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Abstract
Background  Unfamiliarity with academic research may contribute to higher levels of anticipatory state anxiety about 
affective neuroimaging tasks. Children with high trait anxiety display differences in brain response to fearful facial 
affect compared to non-anxious youth, but little is known about the influence of state anxiety on this association. 
Because reduced engagement in scientific research and greater mistrust among minoritized groups may lead to 
systematic differences in pre-scan state anxiety, it is crucial to understand the neural correlates of state anxiety during 
emotion processing so as to disambiguate sources of individual differences.

Methods  The present study probed the interactive effects of pre-scan state anxiety, trait anxiety, and emotional 
valence (fearful vs. happy faces) on neural activation during implicit emotion processing in a community sample of 46 
preadolescent Latina girls (8–13 years).

Results  Among girls with mean and high levels of trait anxiety, pre-scan state anxiety was associated with greater 
right amygdala-hippocampal and left inferior parietal lobe response to fearful faces relative to happy faces.

Conclusions  Anticipatory state anxiety in the scanning context may cause children with moderate and high trait 
anxiety to be hypervigilant to threats, further compounding the effects of trait anxiety. Neuroimaging researchers 
should control for state anxiety so that systematic differences in brain activation resulting from MRI apprehension are 
not misleadingly attributed to demographic or environmental characteristics.
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Introduction
Accurate recognition of others’ emotional expressions 
provides us with cues to salient environmental features 
and the emotional state of our interaction partners. Chil-
dren with anxiety exhibit threat biases in processing and 
interpreting facial affect [1–4] and display atypical pat-
terns of neural activation when viewing threat stimuli [5]. 
Perceiving social cues as threatening may cause anxious 
children to avoid social situations, reducing opportu-
nities to habituate or reappraise fears and further exac-
erbating anxiety symptoms [6]. Momentary feelings of 
anxiety in healthy children, or state anxiety, can also 
elicit behavioral and neural responses to negative emo-
tional stimuli resembling those seen in trait anxiety and 
anxiety disorders [7–10]. Many children experience ele-
vated state anxiety while undergoing functional magnetic 
resonance imaging (fMRI)  scanning [11]. However, few 
developmental studies on anxiety test how pre-scan state 
anxiety influences neural substrates of emotion process-
ing, so it is unknown whether previous findings capture 
trait features of anxiety or state features associated with 
apprehension of the neuroimaging environment or both.

Given that some demographic groups may experi-
ence greater state anxiety about scanning due to limited 
experience with research or medical mistrust [12–14], it 
is critical to understand the neural correlates of elevated 
state anxiety during emotion processing, and whether 
they are distinct from, or overlapping with those seen in 
trait anxiety. In the present study, a community sample 
of Latina girls (8–13 years) completed an fMRI implicit 
emotion processing task, during which they viewed 
fearful and happy faces varying in emotion intensity 
and reported the face’s gender. We tested the interac-
tive effects of state anxiety, trait anxiety, and emotional 
valence on girls’ neural responses to facial affect.

Anxious children display increased threat vigilance 
to fearful and angry facial affect relative to non-anxious 
children [1, 3, 4, 15, 16] and are more likely to appraise 
emotional stimuli as negative or threatening [2, 17–19]. 
Several brain networks are associated with threat biases 
in children and adults with anxiety disorders. Children 
and adults with anxiety disorders display elevated activa-
tion in the amygdala and insula to negative or ambiguous 
facial affect [20–29], atypical recruitment of prefrontal, 
executive control networks [30–34], and reduced connec-
tivity between these networks [35–41]. The amygdala and 
insula are highly interconnected structures that contrib-
ute to the peripheral expression of emotion and salience 
detection [42–44]. Upon viewing a threat, the amygdala 
signals the production of a threat response and increases 
vigilance [45]. The insula is involved in interoception and 
plays a crucial role in subjective emotions [46, 47]. Given 
these regions’ central role in identifying a stimulus’ emo-
tional significance and generating an affective response 

[48, 49], they are hypothesized to be important for pro-
cessing negative and positive affective information [50]. 
Thus, amygdala and insula hyperactivity may contribute 
to anxiety symptoms, such that negative social informa-
tion is assigned greater salience in anxious than in non-
anxious individuals.

The MRI context itself can elicit temporary feelings of 
state anxiety, discomfort, or even panic among children 
[11, 51], which may evoke patterns of activation that are 
unique from [52], or overlapping with, trait anxiety and 
anxiety disorders [53]. State anxiety in the fMRI con-
text is an essential consideration in pediatric anxiety 
research, but, to date, it is understudied (see Michalska 
et al. (2020) [54] for a detailed review of methodological 
considerations and challenges of the scanning environ-
ment). Children undergoing fMRI scans are often alone 
in the confined space in the scanner bore, where they 
must tolerate loud noises and restricted motion [55]. This 
experience can elicit physical discomfort [56] and anxi-
ety [11, 51] and increase biological indices of stress like 
cortisol [57, 58]. Elevated state anxiety can impact task 
performance [59, 60] and influence attentional [61, 62], 
perceptual [63–66], and interpretative mechanisms [59, 
67, 68]. State anxiety also elicits changes in blood oxy-
gen level-dependent (BOLD) response while participants 
view threatening or emotional stimuli [7–10] and even 
during rest [52, 69]. Importantly, although undergoing 
MRI scanning induces stress in about 30% of participants 
[11], few studies test how pre-scan state anxiety impacts 
subsequent task performance. Further, although state 
anxiety can interact with trait anxiety to predict behav-
ioral responses to negative emotional stimuli [60, 70, 71], 
little is known about how state and trait anxiety interact 
to predict brain activation during affective neuroimaging 
tasks.

