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Abstract
Background Amygdala plays an important role in schizophrenia (SC), but its mechanisms are still unclear. Therefore, 
we investigated the relationship between the resting-state magnetic resonance imaging (rsMRI) signals of the 
amygdala and cognitive functions, providing references for future research in this area.

Methods We collected 40 drug-naïve SC patients and 33 healthy controls (HC) from the Third People’s Hospital of 
Foshan. We used rsMRI and the automatic segmentation tool to extract the structural volume and local neural activity 
values of the amygdala and conducted Pearson correlation analysis with the Positive and Negative Syndrome Scale 
(PANSS) and the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) scores. Finally, we 
compared the clinical data, as well as the volume and functional changes of the amygdala in SC patients before and 
after treatment.

Results Compared with HC, SC had widespread cognitive impairments, significant abnormalities in left amygdala 
function, while the reduction in volume of SC was not significant. Further Pearson correlation analysis with Bonferroni 
correction showed that only Immediate memory (learning) was significantly negatively correlated with fractional 
amplitude of low-frequency fluctuation (FALFF, r = -0.343, p = 0.001, p’ = 0.014 (Bonferroni correction)). When 
compared and analyzed the data difference of SC before and after treatment, we found that immediate memory and 
delayed memory of SC showed varying degrees of recovery after treatment (tlearning = -2.641, plearning = 0.011; tstory 

memory = -3.349, pstory memory = 0.001; tlist recall = -2.071, plist recall = 0.043; tstory recall = -2.424, pstory recall = 0.018). But the 
brain structure and function did not recover.

Conclusion There was significant dysfunction in the amygdala in SC, and after conventional treatment, the function 
of the amygdala did not improve with the improvement of clinical symptoms and cognitive function.
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Introduction
Schizophrenia (SC) is a common mental disorder char-
acterized by emotional, cognitive, and behavioral distur-
bances that lead to confusion between reality and fiction, 
and ultimately affect an individual’s social and quality of 
life [1].

Amygdala plays an important role in SC [2–4], affect-
ing the onset and clinical symptoms of the disorder in the 
following ways.

Emotional processing: The amygdala was the central 
hub for processing emotions, especially negative emo-
tions, and was involved in regulating emotions such as 
fear and anxiety [5, 6]. In SC, the amygdala may exhibit 
abnormalities in emotional regulation, manifesting as 
emotional discomfort, emotional blunting, and others [3, 
7].

Memory and association: It was connected to brain 
regions such as the hippocampus and was involved in 
encoding and storing memories [8]. SC patients might 
exhibit symptoms such as memory impairment and loos-
ening of association, which might be related to abnor-
malities in the amygdala [2].

Executive control: Amygdala was closely linked to the 
prefrontal cortex and inferior frontal cortex [9] and was 
involved in human executive control functions. Patients 
with SC may experience impaired executive control func-
tions, which had been linked to structural abnormalities 
in the amygdala [2]. These abnormalities manifested as 
difficulties in suppressing impulses and self-regulation 
[10–12].

In addition, some studies had also shown that there 
were structural and functional abnormalities in the 
amygdala in SC, such as a decrease in the volume of the 
amygdala and a reduction in neuronal activity [2, 13, 14]. 
These abnormalities might be related to the occurrence 
and manifestation of SC. However, the current studies of 
the structural and functional changes of the amygdala in 
SC was inconsistent. The establishment of a causal rela-
tionship between changes in cognitive function and alter-
ations in both the structure and function of the amygdala 
remains uncertain. Therefore, investigating the role of 
structural and functional changes in the amygdala before 
and after treatment in individuals with SC can provide 
valuable insights into the underlying pathological mecha-
nisms of SC.

