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Abstract

Background: Hepatitis C virus (HCV) causes life-threatening chronic infections. Implementation of novel,
economical or widely available screening tools can help detect unidentified cases and facilitate their linkage to care.
We investigated the relationship between chronic HCV infection and a potential complete blood count biomarker
(the monocyte-to-platelet ratio) in the United States.

Methods: The analytic dataset was selected from cycle years 2009–2016 of the National Health and Nutrition
Examination Survey. Complete case data- with no missingness- was available for n = 5281 observations, one-
hundred and twenty-two (n = 122) of which were exposed to chronic HCV. The primary analysis used survey-
weighted logistic regression to model the effect of chronic HCV on the monocyte-to-platelet ratio adjusting for
demographic and biological confounders in a causal inference framework. Missing data and propensity score
methods were respectively performed as a secondary and sensitivity analysis.

Results: In the analytic dataset, outcome data was available for n = 5281 (n = 64,245,530 in the weighted sample)
observations of which n = 122 (n = 1,067,882 in the weighted sample) tested nucleic acid positive for HCV. Those
exposed to chronic HCV infection in the United States have 3.10 times the odds of a high monocyte-to-platelet
ratio than those not exposed (OR = 3.10, [95% CI: 1.55–6.18]).

Conclusion: A relationship exists between chronic HCV infection and the monocyte-to-platelet ratio in the general
population of the United States. Reversing the direction of this association to predict chronic HCV infection from
complete blood counts, could provide an economically feasible and universal screening tool, which would help link
patients with care.
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What is new

� Modern techniques in causal inference were applied
to understand the relationship between chronic
hepatitis C virus infection and the monocyte-to-
platelet ratio in complex survey data from the United
States of America.

� Chronic hepatitis C virus infection alters a patient’s
monocyte-to-platelet ratio, previous studies found an
association with platelets (thrombocytopenia) but not
monocytes at the population level.

� The monocyte-to-platelet ratio could be used as a
tool to screen patients for hepatitis C virus diagnostic
tests from a complete blood draw.

Introduction
Hepatitis C virus infects over 71 million people globally
causing complex liver disease and more years of life lost
than any other pathogen [1]. In 2015, the World Health
Organization estimated that approximately half a million
people died from HCV-related disease and three times
as many were newly infected [2].
Responding to the global HCV epidemic requires

country-specific strategies [3]. In the United States, fif-
teen to 20 % of infections progress to the chronic stage,
requiring treatment [4, 5]. Undiagnosed infection can
lead to liver damage, cancer and death [3]. The progno-
sis of HCV infection has recently improved due to the
development of short course, tolerant and effective
direct-acting antiviral drugs. Direct-acting antivirals
clear chronic HCV infections at a 90 % rate, making the
elimination of the virus plausible for the first time [3, 6].
Utilizing the full potential of direct-acting antiviral drugs
for treatment-based elimination, requires the develop-
ment of new tools to detect unrecognized cases and link
them with care [3].
The diagnosis of chronic HCV typically involves the

administration of two tests. A serological test to detect
anti-HCV immunoglobulin, indicates exposure or acute
infection. A positive serological result prompts the
requisition of a nucleic acid amplification test (NAAT).
Unlike serological methods, NAAT differentiates past
exposure from acute or chronic infection by detecting
viral ribonucleic acid [7]. Biomarkers offer an antigen-
free alternative for the detection of a pathological
process [8]. Clinical researchers have developed the as-
partate aminotransferase-to-platelet ratio index (APRI)
as a biomarker of late HCV infection with the purpose
of predicting hepatic fibrosis [9]. We postulate that sig-
nificant differences in patient biomarkers may occur
early in the time course of HCV infection, enabling
screening of undiagnosed chronic cases.
The described analysis examines the relationship between