Undergoing an MRI scan is anxiety-inducing, not just 
for children [51, 72], but also more generally for peo-
ple unfamiliar with the scanning environment [73, 74]. 
Because minoritized groups like Latinx participants are 
underrepresented in research and, for historic reasons, 
display greater mistrust in medical, academic, and sci-
entific institutions than white participants [12–14], there 
may be systematic differences in state anxiety across 
demographic groups that lead to inaccurate interpre-
tations of results. For instance, higher rates of pre-scan 
state anxiety among a minoritized group in a study may 
lead to greater alterations in emotion processing, cog-
nitive functioning, or physiology in that group [75]. 
Without accounting for state anxiety, such task-related 
differences could be misattributed to temperamental, 
environmental, or cultural factors rather than apprehen-
sion of the research environment.

In the present study, a community sample of predomi-
nantly Mexican American girls (8–13 years) completed 
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an implicit face emotion viewing task while in an MRI 
scanner. During this task, children viewed graded levels 
of happy and fearful faces varying in emotion intensity 
and reported on the face’s gender. We tested the inter-
active effects of trait anxiety and state anxiety on mean 
neural response to emotional facial affect. To evalu-
ate whether interactive effects of state and trait anxiety 
were specific to threatening facial affect, we also tested 
whether emotional valence (fearful vs. happy) moder-
ated any observed associations. We hypothesized that 
both state and trait anxiety would be associated with 
increased amygdala and insula response to fearful facial 
affect [20, 21, 23, 76]. Following prior work showing that 
state anxiety increases attentional and interpretive threat 
biases only for trait-anxious people [60, 70], we also 
hypothesized that state and trait anxiety would interact 
to predict amygdala and insula response to fearful affect, 
such that state anxiety would increase activation among 
trait-anxious youth. As preliminary work observes trend-
ing associations between childhood anxiety and amyg-
dala response to positive social cues [77, 78], we did not 
have specific predictions about the effects of state or trait 
anxiety on happy facial affect. Instead, we hypothesized 
that the effects of anxiety on activation in salience pro-
cessing regions would be greater for fearful than happy 
facial affect.

Methods
Participants and procedure
Fifty-five 8-13-year-old Latina girls and their primary 
caregivers were recruited from the Inland Empire of 
Southern California to participate in a longitudinal study 
of emotional development. Participants were recruited 
via the Psychology Department’s shared database of child 
participants recruited from the community. Participant 
eligibility was determined by phone screening with the 
primary caregiver. Children were eligible for participa-
tion if they were between 8 and 13 years old, proficient 
in English, right-handed, and had no contraindications 
for neuroimaging (e.g., no ferrous metal in the body, not 
pregnant, not claustrophobic). Children also needed to 
be at least 50% Latinx origin and self-identify as Latina 
to be eligible for participation (see Table  1 for ethnic-
racial identity of participants in the final sample). Exclu-
sionary criteria included a current psychiatric diagnosis 

of Tourette’s syndrome, obsessive-compulsive disorder, 
lifetime history of mania, psychosis, or pervasive devel-
opmental disorder. Menstruation onset was initially used 
as an exclusionary criterion but was dropped to increase 
sample size, and two postmenarchal participants were 
recruited.

Participants completed a laboratory testing session 
and a scanning session. During the laboratory session, 
children and caregivers reported on family demograph-
ics and children’s behavior, anxiety, and other mental 
health outcome measures not reported here. During the 
scanning session, children completed an implicit face 
emotion viewing task while undergoing fMRI data col-
lection. fMRI scans were not collected from seven par-
ticipants because they did not return for the scan visit 
(n = 4), or due to participants’ distress (n = 1), dental 
braces (n = 1), or experimenter error (n = 1). Two par-
ticipants were excluded due to low response rate on the 
task (> 25% missed trials), resulting in a final sample of 
46 participants (Mage = 9.9 ± 1.2 years; Table 2) and their 
caregivers (40 mothers, 6 fathers). The visit structure 
was changed part-way through data collection, so 11 
participants completed the laboratory session and scan-
ning session at two visits, approximately two weeks apart 
(M = 19.7 days, + 4.8). The remaining 35 participants 

Table 1  Racial and ethnic background of study participants 
(N = 46)
Ethnic Background N
Latina 39
  Mexican 31
  South/Central American 2
  Mixed ethnicity (Mexican & other Latinx) 6
Mixed race (Latina & white) 7