Method
The participants with SC (n = 40) were recruited from the 
Third People’s Hospital of Foshan (Foshan Mental Health 
Center). Inclusion criteria were as follows: (1) met the 
diagnostic criteria for SC in the Diagnostic and Statistical 
Manual of Mental Disorders 5 (DSM-5); (2) aged between 
18 and 60 years old; (3) education level of at least 9 years 
(to avoid patients who were unable to understand the 

assessment); (4) Han ethnicity, right-handedness; and 
(5) had not used any psychiatric medication prior to data 
collection; (6) all the subjects had no contraindications 
for MRI scans, organic brain diseases, physical illnesses, 
drug (substance abuse) history, traumatic brain injury, or 
neurological diseases.

The healthy controls (HC) group (n = 33) was recruited 
from the local community. They had no history or fam-
ily history of psychosis, which was confirmed through an 
interview with a psychiatrist. The age, gender, and educa-
tion level were matched with those of the SC group. And 
they were of Han ethnicity and right-handedness.

Scale assessments: The severity of the disease was 
evaluated using the Positive and Negative Syndrome 
Scale (PANSS) [15]. Cognition of participants was evalu-
ated using the Repeatable Battery for the Assessment of 
Neuropsychological Status (RBANS) [16], which aimed 
to assess immediate memory, visuospatial construc-
tion, language, attention, and delayed memory function. 
Higher scores indicate better cognitive function.

MRI scanning (3.0 Tesla, General Electric, United 
States), data processing and statistics: 3D structure MRI 
scanning parameters: Time repetition (TR) = 8.6 ms, Echo 
time (TE) = 3.3 ms, Flip angle (FA) = 12°, Field of view 
(FOV) = 256  mm*256mm, matrix = 256*256, layer thick-
ness = 1  mm, layer spacing = 0  mm, slice number = 172. 
MRI scanning parameters of resting brain function: 
TR = 2000 ms, TE = 30 ms, FA = 90º, FOV = 240  mm*240 
mm, matrix = 64*64, layer thickness = 4  mm, number 
of layers = 36, layer spacing = 1  mm, Continuous collec-
tion of 250 time point data. Like our previous research 
[13, 17], SPM8 (http://www.fil.ion.ucl.ac.uk/spm), cat12 
(http://www.neuro.uni-jena.de/cat12), and the Data 
Processing Assistant for Resting-State fMRI DPARSF 
(http://rfmri.org/dpabi) software were used to preprocess 
MRI data. Brain structure MRI data were mainly used 
to measure the volume of amygdala gray matter (calcu-
lated according to the Automated Anatomical Labeling 
(AAL) atlas [18]). The analysis and processing of brain 
functional MRI data included measuring the local neural 
activity of amygdala with the fractional amplitude of low-
frequency fluctuations (FALFF).

The first MRI data collection and scale assessments for 
all participants were completed within a day and the sec-
ond evaluation took place at 24–25 weeks. During this 
time, doctors prescribed relevant antipsychotic medica-
tion (primarily second-generation antipsychotics such as 
Olanzapine (n = 11), Risperidone (n = 10), Paliperidone 
(n = 8), Lurasidone (n = 5)) based on the patient’s condi-
tion, without conducting psychotherapy. After the test-
ing, participants would receive a transportation subsidy 
of 300 yuan.

http://www.fil.ion.ucl.ac.uk/spm
http://www.neuro.uni-jena.de/cat12
http://rfmri.org/dpabi
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Statistical analyses
Statistical Product and Service Solutions 23 (SPSS 23, 
https://www.ibm.com/analytics/spss-statistics-software, 
IBM, Amonk, New York, United States) was used to ana-
lyze the clinical scale scores. The Kolmogorov-Smirnov 
test (K-S test) showed that the measurement data of SC 
and HC groups followed a normal distribution. Indepen-
dent sample t-tests and chi-square tests were employed 

to compare clinical data at baseline between groups. 
Paired sample t-tests were utilized to compare the data of 
SC before and after treatment. The Statistical Parametric 
Mapping 8 (SPM8) software was employed to conduct a 
two-sample t-test, comparing the structure and function 
of the amygdala between the SC and HC groups. Pear-
son correlation analysis was also performed to investigate 
the relationship between amygdala volume/function and 
clinical data. The resulting p-values were subjected to 
Bonferroni correction.

