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Abstract

Background: Risk adjustment models are employed to prevent adverse selection, anticipate budgetary reserve
needs, and offer care management services to high-risk individuals. We aimed to address two unknowns about risk
adjustment: whether machine learning (ML) and inclusion of social determinants of health (SDH) indicators improve
prospective risk adjustment for health plan payments.

Methods: We employed a 2-by-2 factorial design comparing: (i) linear regression versus ML (gradient boosting) and
(ii) demographics and diagnostic codes alone, versus additional ZIP code-level SDH indicators. Healthcare claims
from privately-insured US adults (2016–2017), and Census data were used for analysis. Data from 1.02 million adults
were used for derivation, and data from 0.26 million to assess performance. Model performance was measured
using coefficient of determination (R2), discrimination (C-statistic), and mean absolute error (MAE) for the overall
population, and predictive ratio and net compensation for vulnerable subgroups. We provide 95% confidence
intervals (CI) around each performance measure.

Results: Linear regression without SDH indicators achieved moderate determination (R2 0.327, 95% CI: 0.300, 0.353),
error ($6992; 95% CI: $6889, $7094), and discrimination (C-statistic 0.703; 95% CI: 0.701, 0.705). ML without SDH
indicators improved all metrics (R2 0.388; 95% CI: 0.357, 0.420; error $6637; 95% CI: $6539, $6735; C-statistic 0.717;
95% CI: 0.715, 0.718), reducing misestimation of cost by $3.5 M per 10,000 members. Among people living in areas
with high poverty, high wealth inequality, or high prevalence of uninsured, SDH indicators reduced
underestimation of cost, improving the predictive ratio by 3% (~$200/person/year).

Conclusions: ML improved risk adjustment models and the incorporation of SDH indicators reduced
underpayment in several vulnerable populations.
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Background
Public and private regulators use risk adjustment models
to prevent adverse selection, anticipate budgetary reserve
needs, and offer care management services to high-risk
individuals [1]. Preventing risk selection by insurers is a
critical ethical, legal, and societal goal that risk adjust-
ment models can address. Risk adjustment models at-
tempt to capture the relationship between demographic
and clinical variables (risk adjusters) and subsequent
healthcare utilization or spending. The models are com-
monly derived through standard linear regression
methods or their extensions, and rely on individual-level
data commonly captured in administrative claims data-
sets [2]. All of the available models on the current com-
mercial market are linear or log-linear regression models
that leverage the same basic elements such as age, sex,
diagnostic and procedure codes [3].
Risk adjustment modeling may be improved by both

methodological and conceptual advances in the risk
modeling and healthcare services literature. From a
methodological standpoint, newer machine learning
methods have recently emerged as alternatives or com-
plements to linear regression for predicting highly vari-
able health outcomes using large sparse datasets,
including estimating healthcare costs using claims data
[4, 5]. While traditional risk adjustment models are lim-
ited in modeling complexity and tend to underpredict
expenditures of populations with very high expenditures
[6, 7], machine learning methods may help to capture
complex non-linear relationships and interaction terms
among variables, which could explain why some individ-
uals with complex constellations of risk factors and diag-
noses experience substantially higher cost than
predicted. For example, among people with low income
and diabetes receiving insulin, food insecurity is associ-
ated with hypoglycemia and emergency room visits
during the last week of each month (after income from a
first-of-the-month paycheck is deprived) and
hypoglycemic medications are still being taken [8].
These complex relationships are hard to model in stand-
ard risk equations, but can be potentially better captured
by interactions-focused, nonlinear machine learning al-
gorithms. Despite the promise of machine learning for
risk adjustment, machine learning techniques have not
yet been widely adopted for risk adjustment. This is par-
tially because the machine learning models developed to
date have not yet demonstrated superior predictive per-
formance over traditional linear models on large datasets
with more than a million enrollees [2].
From a conceptual standpoint, risk adjustment may

also be improved by including additional area-level indi-
cators of social determinants of health (SDH), such as
poverty, unemployment, and education, which contrib-
ute to risk, utilization and cost [9–11]. Since before the