Table 2  Sample demographic characteristics and descriptive 
statistics for study variables
Characteristic Descriptive Statistics
N 46
Female (%) 100
Age, years
  Mean (SD) 9.9 (1.2)
  Range 8–12
Household income (N = 45)
  Mean (SD) $60,666 ($46,277)
  Range <$5,000 - >$180,000
STAIC-Trait
  Mean (SD) 38.4 (7.2)
  Median 39
  Range 22–54
  Skew -0.17
STAIC-State (N = 43)
  Mean (SD) 29.5 (5.3)
  Median 30
  Range 20–48
  Skew 0.41
SCARED
Mean (SD) 36.8 (14.6)
Median 35
Range 4–71
Skew 0.46
STAIC = State-Trait Anxiety Inventory for Children. SCARED = Screen for Child 
Anxiety Related Disorders. Household income was not available for one 
participant. STAIC-State measures were not collected from three participants
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completed the laboratory and scanning sessions in one 
visit. Results were largely unchanged when days elapsed 
between visits was added as a covariate (Table S1). Upon 
participant arrival at each wave, written parent consent 
and child assent were obtained. At the end of each ses-
sion, participants were compensated with a gift card and 
a toy. All study procedures were approved by the Institu-
tional Review Board. All data were collected prior to the 
COVID-19 pandemic.

Measures
Demographic characteristics
Psychological research is commonly conducted among 
white, educated, upper- and middle-class samples [79]. 
Thus, communities with lower income or less access to 
education may have less exposure to, and more appre-
hension of, scientific research. We tested whether state 
anxiety was associated with individual differences in 
household income, parental education, and children’s 
perceived social standing relative to their community and 
the United States. As our sample was fairly homogenous 
in ethnicity and city of residence, we did not test for asso-
ciations of state anxiety with these variables.

Parents indicated their child’s age and ethnic back-
ground, as well as their own educational background 
and household income. We also measured children’s self-
reported subjective socioeconomic status using a modi-
fied version of the MacArthur Scale of Subjective Social 
Status [80]. This two-question measure probed individu-
als’ perceptions of where they rank in the status hierar-
chy of (1) their community, and (2) the United States. 
Participants ranked their status by indicating the rung on 
a nine-rung ladder, on which the top of the ladder rep-
resented “people who are the best off, those who have 
the most money, most education, and best jobs” and the 

bottom represented “people who are the worst off, those 
who have the least money, least education, worst jobs, or 
no job.”

State and trait anxiety symptoms
Children’s state and trait anxiety symptoms were mea-
sured via child self-report on the State-Trait Anxiety 
Inventory for Children (STAIC) [81] (Fig. 1). The STAIC 
is comprised of two 20-item scales that assess state anxi-
ety (STAIC-State) and trait anxiety (STAIC-Trait). Chil-
dren respond to all items on a three-point Likert scale, 
and each subscale is summed to a total score (range: 
20–60). Both measures display excellent internal con-
sistency (α ≥ 0.81) [82]. The STAIC-State measures state 
anxiety by asking children to indicate how they feel “right 
now…at this moment.” State anxiety was measured in the 
imaging facility immediately before the scan. The STAIC-
State was added to the protocol shortly after data col-
lection began, so three participants did not complete it 
and their scores were imputed with mean-replacement. 
The STAIC-Trait assesses trait levels of anxiety by prob-
ing how the child usually feels. Children’s trait anxiety 
was measured in the lab, prior to the scan. The STAIC-
Trait demonstrates concurrent validity with other anxiety 
measures (r = .88) [82]. In our sample, the STAIC-Trait 
was highly correlated with child report on the Screen 
for Child Anxiety Related Disorders, r = .81, p < .001 
(SCARED) [83], which assesses anxiety disorder symp-
tomatology. State and trait anxiety scores on the STAIC 
were uncorrelated in our sample, r = .04, p = .77.

Although our sample was a non-treatment-seek-
ing community sample, children’s self-reported anxi-
ety scores were notably elevated, according to their 
self-report on the SCARED (Table  2). The mean score 
was 38.6, and more than 80% of participants surpassed 
the threshold for clinically significant anxiety levels (≥ 25; 
N = 38). These scores are substantially higher than those 
self-reported by clinically anxious girls and boys (7–18 
years; MSCARED = 23.8) [84] and female psychiatric outpa-
tients (6–17 years; MSCARED = 25.8) [85].

As mentioned above, due to the change in visit struc-
ture mid-way through data collection, 11 partici-
pants reported trait and state anxiety at separate visits, 
approximately two weeks apart (M = 19.7 days, ± 4.8). 
Post hoc sensitivity analyses were conducted to include 
the time elapsed between state and trait anxiety collec-
tion, which had minor influences on reported effects (see 
Supplement).

