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Abstract
Background Anomalies in regional homogeneity (ReHo) have been documented in patients with major depressive 
disorder (MDD) and sleep disturbances (SDs). This investigation aimed to scrutinize changes in ReHo in MDD patients 
with comorbid SD, and to devise potential diagnostic biomarkers for detecting sleep-related conditions in patients 
with MDD.

Methods Patients with MDD and healthy controls underwent resting-state functional magnetic resonance 
imaging scans. SD severity was quantified using the 17-item Hamilton Rating Scale for Depression. Subsequent to 
the acquisition of imaging data, ReHo analysis was performed, and a support vector machine (SVM) method was 
employed to assess the utility of ReHo in discriminating MDD patients with SD.

Results Compared with MDD patients without SD, MDD patients with SD exhibited increased ReHo values in the 
right posterior cingulate cortex (PCC)/precuneus, right median cingulate cortex, left postcentral gyrus (postCG), and 
right inferior temporal gyrus (ITG). Furthermore, the ReHo values in the right PCC/precuneus and ITG displayed a 
positive correlation with clinical symptoms across all patients. SVM classification results showed that a combination of 
abnormal ReHo in the left postCG and right ITG achieved an overall accuracy of 84.21%, a sensitivity of 81.82%, and a 
specificity of 87.50% in identifying MDD patients with SD from those without SD.

Conclusion We identified disrupted ReHo patterns in MDD patients with SD, and presented a prospective 
neuroimaging-based diagnostic biomarker for these patients.
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Introduction
Major depressive disorder (MDD) is one of the most 
prevalent mental disorders, with a global prevalence of 
4.4% [1, 2]. More than 300  million people suffer from 
MDD, which can lead to self-mutilation, suicidal ten-
dencies, and harmful behaviors. It is estimated that by 
2030, MDD will be the leading cause of disease burden 
worldwide [3, 4]. Sleep disturbance (SD) is a prominent 
symptom of MDD, affecting nearly two-thirds of patients 
with MDD during the course of illness [5]. Meta-analyses 
have shown that SD is positively correlated with the over-
all severity of MDD and its impact on quality of life [6, 
7]. SD is also a risk factor for the onset and recurrence 
of MDD, increasing the risk of suicide [8]. However, 
the pathological mechanism of MDD with SD remains 
unclear.

Resting-state functional magnetic resonance imag-
ing (rs-fMRI), an objective and noninvasive technology, 
has been widely used to explore the pathological mecha-
nisms of mental disorders [9–11]. Regional homogeneity 
(ReHo) represents the temporal homogeneity of regional 
blood oxygen level-dependent signals and quantifies the 
temporal homogeneity of neural activities at rest. It has 
been utilized to investigate the pathological mechanisms 
underlying MDD and SD [12, 13]. Patients with MDD 
exhibit abnormal ReHo in the default-mode network 
(DMN) and cerebellum. Furthermore, abnormal ReHo 
in the left precuneus is positively correlated with SD 
scores in MDD patients [14, 15]. Patients with SD display 
abnormal ReHo in the frontal gyrus, cerebellum, occipital 
gyrus, and amygdala, and decreased ReHo in the occipi-
tal gyrus is negatively correlated with clinical symptoms 
of SD [16]. Resting-state functional connectivity between 
the bilateral amygdala and superior temporal gyrus is 
positively associated with SD scores in MDD patients 
[17]. Patients with MDD and SD exhibit abnormal tem-
poral homogeneity of neural activities at rest. However, 
it is unclear whether MDD with SD has specific or dis-
tinctive alterations in ReHo and whether abnormal ReHo 
values can be used to distinguish MDD patients with SD.

Support vector machine (SVM) is a machine learning 
approach for multivariate pattern recognition that effec-
tively defines a set of information and functions of differ-
ent brain regions to find optimal separation hyperplanes 
in high-dimensional space for data classification [18, 19]. 
In SVM analysis, the optimal hyperplane is defined by 
finding the support vector [20]. Support vectors are data 
points closest to the hyperplane and play a crucial role in 
defining the position and orientation of the hyperplane 
[21]. SVM has great potential for predicting psychiatric 
disorders based on high-dimensional neuroimaging data 
[22–24]. Therefore, this study applied the SVM method 
to determine whether altered ReHo can identify sleep 
conditions in MDD patients.