Result
We excluded six patients with severe behavioral disorders 
(destruction or violence) who were unable to complete 
the MRI scan. A total of 34 SC and 33 HC ultimately 
completed all evaluations.

The results indicated that compared with HC, SC had 
widespread cognitive impairments, significant abnor-
malities in left amygdala function, while the reduction 
in volume of SC was not significant. Compared with HC, 
the PANSS score of SC was higher (t = 15.144, p < 0.001), 
while the RBANS score was lower (t=-4.746, p < 0.001). 
Additionally, the left Amygdala exhibited a higher FALFF 
compared to HC (t = 2.561, p = 0.013). (Table 1)

Pearson correlation analysis was conducted, with Bon-
ferroni correction applied, to further investigate the 
correlation between disease severity and the left amyg-
dala cognitive function. The results determined that 
only immediate memory (learning) was significantly 
negatively correlated with FALFF (r = -0.343, p = 0.001, 
p’ = 0.014 (Bonferroni correction)), indicating that as 
FALFF increased, instant learning and memory function 
decreased. (Fig. 1).

When compared and analyzed the data difference of 
SC before and after treatment, we found that the overall 

Table 1 Comparison of clinical scale and MRI data between HC 
and SC

SC (n = 34) HC (n = 33) t / χ2 p
Age 41.909 ± 9.448 42.264 ± 11.250 -0.140 0.889

Gender (Male/
female)

19/14 25/9 -1.891 0.204

Education 
(Years)

10.42 ± 3.021 11.53 ± 4.392 -1.197 0.236

PANSS 67.33 ± 14.339 30.09 ± 0.379 15.144 < 0.001*

PANSS (Positive) 13.88 ± 6.294 7.03 ± 0.239 6.345 < 0.001*

PANSS 
(Negative)

21.09 ± 5.719 7.06 ± 0.239 14.297 < 0.001*

PANSS (General) 32.36 ± 7.141 16.00 ± 0.000 13.365 < 0.001*

RBANS 125.757 ± 32.939 169.076 ± 37.056 -4.746 < 0.001*

Immedi-
ate memory 
(Learning)

11.35 ± 4.996 23.96 ± 6.245 -3.401 0.001*

Immediate 
memory
(Story Memory)

6.30 ± 4.760 11.35 ± 4.996 -3.953 < 0.001*

Visuospatial 
Construction

15.42 ± 3.783 16.77 ± 2.487 -1.564 0.123

Language 12.27 ± 4.598 17.38 ± 4.419 -4.313 < 0.001*

Attention (Digit 
Span)

10.91 ± 2.590 13.19 ± 2.333 -3.510 0.001*

Attention 
(Coding)

29.82 ± 11.151 43.69 ± 14.907 -4.091 < 0.001*

Delayed 
memory
(List Recall)

3.15 ± 2.647 4.96 ± 3.013 -2.453 0.017*

Delayed 
memory
(List 
Recognition)

17.85 ± 2.476 19.23 ± 1.306 -2.575 0.013*

Delayed 
memory
(Story Recall)

3.24 ± 3.042 6.08 ± 3.149 -3.499 0.001*

Delayed 
memory
(Figure Recall)

8.52 ± 5.357 12.46 ± 4.254 -3.069 0.003*

Volume 
(Amygdala)

L 0.905 ± 0.104 0.945 ± 0.099 -1.659 0.102

R 1.019 ± 0.111 1.022 ± 0.275 -0.122 0.903

FALFF 
(Amygdala)

L -0.073 ± 0.358 -0.272 ± 0.275 2.561 0.013*

R -0.211 ± 0.360 -0.312 ± 0.223 1.381 0.172
PANSS: Positive and Negative Syndrome Scale; RBANS: Repeatable Battery for 
the Assessment of Neuropsychological Status; FALFF: Fractional amplitude of 
low-frequency fluctuations; L: left; R: right. * Indicated p < 0.05; Independent-
sample t-test, two-tailed.