Implicit face emotion viewing task
While undergoing fMRI scanning, children completed 
an implicit face emotion viewing task [86, 87], during 
which they labeled the gender of ten actors’ face emotion 
pictures (100% white; 60% female). Faces were morphed 

Fig. 1  Scatterplot and density distributions for participants’ state and trait 
anxiety. Note: State and trait anxiety were assessed via the State-Trait Anxi-
ety Inventory for Children (Spielberger et al., 1973); SD = standard deviation
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between neutral and fearful or happy expressions at 6%, 
30%, 54%, and 78% emotion intensity (Fig. 2). Faces were 
presented in random order for 2000 ms each, followed by 
a 500–3000 ms jittered interstimulus interval (ISI) dur-
ing which a white fixation cross was presented against a 
black background. In one run, children viewed 20 trials 
of each morphed fearful and happy stimulus, summing 
to 160 trials total and 80 trials of fear morphs. The task 
was programmed in E-prime (version 2.0.10; PST Inc., 
Pittsburgh, PA). Participants viewed the back-projected 
screen via a mirror mounted on the head coil and pressed 
a button box with their right hand to indicate the gender 
of the face (male/female).

Imaging data
MRI data acquisition and preprocessing
Whole-brain neuroimaging data were collected using 
a 3T Siemens Prisma scanner and 32-channel head 
coil. Two hundred and forty functional image volumes 
were collected during one 9  min 44  s run. Functional 

image volumes with 62 contiguous interleaved axial 
slices were obtained with a T2*-weighted echo-planar 
sequence (TR = 2500 ms; TE = 32 ms; flip angle = 80; Field 
of View [FOV] = 204 × 228  mm; matrix = 102 × 114; voxel 
size = 2 × 2 × 2 mm3). Using a magnetization-prepared 
gradient echo sequence, functional data were anatomi-
cally localized and coregistered to a high-resolution 
T1-weighted volumetric scan of the whole brain that 
was collected prior to the functional volumes (MPRAGE: 
TR = 2400 ms; TE = 2.72 ms; TI = 1060 ms; flip angle = 8; 
FOV = 240 × 256 mm; matrix = 300 × 320; voxel size = 0.8 x 
0.8 x 0.8 mm3).

Individual echo-planar images were preprocessed 
and analyzed using AFNI (Analysis of Functional Neu-
roImages; version 22.0; Cox, 1996 [88]). Preprocessing 
included despiking, slicetime correction, motion correc-
tion, and smoothing with a 4 mm full-width at half-maxi-
mum (FWHM) kernel. All MRI data were transformed to 
Montreal Neurological Institute (MNI) space. BOLD data 
was scaled at the voxel-wise time series by their temporal 

Fig. 2  Implicit emotion viewing paradigm with happy and fearful facial stimuli. Participants viewed black and white faces that were morphed blends 
between neutral and fearful or happy emotional expressions at 6%, 30%, 54%, and 78% emotion intensities. Participants responded with the gender of 
the face. Faces were presented in random order for 2000 ms each, followed by a 500-3000 ms jittered interstimulus interval
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means so effect estimates can be interpreted as percent 
signal change. Every TR on which motion exceeded 
2  mm was censored, and excessive motion was defined 
as more than 20% of TRs censored for motion/outliers 
(N = 0). One participant had 20.4% of TRs censored and 
was included in all analyses. Average head motion was 
not correlated with state anxiety (r = .15, p = .30) or trait 
anxiety (r = .24, p = .10). Using the AFNI 3dDeconvolve 
function, a general linear model was generated to esti-
mate mean task-related activation for happy and fear-
ful facial affect, averaged across all emotion intensities. 
Third-order Legendre polynomials modeled baseline 
drift and six head motion parameters.

Statistical analyses
Behavioral analyses
Task performance was assessed via gender labeling accu-
racy, percent of trials participants responded to, and 
mean reaction time. Children’s state and trait anxiety lev-
els on the STAIC were correlated with each behavioral 
measure.

Correlations were also tested between state anxiety and 
household income, parental education, and children’s 
perceived social standing relative to their community and 
the United States. Bonferroni correction was conducted 
to correct for multiple comparisons across the four 
demographic measures at p < .0125.

Neuroimaging analyses
To correct for multiple comparisons, familywise error 
correction was performed using Monte Carlo simulation 
on gray matter-masked, whole-brain data (3dClustSim in 
AFNI). The gray matter mask was created by segmenting 
the MNI152_2009c anatomical template into gray matter 
and non-gray matter. Masked output maps included gray 
matter voxels of the whole brain. The voxel threshold of 
p < .005 resulted in an average cluster threshold of 50 vox-
els at the whole-brain corrected alpha level of 0.05. Peak 
coordinates (x, y, z) are reported based on the MNI atlas 
in left, posterior, inferior (LPI) orientation.