chronic HCV infection (exposure) and the monocyte-to-

platelet ratio (MPR) (outcome) in subjects from the National
Health and Nutrition Examination Survey (NHANES) cycles
2009–2016 [10]. Studies of chronic HCV have identified an
association between viral load and monocyte, platelet counts
[11, 12]. Immunological processes support the direction and
causality of this relationship. The proliferation of HCV stim-
ulates the innate immune system leading to an increase in
the population of monocytes [13]. In a cross-sectional com-
parison of HCV positive- and negative- patients the percent-
age of monocytes in a complete blood count increased in
response to infection (Δ = 0.9%, P < 0.001) [14].
Thrombocytopenia (a decreased platelet count) occurs in re-
sponse to liver disease or interaction between the virus and
the innate immune response [11]. In a previous NHANES
III study, 13% of HCV seroconverted patients had a depleted
platelet count while only 5% of negative patients had less
than < 175 × 109 platelets per litre [12]. Comparison of this
result with other reports [11, 14] indicates that the expected
effect size of HCV infection on complete blood counts de-
pends on values used to categorize a normal from abnormal
count. To limit misclassification bias we composed the MPR
from numeric platelet and monocyte counts before
categorization by the mean value of HCV negative patients.
We hypothesize that complete blood counts from patients
with chronic HCV will have a higher MPR than those not in-
fected. Understanding the relationship between chronic
HCV infection and MPR may allow for screening to occur
from complete blood counts, making population level
screening more economically feasible.

Methods
Data, design and study population
This cross-sectional study investigated the relationship
between chronic HCV infection and MPR from
complete blood counts using NHANES survey data cy-
cles 2009 to 2016 [10]. The NHANES survey represents
the non-institutionalized civilian population of fifty
American states and the district of Columbia through
complex sampling design. The design includes primary
sampling units, strata and sample weights, a full descrip-
tion of how these measures were derived is available
from the Centers for Disease Control and Prevention
[15]. Oversampling was conducted for those greater than
80 years of age and identifying as an African American,
Asian or Hispanic ethnicity. Survey features were in-
cluded in the analysis to generalize the findings to the
population of the United States [16, 17]. The aggregated
medical examination center weights were divided by the
duration of the study in two-year survey cycles (n = 4)
(Additional file 1: Table S1). The University of British
Columbia’s Policy 89, item 7.10.3 on studies involving
human participants and Article 2.2 of the Tri-Council
Policy Statement on Ethical Conduct for Research In-
volving Humans, provide ethical support of the study
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[18, 19]. NHANES is a publicly available dataset
administered by the National Center for Health Statis-
tics, written informed consent was provided by all
participants [20].

Analytic sample and variable selection
In the analytic dataset, we have included the exposure
(chronic HCV infection) and outcome (monocyte-to-
platelet ratio) of interest, select covariates or potential
confounders in the relationship between chronic HCV
infection and MPR. The exposure of interest
(LBXHCR) categorically measures chronic HCV infec-
tion by NAAT where: “1” signals positive, “2”- negative,
“3”- no seroconversion (lack of HCV specific anti-
bodies) and “.” as missing (Additional file 1: Table S1)
[15]. Exposure was releveled to “1” as positive and “0”
as negative or no seroconversion. The outcome variable
(MPR) was constructed from complete blood count
measures of monocyte count (“LBDMONO”) and plate-
let count (“LBXPLTSI”) (Additional file 1: Table S1)
[15]. The monocyte-to-platelet ratio (MPR) was calcu-
lated by dividing thousands of monocytes per micro-
liter by thousands of platelets per microliter. The
liquid volume measurement was then converted to
milliliters. All variables in the analytic dataset were
renamed, coded or leveled to ease interpretation
(Additional file 1: Table S1).
Covariates were identified from previous population

level studies of HCV patients and plotted in a directed
acyclic graph (DAG) (Additional file 1: Figure S1) [21,
22]. The selected covariates portray measurements of
general health status, social-economic status, biological
sex, age, race, marital status, transfusion status, white
blood cell count, needle use, average alcohol intake per
day, anemia, cancer or diabetes diagnosis (Additional file
1: Figure S1). Exclusion criteria removed subjects with a
positive human immunodeficiency virus test result, those
pregnant or less than 18 years of age (Fig. 1). After ex-
cluding n = 18,895 observations for missing information
on fifteen variables, n = 5281 individuals with complete
case data were identified, of whom n = 112 had chronic
HCV infection (Table 1, Figure S1). Confounders were
selected by the disjunctive cause criterion and included
throughout automated variable selection (Additional file
1: Figures S1, S2) [18]. Covariates which did not meet
the requirements of the disjunctive cause criterion were
selected for inclusion by automated variable selection;
therefore, they were only included if they increased the
model fit and precision of the estimates.

