmed by Fig. 4 on a local basis.

Spatial autocorrelation analysis (Global Moran’s 
I) corroborates the heterogeneity of statistical 

Table 1  Descriptive statistics and Global Moran’s I summary, ratio of cumulated data to total population (‰)

Source: Own elaboration based on data from Santé publique France

N is the number of spatial units (the departments of metropolitan France). Database 2 (tests conducted in city laboratories) returned a zero information about the two 
departments of Corsica during the general lockdown phase. This could mean that no tests and no positive cases were reported during the first period. Other options 
might be considered: no information was transmitted, or Santé publique France found that delivered data were unreliable
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distributions. With almost null p-values and high 
z-scores, the estimated likelihood that clustered pat-
terns could be the result of random chance is less than 
1%. And this is valid for all four indicators in both 
phases. Z-scores increase as much as the analysis nar-
rows its focus on the riskiest situations as regards the 
impact of the virus on health. These figures also show 
that the significance of further thematic mapping and 
clustering is extremely high. Slightly lower z-score val-
ues in the second phase imply that clustering is almost 

unaffected by the spread of the virus in statistical 
terms, e.g. propagation is not associated with impaired 
clustering effects. The information is counterintuitive 
because dissemination is often associated with the idea 
of dilution.

Mapping the virus spread during the peak coronavirus 
crisis
Figure  5 shows how much the official dashboard dero-
gates to some statistical reality while focusing almost 

Fig. 4  Positive tests, hospital admissions, and deaths by department as a proportion of local population, lockdown phase.  Source: Own elaboration 
based on data from Santé publique France, INSEE. Data sorted out by positive tests conducted in city labs. The variety of local situations is extreme. 
This chart alone invalidates the “blind” lockdown strategy adopted by the French government. In a limited number of cases (green), the “logical” 
hierarchy of indicators is respected (positive tests > hospitalizations > deaths). This logic implies that the number of persons tested positive is 
greater than the number of hospitalized patients, considering that only a small proportion of infected people develop a severe form of the disease. 
Similarly, the number of hospitalized people should be greater than the number of patients who passed away with/because of SARS-CoV-2, given 
that mortality is limited within the cohort of hospitalized patients. Most often (black), the overall number of positive tests conducted in city labs 
is less than the number of hospital admissions (hospitalizations > positive tests > deaths). The position becomes even more curious (red) with 
positive tests below the level of COVID-19 related deaths (hospitalizations > deaths > positive tests). This situation illustrates the varying reliability 
of the official database during the emerging phase of the statistical system dedicated to COVID-19, both through time and space. There are several 
possible reasons for this. (1) The departments registering a small number of COVID-19 cases took more time to implement the statistical platform; 
(2) Frontline hospitals were already conducting their own tests but these are not reported in the city labs database, which interferes with the results; 
(3) The reliability and homogeneity of RT-PCR testing procedures might explain certain local discrepancies; (4) The number of reporting public 
hospital or clinics and city labs has fluctuated over time
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exclusively on ARS databases. This document will be read 
from (D) to (A) and complemented by Fig. 6 for further 
geographical names information.

(D) and (C) are quite similar to the vigilance maps 
provided by the French authorities during the lock-
down (Fig. 3). The initial cluster located in Alsace, Lor-
raine, and around Belfort is clearly identified. However, 
the Île-de-France appeared at a very early stage as the 
most important hot spot on a national scale level. This 
is where the greatest number of deaths has been recog-
nized, with the highest mortality rates observed in the 
area of Paris, Hauts de Seine and Val de Marne. On May 
26, there were 40  088 cumulated new hospital admis-
sions and 7  106 deceased patients in the Île-de-France 
(38% of the total in France).

Spatial dissemination is part of a twofold logic -zonal 
contiguity and linear development along traffic routes. 
Contiguity is an obvious phenomenon insofar as the 

departments neighboring the initial Alsace cluster are 
the first ones to be impacted. As the distance to this 
cluster increases, mortality and hospitalization rates 
drop more or less steadily.

This areal logic is contradicted or completed by 
another dissemination process using traffic lanes and 
adopting a radial pattern centered on Paris:

(1)	 The Rhône Valley is the first development axis, 
with Lyon and Marseille appearing early as major 
clusters behind Paris. This southward dissemina-
tion was not identified by the authorities. The gen-
eral death rate is here much lower than the one 
observed in Northern France.