A linear mixed-effects model was conducted using 
AFNI’s 3dLME program [89]. The model tested the inde-
pendent and interactive effects of state anxiety, trait 
anxiety, and emotional valence in predicting mean task-
related activation to fearful and happy faces, averaged 
across all intensity levels. Gray matter-masked, whole-
brain voxel-wise tests were used for all fMRI analy-
ses. Age and motion were included as covariates of no 
interest. Given our focus on neural responses to fear, in 
clusters with significant three-way interactions, we sub-
tracted the mean neural response to happy facial affect 
from the mean neural response to fearful facial affect to 
capture BOLD response to fearful relative to happy facial 
affect. State anxiety was plotted on the x-axis, difference 

in average brain activation (BOLDFear - BOLDHappy) was 
plotted on the y-axis  (Fig. 3). Follow-up simple slopes 
analyses tested the model-predicted slope for children 
with high (+ 1 SD), mean, and low (-1 SD) trait anxiety 
levels. In clusters with significant State Anxiety x Trait 
Anxiety interactions, average brain activation was cal-
culated, collapsed across fearful and happy facial affect. 
Follow-up simple slopes analyses tested the model-pre-
dicted slope for the association between state anxiety and 
mean neural activation for children with high (+ 1 SD), 
moderate (mean), and low (-1 SD) trait anxiety levels.

Results
Behavior
Two participants responded to fewer than 75% of tri-
als and were excluded from the final analyses with 
N = 46. Overall, children showed high task engagement 
(M = 94.6% response rate ± 5.2%) and were accurate at 
labeling the gender of faces (M = 91.2% ± 8.2%). State 
anxiety was inversely associated with average response 
rate across all fear trials, r = − .31, p = .039, and happy tri-
als, r = − .32, p = .028, such that participants with greater 
state anxiety responded to fewer trials. Trait anxiety was 
not associated with response rate for fear or happy trials 
(ps > 0.27). Gender labeling accuracy was not correlated 
with state anxiety or trait anxiety for fear or happy trials 
(ps > 0.06). Average response time (M = 1075.0 ms ± 120.6 
ms) was also unrelated to state anxiety and trait anxiety 
(ps > 0.50).

Post hoc linear regression analyses were also conducted 
to examine whether state and trait anxiety interacted to 
predict behavioral outcomes, controlling for age. State 
and trait anxiety did not interact to predict accuracy, 
average response time, or response rate (all ps > 0.21).

Effects of demographic characteristics on pre-scan state 
anxiety
Children’s pre-scan state anxiety was inversely correlated 
with the community subscale of the MacArthur Scale of 
Subjective Social Status, r = − .33, p = .023. In other words, 
children who rated themselves as lower in social standing 
relative to their community tended to have greater state 
anxiety prior to the MRI scan. However, this result did 
not hold after Bonferroni correction. Pre-scan state anxi-
ety was not associated with how children rated them-
selves relative to people in the United States, r = − .16, 
p = .30. Children’s pre-scan state anxiety was also not 
associated with objective demographic variables, includ-
ing parental education or household income, ps > 0.48.

Brain activation
State Anxiety x Trait Anxiety x Emotional Valence
State and trait anxiety interacted with stimuli’s emotional 
valence to predict mean BOLD response in two clusters. 
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The first cluster encompassed portions of the right amyg-
dala and hippocampus (k = 107, x = 27, y = -15, z = -23), 
and the second cluster was in the left inferior parietal 
lobe (IPL: k = 90, x = -57, y = -21, z = 35). Differential 
neural responses to fearful versus happy faces were cal-
culated by subtracting mean neural responses to happy 
expressions from mean responses to fearful expressions, 
within each significant cluster. Follow-up simple slopes 
were conducted in each cluster to test the model-pre-
dicted association between state anxiety and differential 
neural response to fearful versus happy faces (BOLDFear - 
BOLDHappy) for children at low (-1 SD: 31.2), mean (38.4), 
and high levels of trait anxiety (+ 1 SD: 45.7).

In the right amygdala-hippocampal complex, simple 
slopes revealed a positive association between state anxi-
ety and differential neural responses to fearful versus 
happy faces (BOLDFear - BOLDHappy) for children with 
mean, β = 0.01, SE = 0.002, t = 2.83, p = .007, and high lev-
els of trait anxiety (+ 1 SD), β = 0.02, SE = 0.004, t = 5.43, 

p < .001 (Fig.  3a). In other words, with increasing state 
anxiety, children with mean and high trait anxiety dis-
played greater responses to fearful relative to happy facial 
expressions in the amygdala-hippocampal complex. By 
contrast, children with low trait anxiety (-1 SD) displayed 
an inverse association between state anxiety and differen-
tial neural response (BOLDFear - BOLDHappy), β = − 0.01, 
SE = 0.003, t = -2.25, p = .030, such that state anxiety was 
associated with decreased neural responses to fearful rel-
ative to happy facial affect.