In this study, we utilized ReHo and SVM methods to 
explore the pathological mechanisms underlying MDD 
patients with SD. We hypothesized that abnormal ReHo 
can be observed in certain brain regions in MDD patients 
with SD at rest and can be applied to identify sleep condi-
tions in MDD patients.

Materials and methods
Participants
In the study, a total of sixty MDD patients and thirty-four 
age- and education-matched healthy controls (HCs) were 
included. All MDD patients were recruited from the psy-
chiatric clinic of the Second Xiangya Hospital of Central 
South University. The diagnosis of MDD was performed 
by two trained senior psychiatrists following the criteria 
outlined in the fifth edition of Diagnostic and Statistical 
Manual of Mental Disorders (DSM-5). The severity of 
depression and anxiety was assessed using the 17-item 
Hamilton Rating Scale for Depression (HAMD-17) and 
Beck Anxiety Inventory (BAI). SD symptoms in each 
MDD patient were calculated based on the three items of 
the insomnia subscale (items four to six) of the HAMD-
17 scale [25, 26]. Previous researches also defined SD 
based the items of the HAMD [27, 28]. Patients were 
stratified into MDD patients with SD (characterized by 
chief complaints of SD symptoms, and SD scores > 4) 
and MDD patients without SD (lacking chief complaints 
of SD symptoms, and SD scores ≤ 4) [29, 30]. All patients 
met the following criteria: ① aged between 18 and 55 
years; ② right-handed; ③ first major depressive episode 
with HAMD-17 total scores > 20; ④ illness duration of at 
least 12 months; ⑤ no history of antipsychotics or elec-
troconvulsive therapy; ⑥ no serious physical diseases, 
neurological disorder, or other psychiatric illness; ⑦ no 
drug or alcohol dependence; and ⑧ no contraindications 
for magnetic resonance imaging (MRI) scans. The HCs 
were enrolled from the community and screened using 
the SCID-I/NP (non-patient version).

The study was approved by the medical research eth-
ics committee of the Second Xiangya Hospital of Central 
South University. All the procedures described herein 
comply with the Helsinki Declaration of 2013. Each par-
ticipant provided informed consent before enrollment.

Image acquisition and preprocessing
Resting-state functional images were acquired using a 3.0 
T GE scanner (General Electric, Fairfield Connecticut, 
USA) at the Second Xiangya Hospital of Central South 
University. The echo planar imaging sequence was used 
to obtain images with the following parameters: TR, 
2000 ms; TE, 30 ms; thickness, 4 mm; gap, 0.4 mm; FA, 
90°; slices, 33; matrix, 64 × 64; and field of view (FOV), 
220 mm × 220 mm. A total of 240 volumes were collected 
over a duration of 480 s.
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Image preprocessing was performed using MATLAB 
toolboxes and Data Processing Assistant and Resting-
State fMRI (DPARSF) [31, 32]. The preprocessing steps 
included discarding the first 10 functional volumes, slice 
timing correction, head motion correction, image nor-
malization, spatial resampling to 3 × 3 × 3 mm3, bandpass 
filtering (0.01–0.08 Hz), and linear detrending.

ReHo analysis
ReHo analyses were performed by calculating Kend-
all’s Coefficient of Concordance (KCC) values, which 
measure the synchronization of time series between a 
given voxel and its 26 adjacent voxels by using the REST 
software. The methodology for this approach has been 
described elsewhere [33]. To mitigate the effects of indi-
vidual variations in KCC values, the ReHo map was stan-
dardized. Specifically, the KCC of each voxel was divided 
by the average KCC of the entire brain. Subsequently, the 
resulting ReHo maps underwent spatial smoothing with a 
Gaussian kernel of 4 mm FWHM. Finally, the smoothed 
ReHo maps were utilized for statistical analyses.

Statistical analysis
Demographic and clinical data were analyzed using SPSS 
22.0. Categorical variables, such as gender, were calcu-
lated by performing a chi-square test. Continuous vari-
ables, including illness duration, age, educational status, 
and scores of BAI, HAMD-17, and SD were analyzed 
using two-sample t-tests or one-way analysis of variance 
(ANOVA). The threshold for statistical significance was 
set at p < 0.05 (two tailed) for all tests.