Statistical analysis
Transformation of the monocyte-to-platelet ratio
The monocyte-to-platelet ratio was dichotomized by
linear regression [9]. As described by the theory of

mean-of-class classification, linear regression was used
to find the mean MPR of HCV negative participants
in the complete case dataset [23, 24]. The continuous
numeric MPR variable was then dichotomized to a
factor with two levels. Logistic regression and a re-
ceiver operator characteristic curve analysis were used
to predict HCV infection by dichotomized MPR for
transparency, and to show that we did not choose a
biased value for categorization.

Descriptive statistics
Characteristics of the analytic sample were determined
by unweighted survey-sample number and as a weighted
sample percentage, representing the population percent-
age. The sample was stratified by the outcome of interest
(MPR), independence was tested between the outcome
and covariates via the Rao-Scott Chi-square test for sur-
vey design [25].

Statistical inference
Primary analysis used survey-weighted logistic re-
gression to model the relationship between chronic
HCV and MPR adjusting for known confounders (i.e.
age, type 2 diabetes mellitus and needle use) [11,
26–28]. Covariates were chosen through literature
review, confounders were selected by the disjunctive
cause criterion and use of a directed acyclic graph
(DAG) [29, 30]. Missing data and propensity score
analyses were performed secondarily and to assess
sensitivity of the results.
The primary analysis utilized a survey-weighted logistic re-

gression model to estimate the effect of chronic HCV infec-
tion on MPR [17]. Confounders defined by use of a DAG
were included in the model. Covariates selected by literature
review which did not meet the definition of a confounder
were selected for inclusion in the model by backward elimin-
ation on the Akaike information criterion (AIC) [31]. Identi-
fied confounders were locked in the backward elimination
algorithm, so that only covariates which did not meet the
definition of a confounder were evaluated for inclusion by
automated variable selection (Additional file 1: Figure S2).
Collinearity was assessed by the variance inflation factor,
with a cutoff of 5 [32]. The primary analysis was performed
in the complete case dataset, using the R packages: tidyverse,
dataexplorer, jtools, car, tableone, survey, publish, MASS,
pROC and caret.
The secondary analysis used multiple imputation by

chained equations to provide missing data on the covari-
ate needle use. Under the assumption of missing at ran-
dom, predictors of needle use were selected by a
minimum correlation of 5 % [33]. Missing data were im-
puted in ten datasets with predictive mean matching, the
number of iterations was set to match the percentage
missing (12.87). A survey-weighted logistic regression
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model was fit to each imputed dataset to estimate the ef-
fect of chronic HCV infection on MPR. The resulting
odds ratios were pooled by Rubin’s rules [33]. A second-
ary analysis was performed in the imputed dataset, using
the R packages: mice and mitools.

Sensitivity analysis
The sensitivity of the primary and secondary analysis was
evaluated by weighted propensity score analysis [34]. The
propensity scores were generated by tenfold cross-validated
ensemble machine learning. The super learner was specified
to predict by: a general linear model, elastic net, bootstrap
aggregation and classification, regression training [35]. The
ensembled propensity scores were applied by inverse propor-
tional weighting to estimate the average treatment effect
[36]. Weights were scaled by the mean and truncated by the

first and ninety-ninetieth percentile. Changes in covariate
balance after propensity score weighting was measured by
reduction of standardized mean difference (SMD) [36]. Co-
variates unbalanced by propensity score weighting (SMD >
0.2) were adjusted for in the outcome model. Sensitivity ana-
lysis was performed in the complete case dataset, using the R
packages: superlearner and cobalt. All statistical analysis was
conducted in R version 3.6.1 [37].