In the left IPL, simple slopes revealed a positive asso-
ciation between state anxiety and differential neural 
responses to fearful versus happy facial affect (BOLDFear 
- BOLDHappy) for children with mean, β = 0.01, SE = 0.003, 
t = 3.33, p = .002, and high levels of trait anxiety (+ 1 SD), 
β = 0.02, SE = 0.004, t = 4.66, p < .001 (Fig. 3b). As with the 
right amygdala-hippocampal complex, with increasing 
state anxiety, children with mean and high trait anxiety 
displayed greater left IPL responses to fearful relative 

Fig. 3  Trait anxiety moderated associations between state anxiety and neural responses to fearful versus happy faces. Results of the gray matter-masked, 
whole-brain linear mixed effects model. Trait anxiety moderated associations between state anxiety and differential neural responses to fearful versus 
happy faces (BOLDFear – BOLDHappy) in the (A) right amygdala-hippocampal complex, and (B) left inferior parietal lobe. Simple slopes depict the associa-
tion between state anxiety and mean neural activation for children with low (-1 SD; STAIC-Trait = 31.2), mean (STAIC-Trait = 38.4), or high (+ 1 SD; STAIC-
Trait = 45.7) trait anxiety. STAIC = State-Trait Anxiety Inventory for Children. Groups displaying slopes that significantly differ from 0 are indicated on the 
legend: ***p ≤ .001, **p ≤ .01, *p ≤ .05
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to happy facial affect in left IPL. No such associations 
emerged for children with low trait anxiety (-1 SD), β = 
− 0.002, SE = 0.004, t = -0.64, p = .53.

Independent and interactive effects of state and trait 
anxiety
A two-way interaction emerged between state and trait 
anxiety in predicting mean BOLD response in the right 
caudate (k = 90, x = 19, y = 19, z = 7), averaged across fear-
ful and happy facial affect. Simple slopes tested the 
model-predicted association between state anxiety and 
mean BOLD response to all emotional affect for chil-
dren with low (-1 SD: 31.2), mean (38.4), and high trait 
anxiety (+ 1 SD: 45.7). We observed an inverse associa-
tion between state anxiety and mean neural response to 
emotional affect for children with mean, β = − 0.02, t = 
-3.12, p = .003, and high trait anxiety (+ 1 SD), β = − 0.04, 
t = -5.14, p < .001. State anxiety was not associated with 
mean right caudate activation at low levels of trait anxi-
ety (- 1 SD), β = 0.01, t = 1.47, p = .15.

We also observed main effects of state anxiety, trait 
anxiety, and emotional valence. State anxiety was 
inversely associated with right caudate response to emo-
tional affect (k = 141, x = 11, y = 19, z = -3). Trait anxiety 
was inversely associated with activation in the right infe-
rior temporal gyrus (k = 76, x = 53, y = -25, z = -23). There 
was also a main effect of emotional valence in a cluster 
spanning portions of the right amygdala and hippocam-
pus (k = 89, x = 23, y = -5, z = -23), such that the cluster 
was more reactive to fearful than happy faces.

Multivariate outlier detection
A post hoc multivariate outlier detection analysis was 
performed to identify outliers. The Mahalanobis dis-
tance was calculated using participants’ state anxiety 
scores, trait anxiety scores, and mean activation to fear-
ful and happy facial affect within each significant cluster. 
No participants had a Mahalanobis distance exceeding 
the χ2(14) critical of 39.25 at p < .001, and all data was 
retained.

Discussion
Youth unfamiliar with academic and biobehavioral 
research settings may experience elevated levels of state 
anxiety in anticipation of affective neuroimaging tasks, 
complicating inferences. The present study probed the 
independent and interactive effects of state anxiety, trait 
anxiety, and emotional valence on neural activation dur-
ing implicit emotion processing in a community sample 
of preadolescent Latina girls with elevated trait anxiety. 
State anxiety was associated with children’s subjective 
social status (prior to multiple comparison correction) 
but was uncorrelated with trait anxiety. Neuroimaging 
analyses revealed a three-way interaction between state 

anxiety, trait anxiety, and emotional valence in the right 
amygdala-hippocampal complex and left IPL. For chil-
dren with mean and high levels of trait anxiety, state 
anxiety was associated with greater activation to fearful 
relative to happy facial affect in both clusters.

Although our sample was a non-treatment-seeking 
community sample, we observed high levels of self-
reported trait anxiety. Over 80% of participants met cri-
teria for clinically significant anxiety on the SCARED, 
underscoring the importance of community-informed 
anxiety research focused on Latinx youth [90]. This 
observation is in line with other research finding high 
rates of anxiety in Latinx youth [91–93], and Latina girls 
specifically [94], relative to other ethnic groups. Although 
this is an understudied issue, some research suggests that 
discriminatory experiences [95], acculturative stress [96], 
cultural factors [97], or parenting [98] may contribute to 
elevated anxiety.