UK Black Report and the Health Divide, epidemiologists
have shown that while cultural and individual behavioral
choices influence health, living conditions including the
availability of resources (e.g., clean air and water), work-
ing conditions, and quality of food and housing have a
particularly profound association with health outcomes
[12]. More recent initiatives to directly address these ‘so-
cial determinants’ of health include strategies to refer
patients with food insecurity to food pantries, those that
are homeless to direct housing resources, and those with
challenges with transportation to assisted transport ser-
vices, as a means to improve clinical outcomes such as
nutrition-related chronic disease metrics (e.g., nutrition
affecting blood pressure and diabetes glycemic control)
and to improve the ability to access healthcare visits and
reduce stress-related adverse health outcomes [13].
The inclusion of SDH indicators into risk adjustment

may particularly help plan payment estimation. SDH in-
dicators may help capture previously unmeasured factors
that could influence the course of disease, such as how
poverty may affect chronic disease outcomes by affecting
the ability to pay for medications or more nutritious
foods, or how unemployment relates to mental health
and associated course of disease related to depression
and lower adherence [14, 15]. Individual-level SDH fac-
tors are rarely assessed or included in commonly-
available data, but area-level SDH indicators are readily
assessed by national data sources [16], and may be
linked to the 5-digit ZIP code often available in claims
data. Area-level SDH indicators were recently incorpo-
rated into risk adjustment models for the Massachusetts
Medicaid program; their inclusion improved concurrent
annual healthcare spending predictions for low-income
adults [17]. It remains unclear, however, to what extent
incorporating area-level SDH indicators could improve
prospective annual healthcare spending predictions, par-
ticularly for the privately-insured population who consti-
tute the largest share of insured people in the US, but
for whom SDH factors may be less visible or influential
than for the Medicaid population.
The objective of this study was to assess whether pro-

spective risk adjustment models may be improved by
machine learning methods and by the incorporation of
area-level SDH indicators in a national privately-insured
adult population.

Method
Data
Our primary data were healthcare claims from a single
large national commercial insurer operating in all 50 US
states, Washington D.C., and Puerto Rico (Fig. 1). From
the claims data, we included privately-insured individ-
uals 18 through 64 years old who had at least 24 months
of continuous enrollment. Individuals who switched
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plans were implicitly excluded due to the continuous en-
rollment criteria, but individuals who moved were in-
cluded. We used demographics (age, sex) and diagnostic
codes (Clinical Classification Software categories [18]) as
candidate risk adjustment variables at the individual
level, and SDH indicators at the 5-digit ZIP code-level
from the American Community Survey (ACS) by the
U.S. Census Bureau (Table 1) [16]. SDH indicators were

selected to reflect current conceptual theories concern-
ing a broad range of social, economic, and health system
factors that may influence health risk, utilization, or cost
(Supplementary Information Table S1) [19, 20]. The
resulting dataset contained claims data from 1.18 million
unique members, which we randomly partitioned into
training data (1.06 million members) for model deriv-
ation and test data (0.12 million members) for model

Fig. 1 Data Set Selection Flow Diagram. Administrative claims data was obtained from a single national private insurer. The dotted arrow means
predictors were optionally incorporated but no members were added or excluded

Table 1 Statistics of ZIP Code-Level Social Determinants of Health

SDH Variable Mean [Median] (Std)

Median Income in the Past 12 Months, $ 26,546 [25727] (6230)

Families Under 0.5 Ratio of Income to Poverty Level in the Past 12 Months, % 4.7 [4.3] (2.7)

Families Between 0.5 and 0.74 Ratio of Income to Poverty Level in the Past 12 Months, % 3.2 [3.0] (1.7)

