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Abstract
Background  Previous studies discovered the presence of abnormal structures and functions in the brain regions of 
patients with obsessive-compulsive disorder (OCD). Nevertheless, whether structural changes in brain regions are 
coupled with alterations in dynamic functional connectivity (dFC) at rest in medicine-free patients with OCD remains 
vague.

Methods  Three-dimensional T1-weighed magnetic resonance imaging (MRI) and resting-state functional MRI were 
performed on 50 medicine-free OCD and 50 healthy controls (HCs). Firstly, the differences in gray matter volume 
(GMV) between OCD and HCs were compared. Then, brain regions with aberrant GMV were used as seeds for 
dFC analysis. The relationship of altered GMV and dFC with clinical parameters in OCD was explored using partial 
correlation analysis. Finally, support vector machine was applied to examine whether altered multimodal imaging 
data might be adopted to distinguish OCD from HCs.

Results  Our findings indicated that GMV in the left superior temporal gyrus (STG) and right supplementary motor 
area (SMA) was reduced in OCD, and the dFC between the left STG and the left cerebellum Crus I and left thalamus, 
and between the right SMA and right dorsolateral prefrontal cortex (DLPFC) and left precuneus was decreased at rest 
in OCD. The brain regions both with altered GMV and dFC values could discriminate OCD from HCs with the accuracy 
of 0.85, sensitivity of 0.90 and specificity of 0.80.

Conclusion  The decreased gray matter structure coupling with dynamic function in the left STG and right SMA at 
rest may be crucial in the pathophysiology of OCD.

Trial registration  Study on the mechanism of brain network in obsessive-compulsive disorder with multi-model 
magnetic resonance imaging (registration date: 08/11/2017; registration number: ChiCTR-COC-17,013,301).
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Introduction
Obsessive-compulsive disorder (OCD), a mental disor-
der with intrusive thoughts and/or compulsive behaviour, 
and affects 2-3% of the general population [1, 2]. How-
ever, the pathophysiology of OCD is still unknown. The 
structural and functional changes associated with OCD 
have been studied by using high-resolution brain mag-
netic resonance imaging (MRI) [3, 4].

Voxel-based morphometry (VBM) studies discovered 
that the gray matter volume (GMV) in the striatum and 
pallidum was increased, and that in the prefrontal and 
cingulate cortex was decreased in OCD [5, 6]. In addi-
tion, the GMV of the left superior temporal gyrus (STG) 
was negatively correlated with the severity of OCD [7].

The functional connectivity (FC) can reflect the tem-
poral correlation between distinct brain regions and has 
been extensively utilized to explore the pathophysiol-
ogy of mental disorders [8]. However, previous stud-
ies assumed that the brain is static and thus ignored the 
dynamic characteristics of the brain. FC between differ-
ent brain regions has dynamic properties that changes 
over time [9], the dynamic FC (dFC) can accurately char-
acterize the cooperation between different brain regions 
through surveying the time-varying covariance of brain 
signals at rest [10]. Previous studies have utilized the dFC 
method to investigate the pathophysiology of OCD. For 
example, Liu et al. explored dFC changes across brain 
networks and found that the number of transitions was 
altered, and positively correlated with clinical symptoms 
of OCD [11]. Luo et al., who used a similar method, dis-
covered that the fractional time across brain networks 
was increased, and positively correlated with the anxi-
ety level of OCD [12]. These studies suggested that the 
dynamic function between different brain regions was 
altered at rest in patients with OCD [11, 12].

Although most previous studies employed single-
modal MRI to investigate the pathophysiology of OCD, 
the combination of structural and functional analyses 
may provide new insights into the pathophysiology of 
mental disorders [13, 14]. Past works discovered the dis-
sociation or overlapping of altered structural and func-
tional MRI features in patients of depressive and bipolar 
disorder, respectively [15, 16]. Only a few studies have 
applied multimodal imaging methods to investigate the 
existence of abnormal structures and functions in the 
brains of OCD [17–19]. However, previous studies on 
multimodal neuroimaging were limited to static FC, and 
whether structural alterations are coupled with changes 
in dFC in brain regions at rest in OCD remains vague.