Fig. 1 Pearson correlation analysis between the FALFF value of the left 
amygdala and immediate memory. Immediate memory (learning) was 
significantly negatively correlated with FALFF (r = -0.343, p = 0.001, p’ = 
0.014(Bonferroni correction)); FALFF: Fractional amplitude of low-frequen-
cy fluctuations
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condition of SC improved after treatment (tPANSS = 3.131, 
pPANSS = 0.003). However, negative symptoms did not 
show significant improvement (tPANSS (negative) = 0.994, 
pPANSS (negative) = 0.324). Immediate memory and delayed 
memory of SC showed varying degrees of recovery 
after treatment (tlearning = -2.641, plearning = 0.011; tstory 

memory = -3.349, pstory memory = 0.001; tlist recall = -2.071, 
plist recall = 0.043; tstory recall = -2.424, pstory recall = 0.018). 

Unfortunately, the brain structure and function did not 
recover. (Table 2)

Discussion
This study focused on the structural and functional 
changes of the amygdala in the drug-naïve SC. Real-
world SC patients were collected, and their symptoms, 
cognitive functions, and brain MRI data before and after 
treatment were analyzed. The results suggested that SC 
patients had extensive cognitive impairment and the 
function of the left Amygdala was significantly increased. 
Although the symptoms could be partially recovered 
with regular treatment, the neuroimaging results showed 
that the functional abnormalities of the amygdala could 
not be restored.

SC had widespread cognitive impairments, which were 
consistent with previous research findings [19, 20] Addi-
tionally, we discovered a significant increase in local neu-
ral activity in the left amygdala. Previous research has 
suggested a close relationship between the amygdala and 
the observed mood dysregulation in SC, with abnormal 
structure and function of the amygdala being associated 
with psychotic symptoms [13, 21–24]. Some research-
ers had indicated that SC patients have reduced vol-
ume changes in the amygdala [21, 25, 26], while others 
had concluded that early and comprehensive treatment 
could repair brain atrophy in SC patients [27]. However, 
our study did not find any significant volume differences 
between SC patients and HC, which may be attributed to 
our selection of treatment-naïve SC individuals. The par-
ticipants in our study showed that even if the amygdala 
function was overactive, it might not have progressed to 
amygdala atrophy, as seen in chronic SC patients [28–
30]. Additionally, the follow-up period in our study was 
24 weeks, which might not have been long enough for 
amygdala atrophy to occur. Therefore, this finding can be 
interpreted in this context.

Subsequently, we used Bonferroni correction to con-
duct Pearson correlation analysis between the FALFF sig-
nal of the left amygdala and various cognitive functions 
in untreated SC and HC, and the results showed only a 
negative correlation with immediate memory (learn-
ing) and the FALFF. Previous research showed that the 
amygdala was closely related to emotion[6, 31, 32]. Under 
normal conditions, the activation level of the amygdala 
decreased when encountering emotions like anger or 
fear. However, emotion regulation was abnormal in SC, 
and the amygdala function was overactivated instead 
[33]. Subsequently, many studies had also shown that 
the amygdala was involved in cognitive processes in the 
human brain [34, 35], and its dysfunction could seriously 
impair and affect cognitive and memory levels [36].