Families Between 0.75 and 0.99 Ratio of Income to Poverty Level in the Past 12 Months, % 3.6 [3.4] (1.6)

Families Received Food Stamps/Snap in the Past 12 months, % 14.2 [13.6] (6.6)

Population Unemployed, % 5.4 [5.2] (1.9)

Gini Index of Income Inequality 45.2 [45.1] (3.6)

Population Obtained High School Diploma, % 43.0 [42.9] (4.8)

Population Obtained Bachelor’s Degree, % 16.1 [15.2] (6.2)

Population Speak English Less than “Very Well”, % 10.5 [5.6] (12.5)

Families with Single Parent, % 22.9 [22.7] (6.2)

Population Without Health Insurance Coverage, % 11.3 [10.6] (4.9)

Population African American, % 9.9 [4.5] (13.5)

Population Asian, % 2.9 [1.2] (4.7)

Population American Indian and Alaska Native, % 1.5 [0.3] (6.4)

Population Hispanic or Latino, % 11.9 [5.5] (15.8)

Population White, % 71.8 [77.7] (22.3)

SDH variables were obtained from the 2012–2016 American Community Survey 5-year estimates from the U.S. Census Bureau
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performance assessment [21]. There was no overlap of
individuals among the two data subsets. Demographic
statistics of the data subsets by geographic location are
reported in Supplementary Information Table S2.

Outcome
We sought to prospectively predict 2017 individual-level
total annual healthcare spending from 2016 data. As a
secondary objective, we also considered concurrent risk
adjustment, predicting 2016 member-level annual
spending from 2016 data, as is done, for instance, in the
Affordable Care Act health insurance exchanges (see
Supplementary Information). We estimated total annual
spending by summing standardized costs in U.S. Dollars
over 12 months, including post-year claims corrections,
and including zero spending among enrolled individuals
without medical claims. To inhibit outliers from affect-
ing model fit, costs in the training set were top-coded at
$400,000 (cost larger than $400,000 was replaced with
$400,000), which corresponded to the top 0.1% cost of
members in the training set. Top-coding is performed to
reduce model sensitivity to skewness and kurtosis, and
has been preferred over dropping members with high
cost since these cases can be indicative of specific condi-
tions which are associated with high cost [2, 22, 23].

Model development
A 2-by-2 factorial design was employed to compare
modeling approaches (linear regression versus the ma-
chine learning approach of gradient boosted decision
trees), and variable choice (demographics and diagnostic
codes alone versus additional area-level SDH indicators).
In each of the methods, individual-level predictors with
their associated area-level predictors are input to the
model together as if they were all individual-level
properties.

Linear regression approach
A linear model derived through ordinary least squares
regression was trained to predict 2017 spending based
on 2016 member characteristics. We additionally devel-
oped penalized linear regression models using methods
that may better address collinearity (Least Absolute
Shrinkage and Selection Operator [LASSO]), as detailed
in the Supplementary Information. LASSO regression
tends to sparsely select among collinear variables by for-
cing coefficients to zero for all but one of the collinear
variables [24, 25].

Machine learning approach
The machine learning approach investigated in this
study was gradient boosted decision trees [26]. This ap-
proach involves the construction of an ensemble of deci-
sion trees, where each tree learns from the errors of the

prior tree (a “boosting” approach) to iteratively improve
predictions [27]. With each iteration, a new tree is con-
structed by sampling from the data and identifying
which variable most effectively divides the members into
groups with low within-group variation in cost and high
between-group variation in cost. This variable selection
process is repeated to further divide each resulting sub-
set of the data, producing a series of branches in the de-
cision tree. The tree is added to the current ensemble,
and then the next tree is fit using the same process on
the residuals of the ensemble.
We chose gradient boosted decision trees over alterna-