Somewhat surprisingly, trait and state anxiety subscales 
on the STAIC were uncorrelated in our sample. State 
and trait anxiety are sometimes correlated in research 
settings [99] but not always [52]. This variability is likely 
because state anxiety measurements are closely tied to 
the specific context in which they are collected. Certain 
stimuli, such as scary movies, might induce anxiety in 
many children, while others might be more situation-
specific, such as fear of flying, dentists, or anticipating a 
brain scan. Preliminary research suggests that state and 
trait anxiety have unique patterns of neural activation 
at rest [52], reinforcing the notion that they are distinct 
constructs [100] (though see [53], which finds induced 
anxiety parallels the effects of pathological anxiety in the 
insula and medial prefrontal cortex). Hence, these results 
suggest that the MRI setting may selectively elicit anxiety 
in certain youth. Moreover, other factors like unfamiliar-
ity with the scanning environment [73, 74] and distrust 
of medical or scientific institutions [12–14] may contrib-
ute to systematic variations in state anxiety across demo-
graphic groups [101]. Psychological research is often 
conducted in white, educated, and affluent communities 
[79]. People with lower income and/or less access to edu-
cation may have limited exposure to scientific research, 
contributing to discomfort or mistrust. Unfortunately, we 
did not collect measures that allowed us to directly test 
whether discomfort in or mistrust of the research envi-
ronment specifically contributed to greater state anxi-
ety. However, our study revealed an inverse association 
between state anxiety and subjective social status (prior 
to multiple comparison correction), such that children 
who rated their family as having a lower standing in the 
community tended to have higher pre-scan state anxiety. 
State anxiety was not associated with objective measures 
of socioeconomic status (e.g., household income, paren-
tal education), nor with children’s subjective assessment 
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of their family’s status compared to the broader United 
States. These findings suggest that the scanning environ-
ment may be particularly anxiety-inducing for partici-
pants who feel marginalized relative to other members of 
their community. It is important to note that our study 
exclusively involved Latina girls residing in the Inland 
Empire, resulting in a relatively homogenous sample. 
Future research should validate this hypothesis among 
participants representing diverse socioeconomic, educa-
tional, and ethnic backgrounds, and directly probe par-
ticipants’ experience with and trust in neuroimaging or 
research settings.

Neuroimaging analyses revealed that state and trait 
anxiety interacted with emotional valence to predict aver-
age neural activity in a cluster encompassing portions of 
the right amygdala-hippocampal complex. Our amygdala 
hypotheses were partially confirmed, such that for mod-
erately and highly trait-anxious children, state anxiety 
was associated with greater right amygdala-hippocampal 
activity for fearful faces, compared to happy faces. The 
amygdala and hippocampus are highly interconnected 
limbic structures that are involved in processing emo-
tional stimuli [102–104]. The amygdala is responsible for 
bottom-up, automatic threat detection and emotional 
arousal [29, 105–107]. The hippocampus facilitates emo-
tion recognition and interpretation by contextualizing 
sensory input within emotional memories [102, 103, 108]. 
Thus, elevated amygdala-hippocampal activity can reflect 
increased vigilance or emotional response to threat stim-
uli. Both state and trait anxiety have been independently 
linked to elevated activation in the amygdala [7, 8, 22, 23] 
and hippocampus [109–111] in response to threatening 
facial affect. However, to our knowledge, this is the first 
study to find that trait anxiety moderates the association 
between state anxiety and amygdala-hippocampal activa-
tion to fear relative to happy facial affect. These results 
indicate that, among youth with moderate and high trait 
anxiety, state anxiety can exacerbate amygdala-hippo-
campal response to threat stimuli. Thus, fear or discom-
fort in MRI scanners can mimic or augment the effects 
of trait anxiety on amygdala-hippocampal activity, even 
among youth with mean levels of trait anxiety. During 
threat processing, the amygdala can also modulate brain 
activity in other brain regions, including perceptual [112, 
113] and executive control networks [114–116]. Thus, 
amygdala hyperactivation associated with state anxiety 
may have widespread effects on brain function. Such 
compounding effects of trait and state anxiety have impli-
cations for investigating processes associated with clini-
cal anxiety. For instance, moderately trait anxious youth 
categorized as “healthy controls” may exhibit elevated 
anticipatory state anxiety, causing them to resemble 
youth with high trait anxiety or clinical anxiety, thereby 
minimizing or obscuring differences between groups.

Surprisingly, for children with low trait anxiety, state 
anxiety was inversely associated with right amygdala-
hippocampal activity for fearful compared to happy 
facial affect. In other words, low trait-anxious children 
with high state anxiety displayed greater right amyg-
dala-hippocampal activity to happy faces, compared 
to fearful faces. This pattern differs from prior research 
finding state-anxious participants show greater amyg-
dala response to fearful expressions [7, 117] and weaker 
amygdala reactivity to happy expressions [8]. Although 
our speculation is limited, it’s worth highlighting several 
potentially significant factors that could contribute to 
this result. Although better known for its role in threat 
processing, the amygdala also plays a role in reward pro-
cessing and positive affect [50, 118], and therefore its 
activity may be elicited by happy faces. Certain person-
ality traits are associated with individual differences in 
amygdala response to happy faces. For instance, extraver-
sion, which is often higher in those with low trait anxi-
ety [119], is associated with greater amygdala response 
to happy facial affect [120]. Thus, youth with low trait 
anxiety may display stronger amygdala-hippocampal 
responses to happy affect than their moderately and 
highly trait-anxious peers. However, in our sample, this 
pattern of activation was only observed in participants 
with both low trait anxiety and high state anxiety. Pre-
liminary work finds that state anxiety can be associated 
with weaker amygdala response to fearful stimuli in spe-
cific contexts, such as following positive movies [121], 
suggesting that state-anxious participants might be more 
susceptible to the effects of positive emotional stimuli. 
Our data may therefore support a model whereby state 
anxiety can modulate participants’ susceptibility to both 
positive and negative biases; further testing would help 
confirm such a possibility.

