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Abstract

Background: The novel coronavirus disease 2019 (COVID-19) sickened over 20 million residents in the United
States (US) by January 2021. Our objective was to describe state variation in the effect of initial social distancing
policies and non-essential business (NEB) closure on infection rates early in 2020.

Methods: We used an interrupted time series study design to estimate the total effect of all state social distancing
orders, including NEB closure, shelter-in-place, and stay-at-home orders, on cumulative COVID-19 cases for each
state. Data included the daily number of COVID-19 cases and deaths for all 50 states and Washington, DC from the
New York Times database (January 21 to May 7, 2020). We predicted cumulative daily cases and deaths using a
generalized linear model with a negative binomial distribution and a log link for two models.

Results: Social distancing was associated with a 15.4% daily reduction (Relative Risk = 0.846; Confidence Interval
[CI] = 0.832, 0.859) in COVID-19 cases. After 3 weeks, social distancing prevented nearly 33 million cases nationwide,
with about half (16.5 million) of those prevented cases among residents of the Mid-Atlantic census division (New
York, New Jersey, Pennsylvania). Eleven states prevented more than 10,000 cases per 100,000 residents within 3
weeks.

Conclusions: The effect of social distancing on the infection rate of COVID-19 in the US varied substantially across
states, and effects were largest in states with highest community spread.
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Background
The severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) caused the coronavirus disease 2019
(COVID-19) pandemic, which sickened over 20 million
residents and caused over 370,000 deaths in the United
States (US) by January 2021 [1, 2]. This highly conta-
gious, novel disease has a high case fatality rate in high-
risk populations, and can cause severe morbidity and
high healthcare resource use. In the US, each state

implemented a combination of social distancing policies
in order to mitigate transmission, including limiting the
size of gatherings and closing schools and non-essential
businesses [3]. States’ implementation strategies varied,
yet little is known about how the impact of social distan-
cing policies varied between states.
In the absence of therapeutics and contact tracing cap-

acity early on in the pandemic, COVID-19 mitigation
and suppression strategies in the US relied on social dis-
tancing policies to prevent the spread of the disease and
reduce COVID-19-related morbidity and mortality [3].
A variety of social distance interventions were imple-
mented in the US to mitigate the spread of COVID-19,
including limits on the size of group gatherings, public
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schools and non-essential business (NEB) closure, and
shelter in place or stay at home orders [4]. These so-
cial distancing and mitigation policies changed behav-
ior, specifically reduced mobility and gathering, which
reduced the opportunities for the virus to spread
from person to person. Early in the pandemic, simula-
tion models suggested that social distancing policies
can provide crucial time to increase healthcare cap-
acity [5]. The effectiveness of social distancing orders
in mitigation community transmission has been well
established [4, 6, 7].
States varied in their timing, sequencing, implementa-

tion and enforcement for social distancing policies. The
Centers for Disease Control and Prevention (CDC) pro-
vided guidance on responding to COVID-19; however,
state and local governments were responsible for imple-
menting social distancing policies. Furthermore, vari-
ation in timing of policies can impact the effectiveness,
with earlier intervention delaying epidemic curve and
later intervention flattening the epidemic curve [5, 8, 9].
Thus, the variation in states’ implementation strategies
may result in variation in the effect of social distancing
measures between states.
The effectiveness of social distancing orders in mitigat-

ing community transmission has been well established;
however, little is known about the variation in the effect
across states.
The objective of this study was to describe state vari-

ation in the effect of initial social distancing policies and
non-essential business (NEB) closure on infection rates
early in 2020. This study expands knowledge by estimat-
ing the impact for each state using state-specific trends
in spread of COVID-19.