tive machine learning methods because the approach
has been shown to handle mixes of categorical and con-
tinuous covariates, capture nonlinear relationships, and
scale well to large amounts of data [28]. Moreover, it is
straightforward to obtain variable importance rankings
from the model, which may permit the approach to be
more interpretable than many other machine learning
methods, for which acceptability in a healthcare services
context may critically depend on visualizing “black box”
predictions [29]. We used the LightGBM framework to
develop the models, which implements several algorith-
mic optimizations on standard gradient boosting to
allow for additional training efficiency [30]. A detailed
treatment of gradient boosted decision trees and
LightGBM is provided in the Supplementary Informa-
tion. We used 3-fold cross validation on the training
data subset to select the parameters for the model, in-
cluding the number of trees, the maximum depth of
each tree, and the minimum level of loss reduction ne-
cessary to partition leaf nodes, based on which achieved
the lowest mean squared error averaged across the 3
folds [21]. We then refitted the model to the full training
set using the best parameters determined from 3-fold
cross validation, which can further help reduce overfit-
ting. We additionally developed random forest and shal-
low multilayer perceptron models using a similar
training procedure, as detailed in the Supplementary In-
formation [31, 32].

Model testing and statistical analysis
We evaluated the performance of the prospective risk
adjustment models on the test set. The performance
metrics are detailed below.

Goodness of fit
We evaluated model goodness of fit using the coefficient
of determination (R2) and the mean absolute error
(MAE). We estimated the R2 with confidence intervals
using the nonparametric bootstrap with 5000 bootstrap
replicates [33], and the MAE with confidence intervals
using a paired t-test.
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Discrimination
We assessed discrimination using the concordance-
statistic (C-statistic), a rank correlation metric for asses-
sing the model’s ability to order members by their
spending [34]. The C-statistic estimates the probability
that, for a randomly selected pair of members, the mem-
ber with the higher cost will be correctly predicted as
having higher cost by the model [35]. The C-statistic is
the generalization of the area under the receiver operat-
ing characteristic curve from the binary to the continu-
ous outcome setting, where a result between 0.7 and 0.8
is considered acceptable, between 0.8 and 0.9 is consid-
ered good, and above 0.9 is considered excellent [36].
We estimated confidence intervals for the C-statistic
using a jack-knife procedure [37].

Subgroup analyses
Risk adjustment models often underpredict spending for
specific subgroups of enrollees leading to underpayment
to the insurer, and there is evidence that insurers expli-
citly make health plans less desirable for enrollees in
undercompensated groups [38, 39]. To evaluate the per-
formance of the models on vulnerable subgroups, we de-
fined test data subgroups using age, sex, and area-level
SDH indicators. SDH indicator subgroups included indi-
viduals living in ZIP codes in the lowest decile of house-
hold income; lowest decile of education level (by high
school diploma and by bachelor’s degree receipt); highest
decile of Gini index for inequality; low ratio of income
to poverty level; high proportion of households receiving
food stamps; high proportion with single parents; high
unemployment; high uninsurance rate; and high propor-
tion reporting they do not speak English “very well” (see
Supplementary Information Table S1 for decile
thresholds).
The performance of the model on each subgroup was

measured using the predictive ratio [40] and net com-
pensation [39, 41]. The predictive ratio for a subgroup
was computed as the ratio of the mean of observed
spending to the mean of predicted spending over the
subgroup, where a value above 1 indicates underestima-
tion of cost and a value below 1 indicates overestimation
[17]. We estimated 95% confidence intervals around the
predictive ratio using the delta method [42]. Net com-
pensation was used as a measure on the dollar scale, and
was computed as the mean difference between predicted
spending and observed spending over the subgroup,
where a value below 0 indicates underestimation of cost
and a value over 0 indicates overestimation. We esti-
mated 95% confidence intervals around the net compen-
sation values using a paired t-test.
Analyses were approved by the Stanford Institutional

Review Board (eProtocol #42334), and performed in Py-
thon version 3.6.6 [43] and R version 3.5.0 [44], using

the code shared online for reproducibility at: https://
github.com/stanfordmlgroup/risk-adjustment-ml.