Results
Statistical analysis
Transformation of the monocyte-to-platelet ratio (MPR)
The MPR was calculated from the NHANES vari-
ables “LBDMONO” and “LBXPLTSI” and converted
to 1000 cells/ml. In the analytic dataset, the value of
MPR ranges from 0.27–22.22 with a mean of 2.53

Fig. 1 Illustration of the exclusion criteria applied to generate an analytic dataset from a merger of national health and nutrition examination
survey cycle years 2009 to 2016. The described exclusion criteria were applied for the following reasons: HIV infection depletes the innate
immune system and may affect monocyte count; pregnancy was considered to affect female complete blood cell counts and the dataset was
restricted to subjects ≥ 18 years of age as complete blood cell counts differ by developmental stage. Cycle refers to the two-year NHANES data
cycle (SDDSRVYR) from which the data was retrieved. Following application of the exclusion criteria, n = 18,895 observations were omitted as
they lacked complete case information across 15 variables. The complete case analytic dataset contains n = 5281 unweighted observations from
the survey sample, one-hundred and twenty-two (n = 122) of which were exposed to chronic HCV
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and standard deviation of 1.05. Linear regression
found a positive association between chronic HCV infec-
tion and MPR. MPR was categorized with a cut point of
2.49, Low (min-2.49), High (> 2.49-max). Logistic regres-
sion was used to evaluate the accuracy of this cut point in
combination with a receiver operator characteristic curve
analysis (sensitivity of 65% and a specificity of 54%)
(Additional file 1: Figure S3).

Descriptive statistics
The analytic dataset includes n = 5281 (n = 64,245,530 after
weighting the sample) observations with n = 122 (n = 1,067,
882 sample weighted) exposures to chronic HCV infection,

the outcome was recorded for all exposures (Table 1). Bivari-
ate analysis of the relationship between chronic HCV infec-
tion and MPR found a positive correlation, 66% of persons
with chronic HCV infection have a high MPR (> 2.49) (P <
0.001) (Table 1). Characteristics of the analytic sample were
determined by unweighted survey-sample number and as a
weighted sample percentage, representing the population
percentage (Table 1).

Statistical inference
Primary analysis
A survey-weighted logistic regression model was built
by use of a DAG and AIC backward elimination to

Table 1 Structure and characteristics of the complete case dataset from the National Health and Nutrition Examination Survey study
period, 2009–2006 to investigate the effect of chronic hepatitis C virus infection on the monocyte-to-platelet ratio

Variable Name Level Total Low MPR High MPR Rao-Scott X^2a

. 5281 [64,245,530]b 2754 (0.54) 2527 (0.45)

Chronic HCV = Positive (%) . 122 42 (0.90) 80 (2.5) < 0.001

Age (mean [SD]) . . 42.74 (13.64) 43.93 (14.36) 0.054

Sex =Male . 2759 1220 (40.3) 1539 (65.1) < 0.001

Race (%) . < 0.001

Black 1079 626 (10.9) 453 (9.0)

White 2127 1091 (65.4) 1036 (71.3)

Hispanic 1377 797 (15.4) 580 (13.5)

Other 698 455 (8.30) 243 (6.20)

General Health (%) . 0.022

Excellent 462 277 (10.80) 185 (8.80)

Very Good 1487 877 (35.30) 610 (32.30)

Good 3188 1747 (52.40) 1441 (56.60)

Poor 144 68 (1.50) 76 (2.30)

Transfusion = Yes (%) . 427 242 (7.80) 185 (8.3) 0.723

Needle Use = Yes (%) . 146 63 (2.60) 83 (3.10) 0.479

Married = Lives Alone (%) . 2094 1202 (36.0) 892 (34.50) 0.312

Social Economic Status (%) . 0.88

≤ 1.30 1650 887 (20.70) 763 (21.80)

≤ 1.85 699 396 (11.10) 303 (10.80)

> 1.85 2824 1624 (66.3) 1200 (65.5)

White Blood Cell Count (mean [SD]) . . 6.81 (1.93) 8.00 (2.34) < 0.001

Cancer Diagnosis = Yes (%) . 311 186 (8.70) 125 (6.90) 0.028

Anemia = Yes (%) . 515 117 (3.70) 62 (2.10) 0.006

Diabetes Diagnosis (%) 0.003

Not Diabetic 4663 2672 (92.2) 1991 (88.6)

Pre-Diabetic 103 49 (1.40) 54 (2.30)

Diabetic 515 248 (6.40) 267 (9.10)

