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Abstract

unfold.

Background: During the initial phase of the global COVID-19 outbreak, most countries responded with non-
pharmaceutical interventions (NPIs). In this study we investigate the general effectiveness of these NPIs, how long
different NPIs need to be in place to take effect, and how long they should be in place for their maximum effect to

Methods: We used global data and a non-parametric machine learning model to estimate the effects of NPIs in
relation to how long they have been in place. We applied a random forest model and used accumulated local
effect (ALE) plots to derive estimates of the effectiveness of single NPIs in relation to their implementation date. In
addition, we used bootstrap samples to investigate the variability in these ALE plots.

Results: Our results show that closure and regulation of schools was the most important NPI, associated with a
pronounced effect about 10 days after implementation. Restrictions of mass gatherings and restrictions and
regulations of businesses were found to have a more gradual effect, and social distancing was associated with a

delayed effect starting about 18 days after implementation.

Conclusions: Our results can inform political decisions regarding the choice of NPIs and how long they need to be
in place to take effect.
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Background

Non-pharmaceutical interventions (NPIs) are applied by
most countries around the world to reduce the risk of
the COVID-19 pandemic and to slow the suspected ex-
ponential growth of infections. Exploring the impact of
NPIs is crucial for gathering knowledge on effective ways
to control the pandemic, and to concurrently avoid un-
necessary strain on the general population, both
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psychologically and economically. The WHO urges that
implementation of NPIs during the COVID-19 pan-
demic must be based on science and evidence [1], and
the comparative analysis of the effectiveness of quaran-
tine strategies and contexts was defined as a research
gap, that should be addressed with priority [2].

Two rapid reviews on NPIs, one on quarantine mea-
sures, one on school closures, concluded that the avail-
able evidence was very limited and lacked quality [3, 4].
Recently, there have been some great research efforts to
provide comparisons of the general effectiveness of NPIs.
Primarily, simulation models have been used to forecast
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how NPIs will most likely affect infection rates (e.g. [5—
7]). However, since multiple aspects of the COVID-19
pandemic are unclear and complex, these simulation
methods have to work with parameter assumptions
based on fragmented knowledge [3]. Retrospective stud-
ies that only consider one country or region at a time in
their analyses [8, 9], suffer from the problem that mul-
tiple NPIs are introduced simultaneously. Hence, they
have no means to distinguish between effects of these in-
terventions and can only evaluate a common effect. One
study compared NPIs across 11 European countries [10].
Yet, including only few countries for analysing NPIs
means low variability in the data, i.e. implemented NPIs,
which can compromise and limit the results. Further-
more, existing studies using Bayesian (e.g. [11]) or
econometric methods (e.g. [9]) assume a constant effect
of NPIs over time and have no means of estimating the
time NPIs need to be effective. Our study wants to ad-
dress these aspects by applying a different approach.

We used empirical data of 176 countries to evaluate
the effectiveness of NPIs on global COVID-19 infection
rates with a non-linear machine learning model. This ap-
proach allows to estimate the time it takes for each
measure to show an effect on infection rates, and how
long it takes to reach the maximum effect. Most coun-
tries affected by COVID-19 introduced NPIs, but they
used different NPIs in different chronological order. This
enables our analysis to isolate the effects of single NPIs
and provide an estimation for the average effect of each
NPI across all countries.

To the best of our knowledge, to date, there are no studies
investigating how long it takes for an NPI to take effect, nor
comparing NPIs using worldwide data. This, however, could
be of great value for policy makers when considering which
interventions to apply during a COVID-19 outbreak, when
an effect of specific measures is to be expected, and how long
it should be in place to reach maximum effect. Our results
are a complementary source of information to previous stud-
ies on NPIs and may guide decision making on the careful
implementation of adequate measures in relation to the
COVID-19 pandemic.

Methods

The aim of our analysis was to examine and compare
the effects of NPIs in reducing the initial impact of
COVID-19. Our outcome is the daily growth rate, i.e.
the relative increase in cumulative confirmed COVID-19
cases from 1 day to the next (growth rate of one indi-
cates no increase, a growth rate of 1.1 a ten-percent in-
crease). Because of the exponential growth during the
onset of infectious diseases [12—14], and because we
only consider the beginning of the outbreak in our ana-
lysis, the growth rate is expected to be constant when no
NPIs are in place.