The ReHo maps were compared using an analysis of 
covariance (ANCOVA) model. Post hoc t-tests were 
conducted to identify differences with age, gender, edu-
cational status, and mean framewise displacement (FD) 
values as covariates across the groups. The significance 
level was set at corrected p < 0.05 for multiple compari-
sons by using Gaussian Random Field theory (voxel sig-
nificance: p < 0.001, cluster significance: p < 0.05). Since 
MDD patients with SD had higher total HAMD scores 
compared to MDD patients without SD, we reanalyzed 
the data with HAMD scores, age, gender, educational 
status, and mean FD values as covariates to minimize the 
confounding effects of depressive and SD symptoms.

Pearson/Spearman analysis was used to explore the 
correlations between abnormal ReHo values and scores 
of BAI, HAMD-17, and SD, with the Bonferroni cor-
rection for all patients, MDD patients with SD, MDD 
patients without SD, and HCs subjects, respectively.

SVM analysis
SVM is widely employed in classification due to its profi-
ciency in handling high-dimensional data and achieving 
high classification accuracy [34–36]. In this study, SVM 

analyses consisted of the following steps: 1) Obtained the 
dataset; 2) Data splitting: The entire dataset was divided 
into training and test datasets with a 0.5 ratio; 3) Feature 
normalization: Features were scaled to the range [0,1]; 
4) Kernel selection: Gaussian radial basis function (RBF) 
kernels were chosen for classifier analysis. The RBF ker-
nel features two parameters, ‘c’ and ‘g’; 5) Parameter opti-
mization: A grid search method was employed for ‘c’ and 
‘g’ via cross-validation to identify the optimal parameters; 
6) Validation: To validate the SVM results, a 2-fold cross-
validation method was applied. The dataset was divided 
into two equally sized subsets, and two classifier training 
sessions were conducted. In the first training session, one 
subset served as the training set, while the other acted 
as the test set. In the second training session, the train-
ing and test sets were swapped; 7) Performance metrics: 
Accuracy, sensitivity, and specificity were determined by 
summing the count of correct classifications in both the 
training and test sets.

Further details regarding the ReHo calculation process, 
statistical analysis, and SVM analysis were presented in 
Fig. 1.

Results
Demographics and clinical characteristics of participants
Five subjects were excluded due to excessive head move-
ment (two MDD patients with SD, one MDD patient 
without SD, and two HCs). Eventually, a total of 24 MDD 
patients with SD, 33 MDD patients without SD, and 32 
HCs were included in our study. There were no differ-
ences in age and education status among the three groups 
except for gender, and no difference in illness duration 
between the two MDD groups. The MDD with SD group 
showed higher BAI scores, HAMD-17 total scores, and 
SD scores than the MDD without SD group. Both MDD 
groups showed higher scores in anxiety/somatization, 
retardation symptoms, weight loss, and cognitive dis-
turbance than HCs. However, no significant differences 
were found in these aforementioned features between 
the MDD with SD group and MDD without SD group 
(Table 1).

Differences in ReHo between groups
According to ANCOVA analysis, significant changes in 
ReHo values were observed in the temporal, occipital, 
frontal, cerebellar, and limbic regions for the three groups 
(Fig. 2A).

In comparison to MDD patients without SD, MDD 
patients with SD exhibited increased ReHo values in the 
right posterior cingulate cortex (PCC)/precuneus, right 
median cingulate cortex (MCC), right inferior temporal 
gyrus (ITG) and left postcentral gyrus (postCG) (Fig. 2B; 
Table 2).
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In comparison to HCs, MDD patients with SD exhib-
ited increased ReHo values in the bilateral cerebellum 
crus 2 and bilateral medial frontal gyrus (MFG), and 
decreased ReHo in the right fusiform gyrus/cerebel-
lum crus 6, left cuneus, and left superior occipital gyrus 
(SOG) (Fig. 2C; Table 2).

In comparison to HCs, MDD patients without SD dis-
played increased ReHo in the bilateral cerebellum crus 2, 
right middle occipital gyrus (MOG), left ITG, and right 
middle temporal gyrus (MTG) and decreased ReHo in 
the bilateral PCC/precuneus (Fig. 2D; Table 2).