(2)	 A second axis extends from Paris to South-West 
France through still highly rural areas along what 
seems to be the A20 highway.

Fig. 5  SARS-CoV-2 dissemination patterns by department, March 10-May 26, stringent lockdown period.  Source: Own elaboration based on data 
from Santé publique France, INSEE. This document mirrors screening programs with the treatment of patients in hospitals. From (A) to (D), the 
entire treatment chain appears implicitly, following the reductionist model described in Fig. 3. The number of people concerned decreases from 
one map to the next one. The closest approximation to a general prevalence rate is in (B). This map is the most important one because it shows 
the virus spread in its ‘native’ form, e.g. outside hospital channels. Data collection started at different times for database 1 and database 2. Statistical 
consistency increases over the first weeks of March as the reporting system gains momentum
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(3)	 A third axis heading West connects Paris with 
Nantes.

(4)	 At last, two subsidiary axes link Paris with Lille and 
Strasbourg. These act in a less direct visible way, 
because they interact with areas already impacted 
by the virus on a neighboring-contiguity basis.

Through this, Paris appears to be the main contami-
nation site in France. Observing this crossed axial-areal 
logic during the lockdown implies that dissemination 
had already started before March. There is a time lag 

between the events and their cartographical counter-
effects. Particular attention must be paid to the last 
days before the official lockdown started (March 17, 
12  h). The French government announced quarantine 
enforcement in advance, which resulted in population 
movements in anticipation of curfew orders. Eleven to 
12% of the population living in Paris would have left the 
capital to settle in a secondary place of residence away 
from the city [38].

Even more interesting is the analysis of diagnostic 
tests in (A) and (B). Attention is here focused on the 

Fig. 6  Location map.  Source: Own elaboration based on data from NASA SRTM (Shuttle Radar Topography Mission) program, GADM (Database 
of Global Administrative Areas) 3.6, IGN (French National Geographical Institute). This map serves as a resource for interpreting Figs. 5, 7, and 8, 
especially through the identification of place names
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population tested outside hospital units. The geography 
of positive tests is quite surprising. Five non-neighboring 
clusters appear:

(1)	 The main cluster around Paris covers six depart-
ments, including Eure, Picardie and Marne. The 
weight of this cluster is overwhelming at a national 
level: 22  188 positive tests are reported, account-
ing for 55% of infected people. Furthermore, these 
results are probably underestimated because Paris 
and its outskirts have conducted considerably fewer 
diagnostic tests than other provincial departments.

(2)	 The primary Eastern contamination cluster is much 
more limited spatially. The perimeter only covers 
four departments with 1  716 positive cases (4% of 
the total). The small size of these figures coupled 
with the saturation observed in the hospital units 
in the Grand-Est and with the high local death rate 
raises many questions that would require deeper 
consideration. Did local hospitals suffer from a 
major shortage of equipment? Do we have to blame 
specific genetic profiles or did treatment protocols 
prove to be inappropriate?

(3)	 A third rural cluster covers the departments of 
Indre, Cher, and Nièvre.

(4)	 In Southern France, the situation is quite different. 
With statistics provided at a department level, spa-
tially limited clusters are less visible. The Rhône Val-
ley fades away and two local contamination clusters 
emerge in Marseille and Montpellier, plus another 
grouping in the Gers and Hautes-Pyrénées depart-
ments. These early contamination areas were given 
little attention. The disease pattern differs from the 
Northern profile: the infection gives rise to a lower 
number of hospital admissions and a reduced num-
ber of deaths.

To sum up, we identified three changing cluster 
patterns:

-In the North, corresponding to the Île-de-France 
and Vosges: limited number of diagnostic tests, mas-
sive hospital admissions, and high death rates.
-In the South, centered on local urban clusters: 
enhanced screening strategy, limited hospital admis-
sions, and low death rate.
-The Pyrenean and Berry-Nivernais clusters have a 
pattern quite similar to the previous one, with a “con-
trolled” epidemic dissemination avoiding the satura-
tion of hospital capacities. However, these develop in 
rural areas and their connectivity within the national 
transportation grid is more limited.