Page 2 of 7

We are interested in understanding the average, world-
wide effect of different, isolated NPIs on the growth rate,
and, more importantly, how soon these effects start to
show after NPI implementation. Most countries have im-
plemented sets of NPIs concurrently, which makes it im-
possible for within-country-analyses to separate the effect
of these NPIs on the growth rate. By focussing on the
average effect of NPIs over all countries, our analysis can
take advantage of the fact that different countries have im-
plemented different subsets of NPIs. These subsets only
show partial overlap, hence allowing the model to disen-
tangle the effects of different NPIs, if there is sufficient
variation in the data (see Additional file 1: supplement,
section Learning from the data).

We used the CoronaNet [15] dataset and derived fea-
tures that encode if and how long an NPI has been in
place in a specific country at a specific day, and we
trained a random forest regression model with the
growth rate as the outcome. Additionally, we included
two time-dependent but NPI-unrelated covariates (abso-
lute time, i.e. days in relation to 11 March 2020, and
time since 25 cumulative COVID-19 cases were reached
within each country), and four country-specific covari-
ates. The latter should help to model differences be-
tween countries and included the percentage of people
being 65 years or older, the percentage of people living
in urban territories, the percentage of people that are ex-
posed to air pollution, and the gross domestic product at
purchasing power parity (GPD ppp.) per capita (see
Additional file 2: extended Methods).

The random forest regression model was chosen be-
cause it is a relatively simple and well-established model
that can learn non-linear relationships between the fea-
tures (e.g., NPIs) and the growth rate. We restricted the
hyperparameters to avoid overfitting and ensure general-
isability of results. To understand how each NPI influ-
enced the growth rate (according to the random forest
regression model), accumulated local effect (ALE) plots
[16] were used. They show how the growth rate changes
in relation to a specific NPI, from 2 weeks prior to im-
plementation to 60 days after. As described above, NPIs
were not implemented in isolation, but concurrently
with other NPIs in most countries. Even though the sub-
sets of NPIs implemented by different countries showed
only partial overlap (allowing the model to separate in-
fluences of individual NPIs), the derived features used in
the random forest regression model are still correlated.
ALE plots are especially suited to handle correlated fea-
tures [17] (see Additional file 1: supplement, section
Learning from the data), aiding to estimate effects of iso-
lated NPIs. To quantify uncertainty and test robustness
of results, we additionally re-estimated the model and
ALE plots on bootstrap samples (i.e. random resampling
of the data; see Additional file 2: extended Methods).
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All analyses were carried out using R [18], mainly
using the packages mlr3 [19], ranger [20], iml [21],
wbstats [22], and ggplot2 [23]. All calculations were per-
formed on an IBM POWERS platform with 80 threads
on 14 physical cores. The code for this analysis was sub-
ject to code review among the authors.

Results
The most important NPIs to reduce the growth rate dur-
ing the COVID-19 outbreak in 2019/2020, as identified by
the machine learning model in the context of our data,
were closure and regulation of schools, restrictions of
mass gatherings, social distancing, and restrictions and
regulation of businesses, all with mandatory enforcement
on national level (Fig. 1). The first effects started to show
about 10 days after implementation, and effects generally
lasted until about 40 to 50 days after implementation.
Closure and regulation of schools was associated with
a rather distinct drop in the predicted growth rate at
around 10 days after implementation of the NPI (Fig. 1).
On average over the different countries in the sample,
this NPI was introduced relatively timely within each
country (see Additional file 1: Supplementary Fig. 1).
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Restrictions of Mass Gatherings were associated with a
more gradual decrease starting around 10 days after im-
plementation. This NPI was introduced rather early
within each country (see Additional file 1: Supplemen-
tary Fig. 1). Relatedly, the growth rate was still relatively
high, compared to other NPIs (see Additional file 1: Sup-
plementary Table 1).

Social Distancing includes measures like mask wear-
ing, keeping a minimum distance to other individuals,
and banning visits to hospitals or other institutions. This
NPI was introduced relatively late within each country
(see Additional file 1: Supplementary Fig. 1). The reduc-
tion of the growth rate started around 18 days after im-
plementation (Fig. 1), with some bootstrap results
showing first effects at around 10 days. The maximum
decrease was reached 40 days after implementation.