Methods
We used an interrupted time series (ITS) quasi-
experimental study design to evaluate the total effects of
social distancing policies implemented between January
21 and May 7, 2020, using non-essential business (NEB)
and public school closures as the key implementation
markers [10]. The study period ends May 7, 2020 to pre-
vent reopening of NEB from impacting the estimates of
closure [7]. The ITS design compares COVID-19 rates
among states that implemented NEB closure to the pre-
dicted rates assuming the trend in cases would have
been consistent in the absence of the intervention. This
assumption allows us to estimate the effect of social dis-
tancing across all states as the average difference be-
tween the predicted case rate with closure and the
predicted case rate without closure.

Data and sample
Dates of social distancing orders were obtained from the
Boston University School of Public Health COVID-19

US State Policy Database from January 21, 2020 to May
7, 2020 [10]. Our sample included 50 U.S. states and the
District of Columbia. We excluded US territories due to
limited data on mitigation policies. Daily COVID-19
confirmed case counts were obtained from the New
York Times state-level database [11]. State population
data were obtained from the 2018 American Community
Survey [12].
The primary outcome was the daily cumulative num-

ber of COVID-19 cases in the state from January 21,
2020 to May 7, 2020. The outcome was lagged by 5 days
because the effect of the intervention on confirmed cases
was expected to be delayed by the incubation period as
well as time for reporting. A shorter lag time was pre-
ferred to avoid classifying daily outcomes from the post-
period in the pre-period, and prior evidence suggested
that effects are significant as early as 5 days after imple-
mentation [4]. The secondary outcome was the number
of confirmed COVID-19 deaths, lagged by 10 days.
We estimated the combined effect of two social distan-

cing measures: state-level NEB and public school clo-
sures. We defined the start of the intervention as the
date of public school closure, and we estimated the
change in slope between school closure and NEB closure
(“ramp up” period) as well as the change in slope after
NEB closure (“post” period) (Supplemental Material).
The total effect of closures included both the change
during the ramp up period as well as the change in the
post period. A shelter-in-place order included the clos-
ure of schools and NEBs, so we used the date of shelter-
in-place to define NEB closure if a date was not reported
for NEBs specifically.

Statistical analysis
We predicted cumulative daily cases and deaths using a
generalized linear model with a negative binomial distri-
bution and a log link for two models. The model exam-
ined the total effect of states’ social distancing orders
(including NEB and public school closure). The time
variable (day) was centered around the date of school
closure, and we truncated observations at 20 days prior
to school closure to reduce bias due to testing limita-
tions and periods of zero growth early in the epidemic,
and improve estimates of states’ pre-period trends. The
mean number of observations per state during the study
period was 66.4 (SD = 14), with a mean of 16.5 days prior
to the school closure and 26.5 days prior to NEB closure
(Table 1). Thus, the mean number of time points in the
post-closure period is > 30, well over the 3–12 time
points recommended for interrupted time series analysis
[13, 14]. This model included interactions between the
treatment variable (categorical; pre-period, ramp-up
period, and post-period) and a linear and quadratic time
variable to allow the slopes to differ in the ramp-up and
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post-period compared to the pre-period. Thus, the treat-
ment effect was estimated as the average of the differ-
ences in the slope for each state before (pre-period) and
after closure.
We used the method of recycled predictions [15] to

compare predicted cumulative cases with social distan-
cing compared to without social distancing at 3 weeks
after the date of school closure for each state. In nonlin-
ear models, the method of recycled predictions is recom-
mended for estimating marginal effects because the
marginal effect can vary depending on the covariate
values. In this method, predictions are estimated for the
treated scenario and the non-treated scenario for each
observation in the sample holding all other variables
constant [16].
State fixed effects controlled for state characteristics

associated with outcomes that did not change over the
study period. To allow time trends in each state to vary
prior to the intervention, we used a unique time trend
for each state in all models. We used an offset to ac-
count for varying population sizes and present marginal
effects as a rate per 100,000 residents. We used robust
standard errors to account for heteroskedasticity in
measurement of cases over time and clustered standard
errors by day to address temporal clustering of out-
comes. To improve model fit, we tested higher order
terms and alternative distribution assumptions (see stat-
istical supplement). The final model included a quadratic
time trend to allow the slope to vary over time. In a sen-
sitivity analysis, we ran models with and without New
York and New Jersey included because of the large case
counts. All analyses were conducted using Stata 16.0.