Fig. 1 Flowchart of the analysis pipeline. Boxes on the left indicate general steps potentially applicable to a variety of data and analysis types; boxes on 
the right indicate particular choices made for the data and analysis presented here
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In comparison to HCs, all MDD patients showed 
increased ReHo values in the bilateral cerebellum crus 
2, right MFG and right ITG, and decreased ReHo in the 
right MOG (Table S1).

These results remained consistent when considering 
HAMD scores, age, gender, educational status, and mean 
FD values as covariates (Table S2).

Correlations between ReHo and clinical characteristics
For all patients, increased ReHo values in the right PCC/
precuneus were positively correlated with the total 
scores of BAI (r = 0.533, p = 0.000028) and SD (r = 0.416, 
p = 0.001575), and increased ReHo in the right ITG 
was positively correlated with the SD scores (r = 0.490, 
p = 0.000145) (Fig.  3). Abnormal ReHo values were not 
correlated with BAI, HAMD-17, and SD scores in HC 
subjects or in MDD patients with or without SD.

SVM results
Discriminating MDD patients with SD from MDD patients 
without SD
Abnormal ReHo between MDD patients with SD and 
MDD patients without SD represented as feature vari-
ables (1 = right PCC/precuneus, 2 = right MCC, 3 = right 
ITG, 4 = left postCG), which were entered into the classi-
fication models. The combination of the ReHo values of 3 
and 4 (Table 3; Fig. 4) could optimally discriminate MDD 
patients with SD from those without SD with accuracy, 
sensitivity, and specificity rates of 84.21% (48/57), 87.50% 
(21/24), and 81.82% (27/33), respectively.

Discriminating MDD patients from HCs
Abnormal ReHo between MDD patients and HCs (Table 
S1) represented as feature variables (1 = bilateral cerebel-
lum crus2, 2 = right MFG, 3 = right MOG, 4 = right ITG), 
which were entered into the classification models. The 
combination of the ReHo values of 1, 2 and 4 exhibited a 
high sensitivity (94.74%) and a low specificity (56.25%) in 
discriminating MDD patients from HCs (Table 3; Fig. 5). 
To provide a clearer understanding of the high sensitivity 
and low specificity in distinguishing MDD patients from 
HCs, we conducted SVM analyses using altered ReHo 
values between MDD and HCs to differentiate MDD 
patients with SD from HCs, and MDD patients without 
SD from HCs. The SVM results showed that the com-
bination of ReHo values of 1, 2 and 4 achieved a good 
sensitivity of 75.00% and a specificity of 78.79% in dif-
ferentiating MDD patients with SD from HCs. Similarly, 
these same regions in the brain could distinguish MDD 
patients without SD from HCs with a good sensitivity of 
81.25% and a specificity of 75.00% (Table S3, Fig. S1 and 
Fig. S2).

Discussion
The results revealed that MDD patients with SD exhib-
ited increased ReHo in the right PCC/precuneus, right 
MCC, right ITG, and left postCG compared with MDD 
patients without SD. In addition, increased ReHo values 
of the right PCC/precuneus and ITG were positively cor-
related with the SD scores. A combination of ReHo in 
the left postCG and right ITG can be utilized in distin-
guishing MDD patients with SD from those without SD, 

Table 1 Demographic and clinical characteristics of participants
Variables Pa_s group (n = 24) Pa_ns group (n = 33) HCs (n = 32) F/χ2/t Post hoc t-tests 

or p/t values
Age (years) 31.375 ± 6.78 29.48 ± 7.13 29.59 ± 5.00 1.07a 0.35
Gender (male/female) 12/12 6/27 15/17 8.09b 0.02
Education (years) 13.63 ± 3.73 13.91 ± 3.06 14.59 ± 2.82 0.72a 0.49
Illness duration (months) 5.83 ± 4.12 6.77 ± 4.65 0.78c 0.43
BAI - 47.39 ± 13.11 37.97 ± 7.58 22.63 ± 2.28 63.75a Pa_s > Pa_

ns > HCs
HAMD − 17 scores 23.38 ± 3.70 20.18 ± 2.64 0.94 ± 0.95 670.29a Pa_s > Pa_