Restriction and Regulation of Businesses started to show
slight effects around 10 days after implementation. The total
decrease was rather small, compared to other NPIs and to
the random variation in the bootstrap samples (Fig. 1).

Further NPIs used in the analysis were associated with
only minor effects (see Additional file 1: Supplementary
Fig. 2-5 for plots of all NPIs and Supplementary Infor-
mation for further results and discussion).
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Time-related, NPI-independent effects were larger
compared to effects associated with NPIs. The average
growth rate exhibits a sharp drop around 20 days after
the WHO declared COVID-19 a pandemic (Fig. 2).
Within countries, the model identified a decrease in
growth rate starting from around 2 weeks after 25 cases
have been reached, unrelated to NPIs. The relations of
country-specific covariates and predicted growth rate
were small and hardly exceeded the random variation in
the bootstrap samples (Fig. 3; see also Additional file 1:
Supplementary Information).

Discussion

This study investigated the effects of NPIs on the
COVID-19 growth rate during the initial phase of the
outbreak in 2019/2020. To complement other ap-
proaches like simulation studies, we used empirical data
to train a non-linear machine learning model and exam-
ined the relationship of each NPI with the model’s pre-
diction for the growth rate. We identified four NPIs, all
with mandatory enforcement, as most effective: closure
and regulation of schools, restrictions of mass gather-
ings, social distancing, and restrictions and regulation of
businesses.

Our approach advances to the current research by in-
vestigating how the growth rate changes in the first days
and weeks after NPI implementation, providing an esti-
mate of how long it takes for an NPI to take effect. This
timing varied between the four most important NPIs,
from around 10 to 18days. Another study that
attempted to estimate the onset of effects, which was
limited to weekly granularity and a Chinese subpopula-
tion, found similar timing with no effects in the first
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declaration, travel ban, and home isolation) [9]. We
found that effects of NPIs generally lasted about until 40
to 50days after implementation. After this time, the
maximum possible reduction of the growth rate associ-
ated with an NPI has been reached. However, our ana-
lysis cannot give an estimate about the possible rise of
the growth rate once NPIs are lifted.

Closure and regulation of schools was associated with
the most pronounced and earliest drop in the growth
rate. The large effect we identified contradicts a rapid re-
view, concluding that school closures might not be ef-
fective [4]. However, this conclusion was based on only
one simulation study relying on schools data from the
UK and transmission dynamics data from China [24].
Our results are supported by a US study [25] that found
noticeable effects of school closures, although the meth-
odology did not allow for isolating the effect of school
closures from the effect of other concurrently present
NPIs. However, it has to be pointed out that school clo-
sures have a huge impact on reducing social contacts, as
not only the children but also most parents or caregivers
need to stay home to supervise their children. This can
also lead to closure of small businesses, e.g. if parents
are unable to keep their business open while home-
schooling their children.

For the other NPIs discussed above, a more gradual
drop was observed. A potential reason for this could be
a change in intensity of the NPIs during the COVID-19
outbreak. In the beginning, only large gatherings were
cancelled, only a few businesses were closed, and social
distancing meant maintaining some distance. As the out-
break’s severity increased, so did the NPIs, with more
businesses closed, more and smaller gatherings can-
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Social distancing showed late effects compared to
other NPIs. One possible explanation is that, despite
mandatory enforcement, the effectiveness depends on
people’s willingness to adhere to this NPL In face of the
perceived negative consequences [26], people might have
been reluctant in the beginning, but more willing to fol-
low these rules as the outbreak became increasingly
more severe and threatening [27].

Other NPIs used in the analysis were associated with
minor effects (see Supplementary Fig. 2—5 for plots of all
NPIs). This included lockdown and curfews, which were,
on average, used rather late in the outbreak within each
country (Supplementary Fig. 1). Despite being associated
with minor average effects, some NPIs showed high vari-
ation in the bootstrap estimates of their effects. Exam-
ples are inbound external border restrictions, voluntary
social distancing, and restriction and regulation of gov-
ernment services. Hence, globally, the effects were not
significant, but this does not rule out effects in specific
countries or under specific circumstances.