Results
By the end of the study period, all 50 states and the Dis-
trict of Columbia had closed public schools, and all but
five states (Arkansas, Nebraska, North Dakota, South
Dakota, Wyoming) had NEBs (with or without shelter-
in-place, stay-at-home, or similar order). Five states that
mandated NEB closure did not order residents to shelter

in place (Kentucky, Oklahoma, Texas, Iowa, and Con-
necticut). Most states (31) closed schools the week be-
tween March 13, 2020 and March 20, 2020 while
Nebraska closed schools last, on April 3, 2020 (Table 1).
While three states closed schools and businesses on the
same day (California, Iowa, Maine), most closed schools
prior to NEB closure (mean = 9.7 days). States had an
average of 189.8 COVID-19 cases and 3.3 related deaths
on the date of school closure. States had an average of
1778.6 COVID-19 cases and 30.5 related deaths on the
date of NEB closure.

Effects of social distancing orders on COVID-19 cases and
deaths
Social distancing, including closure of NEB and public
schools, reduced the daily COVID-19 cases by 15.4%
(Relative Risk [RR] = 0.846; Confidence Interval [CI] =
0.832, 0.859) (Table 2). The effect of the relative reduc-
tion on cumulative cases per 100,000 increases exponen-
tially over time due to the exponential spread of
infection in the absence of the intervention (Fig. 1). The
average reduction in cases due to social distancing pol-
icies at 2 weeks was − 518.9 (CI = -827.7, − 210.1) cases
and at 3 weeks was − 4175 (CI = -6910.1, − 1440.9) per
100,000 residents. Social distancing was associated with
a daily reduction in COVID-19 deaths of 11.6% (RR =
0.884; CI = 0.861, 0.906) (Table 2). Predictions for deaths
were not precise enough to estimate the number of
deaths prevented. Results in sensitivity analyses were
similar (Table 2).
The impact of social distancing policies varied across

states. Eleven states were estimated to have prevented
more than 10,000 cases per 100,000 residents including
New York, New Jersey, Louisiana, Massachusetts, Con-
necticut, Michigan, Rhode Island, District of Columbia,
Washington, Illinois, and Delaware (Fig. 2). Seven states
were estimated to have prevented less than 2000 cases
per 100,000 residents including Oklahoma, Arizona,
North Dakota, Nebraska, Wyoming, Arkansas, and
North Carolina. The Mid-Atlantic census division
accounted for half of the nationally prevented cases at
16.5 million cases. State specific estimates are presented
in the supplemental material (Table S1).

Discussion
The effect of state social distancing orders on the infec-
tion rate of COVID-19 in the US varied substantially
across states. In our study, the effect of social distancing
early in the pandemic (March – May 2020) ranged from
less than 2000 cases per 100,000 residents in to over 10,
000 prevented cases per 100,000 residents. About half
(16.5 million) of prevented cases nationally were esti-
mated among residents of the Mid-Atlantic census div-
ision (New York, New Jersey, Pennsylvania) where

Table 1 Timing of states social distancing policies relative to
COVID-19 burden

Total (N = 51)

Mean (SD)

Days in sample 66.4 (14.0)

Days from index case to school closure 16.5 (14.7)

Cases at school closure 189.8 (391.3)

Deaths at school closure 3.3 (9.0)

Days from index case to NEB closure 26.5 (13.8)

Cases at NEB Closure 1778.6 (2771.1)

Deaths at NEB closure 30.5 (43.7)