ns > HCs
Sleep disturbances* 5.54 ± 0.51 3.15 ± 0.94 0.34 ± 0.60 357.41a Pa_s > Pa_

ns > HCs
Anxiety/Somatization 7.38 ± 1.91 6.76 ± 1.82 0.44 ± 0.62 190.43a Pa_s, Pa_ns > HCs
Retardation symptoms 6.25 ± 1.51 6.64 ± 1.32 0.16 ± 0.37 313.83a Pa_s, Pa_ns > HCs
Weight loss 0.71 ± 0.81 0.39 ± 0.70 0 9.83a Pa_s, Pa_ns > HCs
Cognitive disturbances 3.50 ± 2.04 3.24 ± 1.70 0 52.83a Pa_s, Pa_ns > HCs
Data was displayed with mean ± standard deviation. HAMD-17, the 17-item Hamilton Rating Scale for Depression; BAI, Beck anxiety inventory; Pa_s, major depressive 
disorder with sleep disturbances; Pa_ns, major depressive disorder without sleep disturbances; HCs, healthy controls
a ANOVA
b Chi-square test
c Two sample t-test
*Sleep disturbance scores were computed by the fourth to sixth items of the HAMD-17 scale
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showing optimal specificity and sensitivity. These find-
ings provide insight for further clinical diagnosis and 
syndrome sub-classification.

MDD patients with SD exhibited increased ReHo in 
the right PCC/precuneus and right MCC compared 
with MDD patients without SD, and increased ReHo in 
the right PCC/precuneus showed a positive relation-
ship with the SD scores. PCC/precuneus and MCC are 
important brain regions of the DMN and are generally 
related to negative self-focus and disturbed emotional 
regulation in patients with MDD [37, 38]. The rates of 
volume loss in the right PCC were negatively associated 
with sleep quality, suggesting that poor sleep quality 

significantly accelerated volume loss in the right PCC 
[39]. Impaired sleep in patients with MDD was associ-
ated with increased connectivity in the function of the 
DMN, which includes regions responsible for self-reflec-
tion and emotional processing [40, 41]. Consistent with 
previous findings, increased ReHo values in PCC/pre-
cuneus and MCC within the DMN were involved in the 
compensatory response to emotional regulation and self-
perceptions in MDD patients with SD, which might lead 
to difficulty in falling asleep and poor sleep quality [42].

As a component of the auditory cortex, ITG exhib-
its decreased functional connectivity in responses to 
external stimuli during sleep [17]. Stimulation related 

Fig. 2 (A) Brain regions with abnormal ReHo in the three groups based on ANCOVA with the covariates of age, gender, educational status, and mean 
FD values. Red colors denote significant difference among groups. The color bar indicates the F value from ANCOVA. (B) Brain regions with abnormal 
ReHo between MDD with SD and MDD without SD based on post-hoc t-tests. Red colors denote high ReHo in MDD with SD. The color bar indicates the 
T value. (C) Brain regions with abnormal ReHo between MDD with SD and HCs based on post hoc t-tests. Red colors denote high ReHo, and blue colors 
denote low ReHo in MDD with SD. The color bars indicate the T value. (D) Brain regions with abnormal ReHo between MDD without SD and HCs based on 
post hoc t-tests. Red colors denote high ReHo, and blue colors denote low ReHo in MDD without SD. The color bars indicate the T value. ReHo, regional 
homogeneity; SD, sleep disturbance; ANCOVA, analysis of covariance; FD, framewise displacement; MDD, major depressive disorder; HCs, healthy controls
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to external auditory stimuli leads to increased respon-
siveness to insomnia [43]. The present research showed 
increased ReHo in the ITG and a positive correlation with 
SD scores in MDD patients with SD, suggesting that ITG 
is associated with high arousal status in these patients, 
who were sensitive to external auditory stimuli during 
sleep. Patients with primary insomnia showed progres-
sively increased gray matter volume in the right ITG 

[44]. Furthermore, the correlation between psychologi-
cal stress and sleep quality may be mediated by the bilat-
eral ITG [45]. These findings highlight that the increased 
regional neural activity of the ITG may be involved in the 
pathophysiological mechanism underlying SD in patients 
with MDD [28].