Mapping dissemination during the lockdown lifting period
Figure  7 illustrates the post-lockdown situation up to 
the beginning of the summer break. The creation of the 
SI-DEP database does not allow anymore differentiation 
between community and hospital testing centers, hence 
a strong correlation between (A), (B), (C), and (D). This 
new strategy for statistical data management necessarily 
strengthens the power of the hospital system. Informa-
tion is globally blurred and less significant. The geograph-
ical pattern identified before seems to settle down. The 
number of tests increases, positive results fall as well as 
the overall number of hospital admissions and deaths. 
All indicators turn green, although various warning 
signs start to emerge suggesting that the epidemic con-
tinues to spread silently. Many unexpected outliers arise: 
Côtes-d’Armor, Deux-Sèvres and Vienne, Gard, Loiret 
and Yonne, Creuse are departments contiguous with the 
previously identified clusters, which means that areal dis-
semination is still ongoing. This evolution heralds further 
summer developments with the virus spread reaching the 
country’s remotest areas.

More than four months after the COVID-19 crisis 
started in France, despite the global decline of the epi-
demic, the Grand-Est and Île-de-France areas remain 
active. The linear pattern of the virus spread seems to 
carry less weight, but this is probably an outcome of two 
simultaneous phenomena: local singularities emerge; and 
the epidemic goes into recession in various clusters the 
size of which was limited.

Clustering approach
Figure  8 produces results diverging once again signifi-
cantly from governmental vigilance maps. In (A), the 
hot spot analysis identifies two positive and two negative 
clusters, confirming that geographical patterns address-
ing positive tests (prevalence) differ markedly from 
hospital indicators. Parisian Basin and Alsace are top-
infected areas, which is in line with thematic mapping 
results. The western part of Massif Central and Bretagne 
are the most preserved areas. New hospital admissions 
associate Grand-Est and Île de France within the same 
cluster. The North-East/South-West gradient is a classical 
geographical division within the country. In both cases, 
the Paris-Lille and Paris-Marseille axes are not identified 
because of an enhanced number of local outliers without 
contiguity.

Multivariate clustering produces interesting, much 
more accurate results because of the missing neighbor-
hood constraint. This time, the COVID-19 geography 
is funnel-shaped with Île-de-France and Grand-Est 
forming the upper cone and the Rhône Valley being the 
lower tube. Three outlying departments complete the 
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spatial system: two southern urban clusters in Marseille 
and Montpellier, and another rural cluster in the Berry 
region. The graph in (B) confirms that these group-
ings result mainly from a clearly differentiated statistical 
answer of positive tests.

Discussion
We observed significant discrepancies between the offi-
cial prospects on the virus spread in France and our 
results. Many infected sites remained unseen despite 
the existence of dedicated observatories [39]. This para-
dox leads us to believe that further investigations would 
greatly benefit from accurate ancillary databases focusing 
on community medicine, provided that access rights be 
granted in the future [40]. Despite an impressive number 
of academic publications, the geography of SARS-CoV-2 
is still in the early stages of research development.

This work offers a distinct advantage: the replicabil-
ity of the method is allowed by the availability of the 
algorithms used. Given the uncertain reliability of data 

sources, we chose not to revert to complex analysis 
techniques that would have “compensated” for obvious 
defects of the official databases. The objective was to 
remain as close to the initial “signals” as possible. Derived 
indicators and optimization-normalization techniques 
were bypassed to avoid the elimination of statistical-
spatial outliers, which is crucial for detecting hot spots. 
The overall replicability of the exercise is however condi-
tional on minimum quality standards: “over-derived” or 
“over-agglomerated” statistics lead to a loss of integrity, 
which is why the experiment was not prolonged during 
the post-lockdown phase.

One of the most problematic issues about COVID-19 
management by the authorities in France -but also in 
other places worldwide- is a limited capacity to identify 
hot spots. This is mainly due to structural reasons:

1-Metrics are related to territorial administration and 
spatially-defined health care systems. As a result, sta-
tistical production interferes with the real geography 

Fig. 7  SARS-CoV-2 dissemination patterns by department, May 13-June 27, lockdown lifting period.  Source: Own elaboration based on data from 
Santé publique France, INSEE
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of hot spots (border effects). This problem might be 
solved by an enhanced accuracy of spatial databases 
and/or through a more systematic use of mapping 
solutions based on kriging and spatial interpolation 
techniques.
2-Official COVID-19 databases report on the status 
of the health care system rather than improve our 
insight into the coronavirus itself, both in demo-
graphic or spatial terms. A systematic watch system 
is still to be invented. These ambiguities appeared 
clearly during data quality analysis, and we assume 
that this probably caused further interpretation 
problems, which in turn led to distorted decisions 
as regards the management of the epidemic by the 
authorities. Many narratives based on incidence or 
prevalence rates miss the point, avoiding to mention 
that a significant proportion of the population may 
carry the pathogen without symptoms, with or with-
out transmission capacity, and that a good portion 
of infected people chose to remain away from health 