NEB non-essential businesses, SD standard deviation;
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community spread was higher than in other regions of
the country at the time.
Our findings confirm prior estimates of the effects of

social distancing mandates on the spread of COVID-19
early in the COVID-19 epidemic and expands under-
standing by describing variation in the effects across
states. The relative daily reductions in COVID-19 cases
(15.4%) and deaths (11.6%) associated with social distan-
cing orders prevented an estimated 33 million cases na-
tionwide. Similar to our results, prior evidence
evaluating the effectiveness of social distancing policies
estimated 34 million prevented by the end of April and
up to 60 million cases in total [4, 6, 17]. Another study
evaluating the timing of school closure found closing
schools when the cumulative incidence of COVID-19
was in the lowest quartile compared with the highest
quartile was associated with 128.7 fewer cases per 100,
000 population over 26 days and with 1.5 fewer deaths
per 100,000 population over 16 days [6].

COVID-19 infection rates have continued to in-
crease nationally, and some states and countries are
implementing additional rounds of stay at home or-
ders. While significant advances in vaccines mitigate
COVID-19 susceptibility, new evidence suggests that
the benefits of continuing non-pharmaceutical inter-
ventions including social distancing policies is greater
than vaccination alone [18]. Similar to other studies,
we found the largest effects of social distancing orders
were observed in states with high community spread
at the time of implementation [6]. Due to the growth
in infection rates, states that reinstate stay at home
orders may prevent a greater number of COVID-19
cases than were prevented by implementation early in
the pandemic, particularly in rural states where the
rate of infection in the community was low early in
2020. Emerging coronavirus variants that are more
contagious or morbid may cause surges that require
physical mitigation measures including social

Table 2 Total effects of social distancing policies on COVID-19 cases and deaths

Cumulative Daily Cases Cumulative Daily Deaths

Total Effects of Social Distancing Policies RR (95% CI) RR (95% CI)

Primary Analysis (all states) 0.85 (0.83, 0.86) 0.88 (0.86, 0.91)

Sensitivity Analysis a 0.86 (0.85, 0.87) 0.90 (0.87, 0.92)

Change in predicted cases per 100,000 (95% CI) Change in predicted deaths per 100,000 (95% CI)

Difference at 14 days − 518.92 (− 827.70, − 210.14) −11.02 (− 23.57, 1.54)

Difference at 21 days −4175.46 (− 6910.06, − 1440.86) −77.60 (− 168.81, 13.61)

RR relative risk, CI confidence interval, NEB non-essential businesses
Note: negative numbers represent cases or deaths prevented
a Sensitivity Analysis included all states except New York and New Jersey

Fig. 1 Cumulative incidence of COVID-19 cases with and without state social distancing policies
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distancing mandates and face masks to reduce trans-
mission [19]. Despite efforts to suppress and contain
the virus, COVID-19 is likely to become endemic,
particularly among populations with high poverty
rates [20].
Measurement error in the number of cases and deaths

is a concern as the procedures for testing and docu-
menting cases and deaths have continued to adapt over
time and vary by state. Asymptomatic cases and out-of-
hospital deaths are most likely to be underrepresented.
Our data included COVID-19 cases confirmed by test-
ing, and many cases and deaths may go undetected due
to both testing limitations and asymptomatic carriers. In
addition, the state level data do not capture the variation
in local policies (e.g., the introduction of masking),
which may have contributed to the effectiveness of social
distancing mandates. States adopted and adapted mul-
tiple interventions during the period, and our analysis
cannot isolate effects of individual policies, only total ef-
fects. This analysis also could not distinguish whether
the observed relationships are due to voluntary versus
mandated social distancing. Finally, the ability to control
for the state-specific trend in mortality was limited due
to the few deaths that occurred prior to school closure.

Conclusions
The effect of social distancing on the infection rate of
COVID-19 in the US varied substantially across states

and effects were largest in states with highest commu-
nity spread. The level of community spread should be a
key factor for states considering mandating the closure
of non-essential businesses and stay-at-home orders.
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