When comparing the data of SC before and after treat-
ment, we observed varying degrees of recovery in the 

Table 2 Comparison of the disease status, cognition, and 
resting-state magnetic resonance data of SC before and after 
treatment

SC 0−week SC 24−week t p
PANSS 67.33 ± 14.339 56.41 ± 12.933 3.131 0.003*

PANSS 
(positive)

13.88 ± 6.294 10.38 ± 4.467 2.492 0.015*

PANSS 
(negative)

21.09 ± 5.719 19.59 ± 6.193 0.994 0.324

PANSS 
(general)

32.36 ± 7.141 26.45 ± 5.047 3.718 < 0.001*

RBANS 125.757 ± 32.939 138.093 ± 39.223 -1.346 0.183

Immediate 
memory 
(Learning)

11.35 ± 4.996 22.57 ± 6.155 -2.641 0.011*

Immediate 
memory 
(Story 
Memory)

6.30 ± 4.760 10.46 ± 4.925 -3.349 0.001*

Visuospatial 
Construction

15.42 ± 3.783 16.46 ± 3.203 -1.147 0.256

Language 12.27 ± 4.598 12.71 ± 3.463 -0.417 0.678

Attention 
(Digit Span)

10.91 ± 2.590 10.86 ± 2.256 0.083 0.934

Attention 
(Coding)

29.82 ± 11.151 32.36 ± 10.962 -0.893 0.375

Delayed 
memory (List 
Recall)

3.15 ± 2.647 4.54 ± 2.546 -2.071 0.043*

Delayed 
memory (List 
Recognition)

17.85 ± 2.476 18.54 ± 3.574 -0.883 0.381

Delayed 
memory 
(Story Recall)

3.24 ± 3.042 5.11 ± 2.936 -2.424 0.018*

Delayed 
memory (Fig-
ure Recall)

8.52 ± 5.357 9.43 ± 4.947 -0.687 0.495

Volume 
(Amyg-
dala)

L 0.905 ± 0.104 0.900 ± 0.102 0.183 0.426

R 1.019 ± 0.111 0.980 ± 0.093 1.544 0.127

FALFF 
(Amyg-
dala)

L -0.073 ± 0.358 -0.086 ± 0.342 0.282 0.779

R -0.211 ± 0.360 -0.145 ± 0.336 1.849 0.073
PANSS: Positive and Negative Syndrome Scale; RBANS: Repeatable Battery for 
the Assessment of Neuropsychological Status; FALFF: Fractional amplitude of 
low-frequency fluctuations; L: left; R: right. *Indicated p < 0.05; Paired-sample 
t-test, two-tailed.
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severity of illness and cognitive function, particularly in 
aspects such as immediate memory and delayed memory. 
Similar to previous studies, patients with SC commonly 
exhibit severe impairments in memory, which are asso-
ciated with volumetric abnormalities in the amygdala[37, 
38]. And Tetsuya et al. employed fMRI and discovered 
significant amygdala signal activation during memory 
processes[39]. However, it is unfortunate that the sample 
size in this experiment was relatively limited. And there 
is currently a lack of literature reporting on changes in 
amygdala following treatment. Additionally, negative 
symptoms generally considered difficult to recover from, 
and there was no significant improvement observed in 
this study [40–42]. Although conventional treatment of 
SC can improve patients’ symptoms, unfortunately, our 
results did not show any data on structural or functional 
recovery of the amygdala. Previous studies had reported 
that after standardized treatment with antipsychotic 
drugs, the volumes of the frontal lobe, temporal lobe, 
and hippocampus in SC could partially recover, but there 
was no evidence of amygdala volume recovery, and not 
to mentioned passing through the multiple comparisons 
[43]. Some scholars had also found no significant func-
tional changes in SC patients treated with olanzapine 
after 8 weeks of follow-up, similar to the results of our 
study [44].

All in all, there was significant dysfunction in the amyg-
dala in SC, and after conventional treatment, the function 
of the amygdala did not improve with the improvement 
of clinical symptoms and cognitive function. It should 
be noted that the pathological mechanisms of SC were 
complex and involved structural and functional changes 
in multiple brain regions [1, 45]. And this study only 
focused on the amygdala itself, so caution was still 
needed when drawing conclusions. Overall, our results 
still provide important and valuable vertical research 
references for understanding the abnormal functional 
mechanisms of the amygdala in SC.
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