Results
Descriptive statistics on the data subsets are detailed in
Table 2. The test set had a mean age of 41.1 years (me-
dian 41.0; IQR 30.0, 53.0) and was 48.9% female. Top-
coding cost at $400,000 eliminated approximately 2.8%
of dollars and test set members had a mean top-coded
annual healthcare cost of $6677 (median 855; IQR 161,
3847). Around 17.7% of members in the test set had zero
annual healthcare cost.
Table 3 shows the test set performance of the pro-

spective linear and machine learning models without
and with the SDH indicators.

Linear regression without SDH indicators
The linear regression model without SDH indicators,
when derived through ordinary least squares regression,
had the largest standardized coefficients (indicating
highest importance among covariates in the model) for
age and sex indicators and diagnostic coding for birth
complications and chronic kidney disease (see Supple-
mentary Information Table S3). The model had a R2 of
0.327 (95% CI 0.300, 0.353), MAE of $6992 (95% CI
6889, 7094), and C-statistic of 0.703 (95% CI 0.701,
0.705). Linear models derived through LASSO had simi-
lar performance metrics but tended to favor diagnoses
more than traditional least squares (see Supplementary
Information Tables S3 and S5).

Linear regression with SDH indicators
The inclusion of SDH indicators in the linear regression
model had no substantial effect on the overall perform-
ance metrics. The model had a R2 0.327 (95% CI 0.300,
0.354), MAE of $6991 (95% CI 6889, 7094), and C-
statistic of 0.700 (95% CI 0.699, 0.702).

Machine learning without SDH indicators
Switching from a linear regression model to the machine
learning model significantly improved determination,
significantly reduced error, and significantly improved
discrimination. Specifically, the machine learning model
without SDH indicators had a R2 of 0.388 (95% CI 0.357,
0.420), MAE of $6637 (95% CI 6539, 6735), and C-
statistic of 0.717 (95% CI 0.715, 0.718). The multilayer
perceptron and random forest models outperformed the
linear models but performed worse than the LightGBM
model across all metrics (Supplementary Information
Table S5).

Machine learning with SDH indicators
The inclusion of SDH indicators in the machine learning
model also had no substantial effect on the overall
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performance metrics above the machine learning model
without SDH indicators. The model had a R2 of 0.387
(95% CI 0.357, 0.419), MAE of $6634 (95% CI 6536,
6732), and C-statistic of 0.716 (95% CI 0.714, 0.717). We
created variable importance rankings to assist in the in-
terpretation of the machine learning model. Diagnosis
predictors had the largest importance metrics in the ma-
chine learning model, with the most important predic-
tors being chronic kidney disease, deficiency and other
anemia, and other aftercare (see Supplementary Infor-
mation Table S4).

Subgroup analyses
Table 4 compares the predictive ratios and net compensa-
tion values for the machine learning model without and
with SDH indicators. The addition of SDH indicators re-
solved or reduced underestimation of risk on all of the
SDH-based subgroups, but the 95% confidence intervals

were overlapping between the non-SDH and SDH-
including models among all subgroups. On one of the
high-poverty subgroups, the subgroup with a high propor-
tion of non-fluent English speakers, the subgroup with a
high prevalence of uninsured, and the subgroup of indi-
viduals who lived in areas with a large proportion of
households on food stamps, the incorporation of SDH in-
dicators resolved the underestimation of risk. Among sub-
groups of individuals who lived in areas with high poverty,
high wealth inequality, and high prevalence of uninsured,
the machine learning model trained with SDH indicators
substantially reduced underestimation of cost among the
subgroup, improving the predictive ratio by 3% (and net
compensation by $200 per person) over the model trained
without SDH indicators. The addition of SDH indicators
led to small additional overpayment on the 4 subgroups
for which the model without SDH indicators did not sub-
stantially underestimate risk (predictive ratio < 1.01), spe-
cifically one of the high-poverty subgroups, the subgroup
with a large unemployed population, the subgroup with a
low percentage of high school graduates, and the sub-
group with a large number of single-parent families. Add-
itional subgroup analyses among all models are presented
in Supplementary Information Tables S6, 7, 8.