services. Other systematic surveillance tools are to 
be developed outside the area of hospitals and com-
munity medicine with the purpose to bring to the 
fore background or hidden inputs (the invisible peo-
ple listed in Fig.  2). Wastewater observation might 
be an appropriate solution, although the spatial cov-
erage allowed by this system is limited to communi-
ties equipped with sewerage networks, which leaves 
aside the majority of rural municipalities as well as 
many peri-urban areas [41].
3-Other issues are aggregation and scale depend-
ency: the higher the statistical/spatial aggregation 
level, the lower the significance of results. This 
is especially true when environmental variables 
are introduced in modelling exercises. Reintro-
ducing specific (not generic) indicators at a local 
scale might allow for a better understanding of the 
dynamics of recurring or emerging hot spots. Since 
October 21 2020, Santé publique France publishes 
a short list of statistical indicators at an IRIS sub-

Fig. 8  Hot Spot analysis and Multivariate clustering, lockdown phase.  Source: Own elaboration based on data from Santé publique France, INSEE
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departmental level: incidence rate, testing rate, and 
positivity rate [42]. IRIS are “aggregated units for 
statistical information” and serve as standard units 
for the dissemination of infra-municipal data by the 
INSEE. To ensure anonymity, no absolute values 
are provided. Although the initiative seems to be a 
step in the right direction towards a more effective 
micro-scale approach, the chosen indicators suffer 
from the same faulty assumptions. Furthermore, 
because the postal code of patients/tested people 
could not allow for the identification of the corre-
sponding IRIS code, the geographic distribution of 
people was calculated using a probabilistic algo-
rithm (25% of the cases). With the same causes pro-
ducing the same effects, the availability of these data 
did not really provide the knowledge basis necessary 
to improve the action policies of the government.

This work demonstrates how much the legal and spatial 
management of quarantine results from partially biased 
political choices. During the general lockdown 35 depart-
ments never moved from the green alert level to orange 
or red. One third of the country stayed in complete lock-
down without any other reason than safety precaution or 
missing data able to establish that local communities had 
been spared by contamination. Unfortunately, there is no 
possible analysis of the spread within major cities, which 
leaves open the question of how and why urban districts 
were unequally affected by the disease.

Apparently, the general lockdown did not stop the 
virus spread probably because dissemination had already 
reached an advanced stage before the decision was made. 
It simply delayed contamination. The government would 
have chosen to slow down the progression of COVID-19 
and reduce emergency department overcrowding, per-
haps waiting for the hypothetical development of herd 
immunity. If the assumption is correct, spatial epidemiol-
ogy was a secondary issue [4]. The resolution of the crisis 
is thus expected to emerge from background processes 
affecting households and small communities where con-
taminated individuals inevitably continue to proliferate 
quietly, away from the hustle and bustle of media plat-
forms and from the frenetic activity of emergency ser-
vices. Lockdowns are scale transfers.

The official statistical system severely constrains and 
restricts opportunities for approaching complex mutat-
ing phenomena at detailed scale. At the end of June, after 
about six months spent under COVID-19 pressure, only 
2.9% of the metropolitan population had been tested. 
With 60 000 identified positive cases from March 10 to 
June 27, 0.09% of the French population had been offi-
cially infected by the virus. In the absence of mass testing 
and considering that the rate of positive serology results 

is much higher than RT-PCR [43], these figures are of 
limited reach but they are the only kind of data available 
at the moment.

This absence reveals a political crisis behind the epi-
demiological crisis: local communities were completely 
marginalized during the epidemic. Despite official posi-
tions supporting decentralization as a beneficial political 
process over the last decades, communes and federations 
of municipalities have shown the extent of their power-
lessness. Similarly, community and city medicine were 
sidelined for the benefit of hospital units directly placed 
under the supervision of the ARS and the prefects.

French Jacobinism/centralism emerges strengthened 
from the events. Paris being by far the main SARS-CoV-2 
cluster in France as early as March, the question is raised 
as to whether the country could uphold a stringent lock-
down of its capital against the preservation of economic 
activity and free movement in the rest of the country. The 
French government decided otherwise. The precaution-
ary principle has fulfilled its role as a catalyst for crisis 
management and centrality reinforcement. This is an 
obvious defeat of applied spatial epidemiology.