Average Alcohol Consumption per Day (mean [SD]) . . 3.30 (29.13) 3.54 (15.22) 0.789
a The Rao-Scott Chi Square test was used to test for independence between each of the described covariates and monocyte-to-platelet ratio in survey weighted
data (α = 0.05)
Percentages represent the unweighted population of the NHANES study base
b the weighted survey sample number of participants with complete case data in the study
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estimate the effect of chronic HCV infection on MPR
with adjustment of potential confounders (Table 2).
Notably, none of the covariates which did not meet
the definition of a confounder were found to increase
model fit or precision of the effect estimates during
automated variable selection. All the confounders il-
lustrated in the DAG were included throughout auto-
mated variable selection. The variables chronic HCV
infection, age, sex, race, white blood cell count
(WBC) and cancer diagnosis exhibit a statistically sig-
nificant relationship with MPR (P < 0.05). No vari-
ables were removed from the parsimonious model
selected by Akaike information criterion. No collin-
earity was detected with race having the greatest VIF
value equal to 3.77. The model selected for primary
analysis (Table 2) estimates that those chronically in-
fected with HCV have 3.10 times the odds of a high
MPR score than those not exposed (OR = 3.10,
[95%CI: 1.55–6.18]).

Secondary analysis
The association between exposure to chronic HCV
infection and MPR was also investigated by multiple
imputation of the covariate needle use. The mini-
mum correlation matrix selected: age, transfusion
status, sex, monocyte count, platelet count, cancer,

and diabetes as predictors of needle use. A total of
seven hundred and sixty-eight observations (n = 768)
were added by multiple imputation, including thir-
teen additional exposures (n = 13). The outcome
(MPR) was recorded for all the imputed data. Com-
bined estimates from the ten imputed datasets show
that those chronically infected with HCV have 2.79
times the odds of a high MPR score than those not
exposed (OR = 2.79, [95%CI: 1.43–5.46]) (Fig. 2).

Sensitivity analysis
The sensitivity of the primary and secondary analysis
was tested by propensity score weighting. Propensity
scores were predicted for HCV exposure by ensem-
ble machine learning. The standardized mean differ-
ences of the covariates: age, race, sex, general health
status, transfusion status, needle use, marital status,
social-economic status did not meet the < 0.2 cut-
off; therefore, they were adjusted for in the outcome
model. Propensity score weighting estimated that
those chronically infected with HCV have 2.24 times
the odds of a high MPR score than those not
exposed (OR = 2.24, [95%CI: 1.31–3.84]) (Fig. 2).
We do not interpret effect estimates for variables other

than the primary exposure as doing so, may require

Table 2 Results of survey weighted logistic regression analysis in the relationship between chronic hepatitis C infection and
categorized monocyte-to-platelet ratio (low, high): from a complete case dataset of the National Health and Nutrition Examination
Survey, 2009–2016

Variables Reference Level Adjusted Odds Ratio Confidence Intervala

Chronic HCV Negative .

. Positive 3.10 1.55–6.18

Age . . 1.01 1.00–1.02

Race Black .

. White 1.12 0.93–1.36

. Hispanic 0.78 0.62–0.98

. Other 0.78 0.60–1.01

Sex Female .

. Male 3.35 2.89–3.88

Needle Use No .

. Yes 0.63 0.35–1.13

Diabetes Not Diabetic .

. Pre-Diabetic 1.77 0.90–3.47

. Diabetic 1.06 0.79–1.43

Cancer No Diagnosis .

. Diagnosis 0.74 0.56–0.99

WBC . . 1.39 1.33–1.45
a the 95% confidence interval for the given estimate
Multi-collinearity was tested by the variable inflation factor, no inflation was detected < 5
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specification of a separate causal framework to account
for additional confounding [38].

Discussion
Summary of results
The primary analysis found a strong measure of associ-
ation between chronic HCV infection and MPR in the
population of the United States, after adjusting for the
confounders: age, race, sex, needle use, diabetes, white
blood cell count and cancer. Americans with chronic
HCV infection have 3.10 times or 210% higher odds of a
high MPR score, than those not exposed. The adjusted
effects of age, sex and needle use agree with known lit-
erature, exposure to injectable drugs was found to de-
crease monocyte count in a mouse model and within a
cohort of opioid users [39, 40]. The secondary and sensi-
tivity analysis agreed with the primary results, suggesting
that MPR differs in those chronically infected and not
infected with HCV.