Additional results
Binned scatter plots of the prospective risk adjustment
models on the test set are shown in Fig. S1. We add-
itionally explored the effect of using binary diagnosis
predictors instead of counts (Supplementary Information
Table S9), the effect of top-coding cost (Supplementary
Information Table S10), the effect of including lab re-
sults (Supplementary Information Table S11), and the
development of concurrent risk adjustment models
(Supplementary Information Table S12).

Discussion
We observed that switching from a linear regression
model to a gradient boosting ML model significantly im-
proved determination and discrimination and reduced

Table 2 Characteristics of Members in the Dataset Subsets

Characteristic Training Set Test Set

Members Total, No. 1,058,479 117,616

Female Total, No. (%) 517,364 (48.9%) 57,469 (48.9%)

Members from ZIP codes without measured SDH variablesa, No. (%) 1074 (0.1%) 115 (0.1%)

Population statistics, mean [median] (SD)

Age, y 41.1 [41.0] (13.1) 41.1 [41.0] (13.1)

2017 Annual Cost, $ 6946 [861] (28,240) 6868 [855] (27,826)

2017 Top-coded Annual Costb, $ 6762 [861] (23,822) 6677 [855] (23,536)

The training set was used to develop the models and the test set was used to evaluate the models
aThe SDH variables of these members were imputed with the median values of SDH variables over all ZIP codes, and an additional indicator variable was used to
identify whether members fall into this category
bStatistics of cost when top-coding at $400,000 (values higher than $400,000 were replaced with $400,000)

Table 3 Performance Measures of the Prospective Linear and
Machine Learning Models on the Test Set

Evaluation Metric No SDH SDH

R2 (95% CI)a

Linear 0.327 (0.300, 0.353) 0.327 (0.300, 0.354)

ML 0.388 (0.357, 0.420) 0.387 (0.357, 0.419)

MAE (95% CI)b

Linear 6992 (6889, 7094) 6991 (6889, 7094)

ML 6637 (6539, 6735) 6634 (6536, 6732)

C-statistic (95% CI)c

Linear 0.703 (0.701, 0.705) 0.700 (0.699, 0.702)

ML 0.717 (0.715, 0.718) 0.716 (0.714, 0.717)

Comparison of performance measures between linear regression and machine
learning prospective risk adjustment models, predicting 2017 yearly top-coded
spending from 2016 characteristics. The SDH model additionally includes SDH
variables obtained from U.S. Census data (see Table 1)
aConfidence intervals for R2 were constructed using the nonparametric
bootstrap [21]
bConfidence intervals for MAE were constructed using a paired t-test
cConfidence intervals for C-statistic were constructed using a jackknife
procedure [25]
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absolute error in cost. We also observed that the inclusion
of SDH indicators at the ZIP code-level reduced underesti-
mation of cost among people living in vulnerable areas.
Prior studies have separately investigated whether ma-

chine learning and the incorporation of SDH indicators
can improve risk adjustment. The use of machine learn-
ing for prospective risk prediction in a previous study
did not demonstrate substantial improvements over

linear regression for a privately-insured population [4].
However, the addition of SDH indicators has been
shown to improve concurrent risk adjustment models,
including Medicare Advantage Plan quality rankings,
Medicare’s Hospital Readmissions Reduction Program
penalties, and concurrent annual healthcare spending
among a state Medicaid population [17, 45, 46]. In our
study, the incorporation of SDH indicators reduced cost

Table 4 Predictive Ratio and Net Compensation Values of Prospective Machine Learning Models on SDH-Based Subgroups in the
Test Set