There could be multiple reasons for these weak effects.
Most importantly, the strategies that are reported in the
CoronaNet dataset are not mutually exclusive. For ex-
ample, restricting mass gatherings reduces the need for
travel, which in turn reduces the potential impact of

internal and external border restrictions. Additionally,
NPIs that have been implemented later, after other NPIs
already have been in place, might start from a lower
growth rate, hence will have less chance to reduce it.
This is especially true if different countries have imple-
mented a similar set of NPIs in similar sequence. The
data shows that there is variation in the timing and se-
quence of NPI implementation across countries (see
Supplementary Fig. 1 and Supplementary Notes: Learn-
ing from the data; Additional file 1), which at least re-
duces this concern to some extent.

Also, NPIs that are in effect for a very short timeframe,
like curfews or lockdowns that last for only a few days,
might have only minor effects which are hard to detect.
Similar concerns apply for NPIs on subnational level,
which affect fewer people by definition.

In addition to the effects of the NPIs, the model iden-
tified strong time-related, but NPI-independent effects,
related to the global spread of COVID-19, as well as to
the increasing severity within the respective country. An
explanation of the global time effect might be that coun-
tries affected later could have been better prepared to
react to the new disease. The within-country effect
might be related to behaviour changes (e.g. hand hy-
giene) due to the perceived severity of the threat posed
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by COVID-19 [27], as the number of cases grows and
news coverage is high.

When estimating average effects of NPIs on a global
scale, it must be acknowledged that different countries
are affected differently by COVID-19 [28]. It has been
found to follow different patterns in urban and rural
areas [29], and spread has been linked to atmospheric
pollution [30]. The effects of NPIs have been found to
differ by age [31] and relative wealth or poverty [32]. In
our analysis, we included country-level covariates as
proxies for these differences, but the effects associated
with these proxies were only minor. In our opinion, this
does not contradict the findings above, but rather shows
that between-country differences cannot be modelled ef-
fectively by country-level indicators. More fine-grained,
individual level data would be necessary, as even some-
thing as personal as risk perception [33] and fear [27]
can influence the adoption of preventative health behav-
iours and therefore the effectiveness of NPIs.

A few limitations have to be called out for our study.
First, it is an observational study, not an experimental
design. Confounding factors, e.g. environmental parame-
ters like climate, which generally influence viral trans-
mission [34] and which vary between countries, cannot
be ruled out to influence results. Moreover, the analysis
is unable to distinguish between correlation and caus-
ation, which makes interpretation of effects difficult.
These are limitations that are shared by all observational
studies (e.g. [8]).

Another concern is data quality. Confirmed cases are
reported daily, but with varying reporting delays [1, 35].
Some countries have changed the case definition for
COVID-19 during the outbreak (e.g. China [36]), leading
to artificial spikes in the time series of cumulative cases.
We tried to mitigate these effects by using a moving
average over a full week and by reducing the effect of
outliers through winsorisation. Different testing strat-
egies between countries, or systematic underreporting of
cases might pose another problem, which we tried to
combat by using relative changes within countries
(growth rate) as our outcome metric. Furthermore, des-
pite the efforts of the CoronaNet project to standardise
NPIs across countries, the reported NPIs are not mutu-
ally exclusive, and the individual policies of the countries
that are summarised under a certain NPI are sometimes
diverse, which might impair the model’s ability to esti-
mate an effect. Even in the face of these data-quality-
related problems, the model still explained almost half of
variance in the data.

Conclusions

Despite all limitations mentioned above, we strongly be-
lieve that for examining the impact of NPIs on the
COVID-19 threat, it is vital to apply diverse methods

Page 6 of 7

and different perspectives to gain new insights. In
addition to existing empirical studies, our machine-
learning-based approach permits to non-parametrically
estimate how long it takes for an NPI to affect the
growth rate, which has not been studied in detail, yet.
Most NPIs started to take effect about 10 days after im-
plementation, like for example closure and regulation of
schools, which had the most pronounced effect. One ex-
ception was social distancing, which had a delayed effect.
We believe that our approach adds knowledge from a
different point of view about COVID-19, which may fa-
cilitate the evidence-based use of NPIs, as the WHO
calls for [1].
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