Finally, we observed a three-way interaction between 
state anxiety, trait anxiety, and emotional valence in the 
left IPL. Again, for girls with mean and high levels of trait 
anxiety, state anxiety was positively associated with left 
IPL activity for fearful compared to happy facial affect. 
The IPL is involved in deliberate and sustained atten-
tion [122, 123], but elevated IPL activity during threat 
processing may also indicate hypervigilance [124]. Chil-
dren with anxiety display hypervigilance to threats [1, 3, 
15, 125–129] and right IPL hyperactivity during emotion 
processing [130]. Additionally, among anxious and non-
anxious youth, negative affect is associated with left IPL-
amygdala functional connectivity when appraising threat 
[131]. The pattern of activation in the IPL may therefore 
be related to parallel findings observed in the amygdala-
hippocampal complex, though their contralateral loca-
tion complicates this interpretation. Together, our results 
suggest that anticipatory anxiety in the scanning environ-
ment may cause children with moderate and high trait 
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anxiety to be hypervigilant to threat, further compound-
ing the effects of trait anxiety. These data align with prior 
work in adults showing that state anxiety is associated 
with hypervigilance to threat only for trait-anxious [70] 
and clinically anxious participants [132].

Several limitations of the current study and future 
research considerations should be acknowledged. First, 
our insula hypotheses were not confirmed, possibly 
because state and trait anxiety show overlapping patterns 
of neural activation in the insula [53], and thus, may not 
elicit interactive effects. Second, sample size was mod-
est. Recent studies suggest that brain-behavior effects can 
sometimes be inflated and contribute to problems with 
replicability [133]. Further, examining interactive effects 
in modest samples may have limited our ability to detect 
significant effects, as a smaller proportion of the sam-
ple fell 1 SD above or below the mean on the STAIC-T. 
However, unlike some other methods to explore interac-
tive effects, simple slopes analyses use the whole dataset 
to predict slopes at each level of the moderator, so these 
estimations were informed by the full sample. Despite the 
modest sample size, our study was strengthened by the 
fact that our sample consisted of Latina girls -- a demo-
graphic group that was under-represented in research. 
As mentioned previously, low representation of Latinx 
children in anxiety research is especially troubling given 
that they display high rates of anxiety [91–94, 97, 98]. 
Further, Latinx children are one of the largest and fastest-
growing ethnic groups in the United States [134]. Thus, 
results may inform future large-scale studies by iden-
tifying preliminary effects within a well-characterized 
sample of Latina girls. Third, the cross-sectional study 
design limited our ability to make inferences about devel-
opmental processes. Future work should test longitudinal 
changes in the effects of state and trait anxiety on implicit 
fear processing, especially within executive control net-
works, which may display changing associations with 
anxiety across development. Fourth, because state anxi-
ety measures were collected prior to the scan, we cannot 
be sure that such levels were sustained throughout the 
task. Thus, our results capture the effects of anticipa-
tory, pre-scan anxiety on neural response during implicit 
emotion processing. A final limitation of this study is 
that all the faces presented in this experiment were non-
Hispanic white people. All girls in this study identified as 
Latina and most were 100% Latina (~ 85%, N = 39), with 
the remainder of girls from both white and Latinx back-
grounds (~ 15%, N = 7). Thus, for most participants, stim-
uli were from an outgroup (other) race-ethnicity. People 
respond differently to face stimuli that depict members of 
their own race compared with those of an outgroup race 
or ethnicity [135]. Outgroup members are more readily 
associated with aversive stimuli [136] and anxious arousal 
[137] than members of one’s own race or ethnicity. 

People also display differences in neural activation to 
racial ingroup versus outgroup faces [138, 139]. Thus, dif-
ferences in participants’ experiences or familiarity with 
white people may have influenced their neural response 
to the face stimuli. Future work should sample faces from 
a variety of races and ethnicities and/or covary for par-
ticipants’ experiences with racial outgroup members.

In summary, the present study examined the influences 
of trait anxiety and anticipatory, pre-scan state anxiety on 
Latina girls’ neural response to fearful and happy facial 
affect. Among girls with moderate and high levels of trait 
anxiety, state anxiety was associated with greater right 
amygdala-hippocampal and left IPL activity to fearful rel-
ative to happy facial affect. Together, these results suggest 
that anticipatory state anxiety in the scanning environ-
ment may cause children with moderate and high trait 
anxiety to be hypervigilant to threat, further compound-
ing the effects of trait anxiety. Minoritized groups often 
have reduced engagement in scientific research and more 
mistrust [12–14], and thus may experience greater levels 
of pre-scan state anxiety. In the present study, girls who 
rated their family as having a lower community standing 
tended to have elevated pre-scan state anxiety (prior to 
multiple comparison correction), which may support that 
demographic factors like subjective social status influ-
ence children’s reaction to the research environment. 
Imaging researchers should survey and control for state 
anxiety so that any systematic differences in subgroups’ 
neural response resulting from MRI apprehension are 
not incorrectly attributed to demographic or environ-
mental characteristics.
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