Model Predictive Ratiob and Net Compensationc

Subgroup No. (%) 2017 Spending ($)a ML (95% CI) ML with SDH (95% CI)

Total 117,616 (100) 6677 1.000 (0.976, 1.024) 1.000 (0.976, 1.024)

0 (− 105, 105) 0 (− 105, 105)

Poverty

Median Income in the Past 12 Months, $ 4923 (4.2) 10,818 1.017 (0.915, 1.120) 1.006 (0.905, 1.108)

− 183 (− 836, 470) −67 (− 729, 595)

Families Under 0.5 Ratio of Income to Poverty Level
in the Past 12 Months, %

7932 (6.7) 9344 0.966 (0.882, 1.050) 0.948 (0.865, 1.031)

331 (− 138, 801) 510 (33, 987)

Families Between 0.5 and 0.74 Ratio of Income to
Poverty Level in the Past 12 Months, %

6651 (5.7) 8952 1.010 (0.912, 1.108) 0.988 (0.892, 1.084)

−89 (− 599, 420) 109 (− 408, 627)

Families Between 0.75 and 0.99 Ratio of Income to
Poverty Level in the Past 12 Months, %

7194 (6.1) 9395 1.052 (0.956, 1.148) 1.010 (0.919, 1.101)

− 467 (− 977, 43) −94 (− 613, 425)

Families Received Food Stamps/Snap in the Past
12 months, %

9009 (7.7) 9001 1.028 (0.941, 1.115) 0.996 (0.912, 1.079)

− 247 (− 684, 191) 39 (− 409, 487)

Population Unemployed, % 10,278 (8.7) 7055 0.961 (0.886, 1.036) 0.957 (0.882, 1.032)

289 (−71, 649) 316 (−51, 683)

Gini Index of Income Inequality 16,155 (13.7) 6138 1.054 (0.985, 1.122) 1.021 (0.955, 1.087)

− 312 (− 578, −46) − 126 (− 393, 140)

Education

Population Obtained High School Diploma, % 9482 (8.1) 7555 0.987 (0.900, 1.073) 0.974 (0.889, 1.058)

102 (− 324, 529) 205 (− 227, 637)

Population Obtained Bachelor’s Degree, % 4169 (3.5) 11,338 1.032 (0.923, 1.142) 1.027 (0.917, 1.136)

−353 (− 1139, 433) − 294 (− 1080, 492)

Other

Population Speak English Less than “Very Well”, % 23,659 (20.1) 5453 1.023 (0.963, 1.083) 0.989 (0.932, 1.046)

− 124 (− 346, 98) 61 (−161, 283)

Families with Single Parent, % 9097 (7.7) 9880 0.993 (0.910, 1.076) 0.978 (0.896, 1.060)

65 (− 397, 527) 224 (− 246, 693)

Population Without Health Insurance Coverage, % 13,656 (11.6) 8333 1.066 (0.990, 1.142) 0.990 (0.921, 1.059)

− 516 (− 885, − 147) 83 (− 287, 454)

Comparison of machine learning prospective risk adjustment models without and with the addition of SDH indicators as predictors (see Table 1 for a complete list
of SDH indicators). The predictions for each model were adjusted so that the mean of the predictions over the total test population was equal to the mean of the
actual costs, resulting in a predictive ratio of exactly 1.0 over the total test set population. Subgroups were composed of members in the lowest decile of ZIP
codes with respect to the corresponding SDH variable (see Supplementary Information Table S1). Only socioeconomic variables are considered in this subgroup
analysis, and results on age and sex subgroups are shown in the Supplementary Information
aSpending included all healthcare utilization in 2017 of members with full enrollment in 2016 and 2017. Values larger than $400,000 were replaced with $400,000
bPredictive ratio for a subgroup was computed as the ratio of the mean of observed to the mean of predicted spending over the subgroup. Approximate
confidence intervals for predictive ratios were computed with the delta method [40]
cNet compensation for a subgroup was computed as the mean difference between predicted and observed spending in the subgroup. Confidence intervals were
estimated using a paired t-test
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underestimation in several vulnerable subgroups, even
among a commercially-insured population. Improving
predictions of cost within these subgroups is important
in order to address persistent inequalities that lead to
bias in the estimation of payment [47–49].
Our study has important limitations. First, the risk