As a key brain area of the somatosensory network, 
the postCG plays an important role in sensory–motor 
integration and transmission [46, 47]. Compared with 
MDD patients without SD, MDD patients with SD 
showed increased ReHo value in the left postCG in the 
current study. A previous research found that reduc-
tion in the gray matter volume of the left postCG is 
related to the severity of SD and depressive symptom 
in shift-working nurses [48]. Congruent with previ-
ous findings, we suggest that increased ReHo in the left 
postCG leads to excessive sensory–motor information 

Table 2 Significant ReHo differences across three groups
Cluster location Peak (MNI) Number 

of voxels
T 
valuex y z

Pa_s vs. Pa_ns
Right PCC/precuneus 9 -51 36 72 3.8734
Right MCC 9 -21 36 39 3.8839
Right ITG 60 -12 -30 47 4.1982
Left postCG -57 -18 15 35 3.5905
Pa_s vs. HCs
Bilateral Cerebellum 
Crus2

-9 -90 -33 94 4.2532

Bilateral MFG 0 21 63 75 3.8023
Right Fusiform Gyrus/
Cerebellum 6

30 -63 -15 38 -4.3164

Left Cuneus 0 -81 27 37 -3.7039
Left SOG -24 -84 39 36 -4.3143
Pa_ns vs. HCs
Bilateral Cerebellum 
Crus2

-6 -93 -33 75 4.0532

Right MOG 54 -72 -18 49 3.6440
Left ITG -63 -60 -12 35 3.3091
Right MTG 66 -57 -9 45 3.7689
Bilateral PCC/precuneus -9 -45 21 32 -3.3397
MNI, Montreal Neurological Institute; ReHo, regional homogeneity. Pa_s, major 
depressive disorder with sleep disturbances; Pa_ns, major depressive disorder 
without sleep disturbances; HCs, healthy controls; PCC, posterior cingulate 
cortex; MCC, median cingulate cortex; ITG, inferior temporal gyrus; postCG, 
postcentral gyrus; MFG, medial frontal gyrus; SOG, superior occipital gyrus; 
MOG, middle occipital gyrus; MTG, middle temporal gyrus

Table 3 The results of SVM analysis based on the selected 
optimal features
Features Ac-

curacy 
(%)

Sensi-
tivity 
(%)

Speci-
ficity 
(%)

Pa_s vs. Pa_ns
Combine 3 and 4 84.21 

(48/57)
87.50 
(21/24)

81.82 
(27/33)

3 = right ITG
4 = left postCG
All MDD Patients vs. HCs
Combine 1, 2 and 4 80.90 

(72/89)
94.74 
(54/57)

56.25 
(18/32)

1 = bilateral cerebellum crus2
2 = right MFG
4 = right ITG
Pa_s, major depressive disorder with sleep disturbances; Pa_ns, major depressive 
disorder without sleep disturbances; MDD, major depressive disorder; HCs, 
healthy controls; ITG, inferior temporal gyrus; postCG, postcentral gyrus; MFG, 
medial frontal gyrus

Fig. 3 Correlations between ReHo values and clinical variables. For all patients with MDD, increased ReHo values of the right PCC/precuneus were posi-
tively correlated with the scores of BAI and SD (Left). For all patients with MDD, increased ReHo of the right ITG was positively correlated with the SD scores 
(Right). ReHo, regional homogeneity; BAI, Beck anxiety inventory; PCC, posterior cingulate cortex; ITG, inferior temporal gyrus
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Fig. 5 Visualization of classifications through SVM using the combination of ReHo values in the bilateral cerebellum crus 2, right MFG and right ITG 
(features 1, 2 and 4) to discriminate MDD patients and HCs. Left: Confusion matrix map of the combination of ReHo values in the bilateral cerebellum 
crus 2, right MFG and right ITG. The target class conveys the correct classification of each subject. The output class conveys the predicted classification 
of each subject. Red boxes represent incorrect predictions, and green boxes represent correct predictions. Right: 3D visualization of SVM with the best 
parameters. Log 2c and log 2 g mean the range and step size of the given parameters c and g (c and g are the parameters of the kernel functions in SVM 
training). MDD, major depressive disorder; SD, sleep disturbance; HCs, healthy controls; ReHo, regional homogeneity; SVM, support vector machine; MFG, 
medial frontal gyrus; ITG, inferior temporal gyrus