Comparison with literature
Past studies describe an association between chronic
HCV infection and low platelet count [11, 41]. The
mechanism of this relationship remains poorly

understood. The virus may trigger auto-immunogenicity
and decrease the production of thrombopoietin [42].
Chronic HCV infection affects monocyte count

through stimulation of the innate and adaptive immune
response [13]. Monocytes differentiate into dendritic
cells or macrophage in the human immune system.
HCV infects both cell types, which serve as reservoirs
for viral replication in vivo [43]. Conceptually, monocyte
count may indicate the presence and severity of HCV
infection.
Tsai et al. [14] analyzed the effect of chronic HCV in-

fection on blood cell counts adjusting for the demo-
graphic confounders of age and sex. They found that
monocyte count positively, and platelet count negatively
associated with HCV viral load. Monocyte count in-
creased by one-thousand cells per microliter in patients
who seroconverted.
Streiff et al. [12] conducted an NHANES study to

understand peripheral blood count abnormalities in pa-
tients exposed to HCV. An association was found be-
tween HCV exposure and platelet counts at cutoff
(OR = 2.33, [95% CI: 1.08–5.02]; no relationship was
found for monocyte count.
In summary, monocyte count increases and platelet

count decreases in response to chronic HCV infection,

Fig. 2 Results of survey weighted analysis examining the relationship between chronic Hepatitis C infection and monocyte-to-platelet ratio in
complete case and missing data from the National Health and Nutrition Examination Survey cycle years 2009 to 2016. The adjusted odds ratio
and 95% confidence intervals shown in the log scale for statistically significant covariates in the primary analysis, secondary analysis or those
requiring adjustment after propensity score weighting as a sensitivity analysis. All analyses incorporated survey features from the medical
examination center derived weight following the methodology of Ridgeway et al. [34]
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as the odds of a high MPR were greater in those ex-
posed. The population-level differences in MPR between
those infected and not infected with HCV in the United
States make it a candidate screening tool for chronic
HCV infection. Performance of the MPR as a screening
tool depends on its predictive accuracy (sensitivity/ spe-
cificity), the prevalence of HCV in the target population
and availability of other tests in the resource setting.
Theoretically, implementation of the MPR as a screening
tool for chronic HCV infection may have the most im-
pact in a low-resource, high-prevalence setting where
clinicians could leverage previously reported complete-
blood-count data before follow-up with a secondary
screening test or a confirmatory NAAT type diagnostic.

Strengths and limitations
The presented study possesses strength in design, ana-
lysis, and interpretability. The single temporal collection
point of cross-sectional studies evokes the issue of re-
verse causality [44]. In the NHANES sample, variable
characteristics were collected by means of an interview
or through the medical examination center (MEC) [15].
The natural history of HCV infection establishes tem-
poral causality in the relationship with complete blood
cell counts. The MEC tested for HCV-RNA by NAAT
and the incubation period of HCV lasts between 2 to 26
weeks with an average of 7 weeks [45]. Therefore, if a
person tests HCV positive at the MEC they were initially
exposed to the virus at least 2 weeks before, establishing
unidirectional causality.
Two additional analyses were conducted (multiple im-

putation and propensity score weighting) both support
the robustness of a positive relationship between chronic
HCV infection and MPR. The variable needle use was
imputed because, it meets the criterion of missing at
random [33]. Persons who inject drugs are less likely to
report doing so to a federal agency than to report no
needle use [46]. Therefore, imputation served to help es-
timate a more accurate rate of needle use in the popula-
tion of the United States. In addition to reducing bias,
missing data analysis also aids precision and increases
statistical power [33]. Weighted propensity score analysis
allows estimation of the average treatment effect (ATE),
a measure commonly deployed in randomized clinical
trials where the control and treatment groups exhibit ex-
changeability. In cross-sectional studies, ATE allows esti-
mation of treatment effect when the observed groups
have a similar probability of exposure to the selected
confounders [47]. In studies on biomarkers, confounding
by indication due to the effect of a drug prescribed for a
comorbidity can alter the distribution of a marker in
those treated [48]. Propensity score weighting partially
accommodates for this bias, as the comorbidity serves in
the surrogate of confounding from the drug. The