models developed here are unlikely to generalize well to
populations outside the U.S. as well as to Medicaid or
Medicare populations for whom risk adjustment models
may be particularly consequential to avoid adverse selec-
tion and maintain competitive and fair markets. How-
ever, the methods employed in this study could be used
in developing specific models for those populations. Sec-
ond, similar to other machine learning methods, the
modeling approach used in this study is more complex
than traditional linear regression. Although this may
confer an advantage due to the potential of preventing
‘cheating’, in that machine learning models may be less
susceptible to up-coding behaviors intended to inflate
risk estimates [2], the complexity might also contribute
to difficulty to understand how and why the model made
a certain decision [29]. Third, since risk adjustment
models are developed on historical data, they tend to
perpetuate inequality of past spending trends if no expli-
cit adjustments are made to account for the endogeneity
of spending. Prior work has investigated methods to de-
velop fairer healthcare payment models through data
manipulation and modeling changes [39, 41, 50], which
can be pursued in future studies. Fourth, the SDH indi-
cators used in this study are at the area-level which may
lead to bias or ecological fallacy in the risk adjustment
models. However, combining the claims data used in this
work with individual-level socioeconomic status vari-
ables was prohibited for privacy reasons. Fifth, 5-digit
ZIP codes are not as homogeneous as Census Tracts or
Census Block Groups, which have been used in previous
linear regression models assessing SDH-associated ef-
fects for Medicaid and Medicare populations [51]. The
risk for this study is a potential underestimation of the
contribution of SDH to risk models. However, ZIP code
is more readily available in commercial claims datasets.
Sixth, there remains debate about whether adding in
SDH indicators may allow for poorer healthcare to per-
sist in healthcare organizations serving predominantly
lower-income populations, by compensating them more
in value-based payment models that adjust not only for
outcomes but also for lower income for instance, al-
though recent studies suggest this will not necessarily
mask hospital quality [52]. Seventh, one key challenge is
to predict per-member utilization rather than cost. How-
ever, given that cost is a key concern for payers and
often disproportionate to utilization due to negotiated
contracts and geographic variations in cost, we modeled
overall costs to help understand how much geographic

parameters such as social determinants and machine
learning could capture the complexities related to
payment.
In the future, our ML approach may be improved upon

in several ways. It may be possible to take advantage of
the temporality of the data, for example by including more
than one year of medical history. Additionally, it may be
possible to train a hybrid (concurrent and prospective)
model to leverage the continuous nature of medical en-
rollment, utilization, and claims [53]. Finally, using highly
parameterized models such as deep neural networks could
better capture nonlinear interactions between covariates
and scale to large claims datasets, at the expense of inter-
pretability [54]. We have shared our code in an open
source manner to enable others to reproduce and extend
our methods to other datasets.

Conclusion
The results of the current study suggest that machine
learning methods and the inclusion of area-level SDH
indicators may improve prospective risk adjustment
models in a commercially insured population. The SDH
indicators were particularly useful for populations living
in vulnerable areas, while the machine learning approach
had a greater impact on overall performance, leading to
improvements in fit, discrimination, and overall cost al-
location (>$3M reduction in error per 10,000 people).

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12889-020-08735-0.

Additional file 1: Appendix. Additional details on the administrative
claims dataset, input predictors, machine learning models, linear
regression models, and statistical analysis. Table S1. Definitions and
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Statistics of the Data Subsets by Geographic Location Table S3. Variable
Importances of the Prospective Linear Regression, LASSO Regression,
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Net Compensation Values of Prospective Machine Learning Models on
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