 

Fig. 4 Visualization of classifications through SVM using the combination of ReHo values in the right ITG and left postCG (features 3 and 4) to discrimi-
nate MDD with SD and MDD without SD. Left: Confusion matrix map of the combination of ReHo values in the right ITG and left postCG. The target class 
conveys the correct classification of each subject. The output class conveys the predicted classification of each subject. Red boxes represent incorrect 
predictions, and green boxes represent correct predictions. Right: 3D visualization of SVM with the best parameters. Log 2c and log 2 g mean the range 
and step size of the given parameters c and g (c and g are the parameters of the kernel functions in SVM training). ReHo, regional homogeneity. Pa_s, 
major depressive disorder with sleep disturbances; Pa_ns, major depressive disorder without sleep disturbances; SVM, support vector machine; postCG, 
postcentral gyrus; ITG, inferior temporal gyrus

 



Page 9 of 11Lv et al. BMC Psychiatry          (2023) 23:809 

integration through the activation of the somatosensory 
network, thereby affecting sleep sensitivity in patients 
with MDD [49]. SVM analysis results showed a combi-
nation of increased ReHo values in the left postCG and 
right ITG exhibits the highest accuracy (84.21%) in dis-
criminating MDD patients with SD from those without 
SD. Thus, we suggest that increased ReHo values in the 
left postCG and right ITG can be used as a potential 
neurobiological marker for MDD patients with SD. Fur-
thermore, SVM results showed that the combination of 
ReHo values in the bilateral cerebellum crus 2, right MFG 
and right ITG exhibited a high sensitivity (94.74%) and 
low specificity (56.25%) in discriminating MDD patients 
from HCs. However, the combination of ReHo values of 
these same regions achieved a good sensitivity of 75.00% 
and specificity of 78.79% in differentiating MDD patients 
with SD from HCs. Similarly, these same regions in the 
brain could distinguish MDD patients without SD from 
HCs with a good sensitivity of 81.25% and specificity of 
75.00%. These findings indicate that increased ReHo 
values in the bilateral cerebellum crus 2, right MFG and 
right ITG could be utilized for future MDD classification. 
The initial observation of high sensitivity and low speci-
ficity in distinguishing MDD patients from HC may be 
attributed to class size imbalance (MDD: 57 vs. HCs: 32).

Additionally, compared with HCs, increased ReHo 
values in the bilateral cerebellum crus 2 were found 
in MDD patients with and without SD. The cerebel-
lum crus 2 was the intersection of the two subtypes of 
MDD, indicating that cerebellum crus 2 is involved in 
the pathological mechanism of MDD patients with and 
without SD. Compared with HCs, MDD patients with 
SD showed increased ReHo values in the bilateral MFG 
and decreased ReHo in the right fusiform gyrus/cer-
ebellum crus 6, left cuneus, and left SOG. However, the 
MDD patients without SD displayed increased ReHo in 
the right MOG, left ITG, and right MTG, and decreased 
ReHo in the bilateral PCC/precuneus. These findings 
suggest that different subtypes of MDD have diverse neu-
ropathological mechanisms.

Several limitations deserve to be mentioned. First, the 
sample size may limit the statistical power in detecting 
subtle brain alterations and uncovering potential depres-
sion–brain–sleep relationship. Second, refined classifica-
tion of SD was not included in our current study, such as 
difficulties and quality of sleep duration and sleep frag-
mentation. Third, most patients with MDD were adults, 
and the current findings may not generalize to adolescent 
patients with MDD. Finally, the SD symptoms of each 
patient with MDD were calculated according to the three 
items insomnia subscale of the HAMD-17 scale. How-
ever, this is not robust, and future studies should utilized 
valid sleep questionaries such as the Pittsburgh Sleep 
Quality Index (PSQI) for the assessment of SD.

Conclusions
Our present study addressed the specific or distinctive 
ReHo patterns in MDD patients with SD. Increased ReHo 
in the right ITG and PCC/precuneus might represent sta-
ble and unique neurobiological features of MDD patients 
with specific sleep conditions. In addition, a combination 
of abnormal ReHo in the postCG and right ITG may be 
applied as a potential neurobiological marker for dis-
criminate MDD patients with SD from those without SD.
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