exposed and non-exposed groups have a more equal
probability of exposure to the drug through the similar
probability of exposure to the indication [49]. The use of
NHANES data across several collection years benefits
the ability to generalize from and the validity of our
study. Past analysis of NHANES data has found true
population-level effects such as the role of high choles-
terol in heart disease [15].
Weaknesses of the study include the potential for un-

measured confounding, such as co-infection. Risk factors
for HCV exposure overlap with those of other chronic
infectious diseases like hepatitis B and tuberculosis [50].
Laboratory data confirming active infection with these
pathogens was not publicly available in the NHANES
dataset [15]. The variable white blood cell count (WBC)
was selected as a measure of proxy confounding, with
the conceptual understanding that exposure to a foreign
antigen increases WBC [51]. The possibility also exists
that co-infection acts as an independent predictor or
mediates the effect of chronic HCV infection on MPR
[52]. Due to the cross-sectional study design, it was not
possible to evaluate how the duration of HCV infection
affects MPR. In the age of interferon-based therapy,
Ikeda et al. [53] found that low platelet count, before the
initiation of treatment, was a significant risk factor in
the development of hepatocellular carcinoma (HCC)
during follow-up. The ability of low platelet count to
predict late-stage liver pathology in those with HCV in-
fection means that thrombocytopenia may occur earlier
in the disease process than liver fibrosis or HCC [53].

Clinical and epidemiological interpretation
Analysis by logistic regression adjusted for the con-
founding variables: age, race, biological sex, needle use,
white blood cell count, cancer diagnosis, and diabetes all
share a dependent relationship with MPR. The relation-
ship between these confounders and platelet count is
unexplainable because, expected platelet counts are not
well described for healthy populations [14, 54]. The cut
point to categorize MPR in our study can be interpreted
in the range of normal complete blood counts in the
United States. The division of the lower normal limit of
expected monocyte count by platelet count produces a
MPR of approximately 1.33 [55]. We caution overinter-
pretation of this value as true population-level counts of
monocytes and platelets are not well understood and
can vary. An MPR of 1.33 could be derived from counts
below or above the normal range.

Future directions
Future analysis should focus on investigating the rela-
tionship between chronic HCV infection and MPR in a
country other than the United States. Geographical val-
idation would strengthen the conclusion that chronic
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HCV infection affects MPR. Unmeasured confounding
should also be assessed by adjustment for relevant co-
infections and prescription of immune-modulating
drugs. A logical follow up to this work would be the use
of the MPR alone or in combination with other risk fac-
tors to build a predictive model to screen for chronic
HCV infection. We caution that a biomarker like the
MPR should not be used independently for diagnosis of
HCV infection but in combination with a specific sero-
logical or NAAT type test. Implementation of the MPR
in a reflex testing algorithm where a “high” score would
requisition a follow up test could benefit the positive
predictive value of diagnosis, conserve tests in resource
limited settings and make population level screening
initiatives economically viable. The primary benefit of
population level screening with the MPR being that it
would enhance surveillance for HCV infection. Persons
that may not otherwise be tested for HCV, could be
identified from a complete blood count. Subsequent re-
search efforts should test the diagnostic accuracy of the
MPR in a study population, or work to identify add-
itional complete blood count-based measurements-
which are associated with chronic HCV infection- and
may increase the discrimination of MPR as a predictive
tool.

Conclusion
A relationship exists between chronic HCV infection
and the complete blood count biomarker (monocyte-to-
platelet ratio) in the population of the United States. We
conclude that generally chronic HCV infection increases
monocyte count and decreases platelet count. Under-
standing the relationship between chronic HCV and
MPR, could advise a biomarker-based screening tool for
chronic HCV infection, similar to the use of the APRI
for liver fibrosis [9]. Development of an antigen free,
biomarker-based, screening tool for chronic HCV infec-
tion would have tremendous economic benefits and de-
crease the time-to-treatment through the initiation of
care from a complete blood draw.
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