Conclusions
This work demonstrates how much health care policies 
could manage epidemic crises on a geographical basis 
much more effectively, using relatively simple techniques 
that would in the end prevent the reproduction of “blind” 
lockdown decisions. To reach that goal, however, pub-
lic attention should deviate partially from the hospital, 
patient-based “paradigm” and refocus on upstream, com-
munity or environmental-based detection initiatives. 
Early cluster detection is a key input for boosting the 
benefits of anti-contagion policies, and applied spatial 
epidemiology plays an essential role in it.

The study validates different works focusing on the 
geographic spread of emerging pandemics [44], espe-
cially as regards the impact of spatial heterogeneity 
and neighborhood relationships in determining the 
extent and pace of dissemination [44]. We found early 
neighborhood-zonal and distant-linear dissemination 
patterns based on transportation networks. Obviously, 
mobility and connectivity are of critical importance 
[45, 46], to such a point that spatial integration, travel 
frequency, and eventually network density -rather than 
population density- might be seen as factors posi-
tively associated with COVID-19 propagation [47]. 
This probably falls within the worldwide context of an 
enhanced connectedness between places, otherwise 
called “space–time convergence” [8]. The phenomenon 
produces dissemination patterns sometimes assimilated 
with “metastatic” growth [48].
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At this stage, we propose a scenario where contami-
nation takes its source in specific peripheral places 
operating with international passenger transport ser-
vices; as a second step, central urban places are infected 
and become core-contamination areas; then, through a 
boomerang effect, dissemination moves back towards 
peripheral places without leaving any area unaffected, 
depending on the degree of state centralization and inter-
connectedness. Less integrated countries or areas would 
present “natural” defense mechanisms and barriers. The 
scenario is replicable at different scales and time shifting.

We also note that infection patterns and local mortality 
are clearly decorrelated both in space and time. The rea-
sons for this are not fully established, and further investi-
gation is required. For instance, this work would greatly 
benefit from additional analyses using phylogenetic and 
environmental landscape data [49]. Besides, little infor-
mation exists on the very controversial issue of differen-
tiated treatment protocols adopted within and outside 
hospital units.

Methodological issues are at stake in addressing the 
current crisis. Not surprisingly, our results diverge from 
other studies that use general, or “blind”, socio-economic 
and environmental variables to explain the extent of the 
spread [16]. We found that a number of classical meth-
ods in the area of epidemiology are fairly inappropriate 
in addressing spatial dynamics. For instance, standardi-
zation and normalization are known useful techniques 
widely used in health sciences. However, these might 
produce reverse effects when applied to datasets elabo-
rated by territorial administrations whose purpose is 
precisely to publish normalized metrics -with varying 
degrees of success. The extraordinary complexity of liv-
ing beings, societies, and environments do not easily 
comply with administrative requirements. Simulation is 
apparently a panacea for advanced epidemiological stud-
ies, and this is sustained by strong political demand, but 
these approaches have shown their limits in terms of 
predictability. This is why cluster modeling might ben-
efit from the advances achieved by complex sciences and 
chaos systems, which give a prominent place to statisti-
cal/spatial outliers, self-reproductive and non-linear 
mechanisms.

Further research developments are now required 
to address high-scale dissemination issues, without 
which no clear understanding of the pandemic might 
be reached. Given that the spread follows a highly 
clustered pattern regardless of the stage of infection, 
priority must be granted to the analysis of existing or 
emerging clusters [50]. We need to characterize them at 
a sufficient level of detail, identify geographical dynam-
ics and self-consistency, leaving aside the areas margin-
ally affected by the virus.

This work opens up new research avenues, among 
which are the following: (1) The detection of SARS-
CoV-2 RNA in sewerage systems is a promising way 
to investigate intra-urban dissemination channels; (2) 
Superspreading events were identified as the riskiest 
situations in terms of infection potential, but identify-
ing and mapping the most vulnerable places as regards 
cross-contamination could also be useful for the deter-
mination of by-passing strategies; (3) In organizational 
terms, studying the “spontaneous” response of decen-
tralized, local health care systems might be interesting 
to assess the efficiency of community-based organiza-
tions in fighting the epidemic. Most of these initiatives 
imply changing the scale of analysis, reintroducing 
space-territory within the loop, and looking away from 
hospitals and emergency services. 
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