In this research, we combined VBM and whole-brain 
voxel-based dFC methods to explore the brain changes 
in both structure and dynamic function at rest in medi-
cine-free OCD. Furthermore, we examined the relation-
ship between multimodal MRI alterations and the clinical 

parameters of OCD. We hypothesized that abnormal 
GMV coupling with dFC would work together to con-
tribute the pathophysiology of OCD, and could be related 
with the clinical characteristics of OCD. We also hypoth-
esized that these altered multimodal MRI characteris-
tics would be utilized as potential biomarkers to identify 
OCD.

Methods
Participants
The Research Ethics Committee of Qiqihar Medical Uni-
versity approved this study, and the study protocol is per-
formed in accordance with the Helsinki Declaration of 
2013. All participators and/or their legal guardians signed 
informed consent forms before participating in the study.

Fifty individuals with OCD (29 males and 21 females) 
were recruited from Qiqihar Medical University’s Fourth 
Affiliated Hospital and the Qiqihar Mental Health Cen-
tre. Two psychiatrists diagnosed the patients with OCD 
in accordance with the Structured Clinical Interview for 
DMS-IV (SCID) patient version. Yale-Brown Obsessive 
Compulsive Scale (Y-BOCS), Hamilton Anxiety Rating 
Scale (HAMA) and 17-item Hamilton Rating Scale for 
Depression (HAMD) were applied to evaluate the sever-
ity, anxiety and depression symptoms of OCD, respec-
tively. Patients were included if they had Y-BOCS total 
score ≥ 16 and HAMD score < 18. All the patients have 
to be free from any psychotropic medication at least 4 
weeks before recruitment. In accordance with the non-
patient version of SCID, we also recruited and screened 
50 healthy controls (HCs) (32 males and 18 females) 
from the community. The following exclusion standards 
were shared by the participants: (1) serious physical dis-
eases or neurological disorders; (2) a history of alcohol or 
drug abuse; (3) contraindications for magnetic resonance 
imaging; and (4) pregnant or breast-feeding women. 
Moreover, HCs were excluded if they had any first-degree 
relatives with mental disorders. All participants were 
18–45 years old, right-handed and Han Chinese.

Image scanning parameters and preprocessing
Experimental data were collected with a 3.0-Tesla GE 
750 Signa-HDX scanner. The participants were required 
to wear earplugs to decrease the scanner noise effect. 
They also were required to relax and to shut their eyes 
but stay awake. T1-weighted images were collected by 
using a rapid acquisition gradient echo sequence, and the 
scanning parameters were as follows: 2530 ms TR; 3.39 
ms TE; 7° FA; 256 × 192 matrix; 256 × 256 mm2 FOV; 
1.33  mm/0 mm thickness/interslice gap; and 128 sagit-
tal slices. Resting-state fMRI images were scanned by 
using an echo-planar imaging sequence with the follow-
ing setup: 2000 ms TR; 30 ms TE; 3.5 mm/0.6 mm thick-
ness/interslice gap; 200 × 200 mm2 FOV; 64 × 64 matrix; 
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90° FA; 33 axial slices; 240 volumes; and 480 s acquisition 
time.

The original fMRI data were preprocessed by using the 
Resting-State fMRI Data Analysis Toolkit (RESTplus) 
(http://restfmri.net/forum/RESTplus) [20]. The process 
was as follows: the initial 10 volumes were eliminated; 
slice timing and head motion (excluding data with trans-
lation over 2  mm or rotation over 2°) were corrected; 
the realigned images were spatially normalized to the 
Montreal Neurological Institute (MNI) space by apply-
ing a new segment to the structural images and resam-
pled to 3 × 3 × 3 mm3; a 6 mm isotropic Gaussian kernel 
was employed for smoothing, covariates (i.e., Friston-24 
parameter, cerebrospinal fluid [CSF] and white mat-
ter [WM]) were removed, and the data were linearly 
detrended and filtered to 0.01–0.08 Hz.

VBM analysis
CAT12 (http://www.neuro.uni-jena.de/cat/) toolbox 
in SPM12 software package on the MATLAB R2014a 
(MathWorks, Inc.) platform was adopted for VBM analy-
sis. CAT12 is a critical neuroimaging analytic approach 
for examining structural changes in local GMV [21]. In 
addition, it can eliminate operational bias when brain 
areas are selected and whole-brain measurements are 
collected [22]. Firstly, the toolbox was used for bias-field 
correction and noise elimination; skull stripping and gray 
matter (GM), WM and CSF segmentation. Then, all GM 
images were spatially normalized to the MNI template 
by the DARTEL algorithm to obtain images of 1.5 mm3 
voxels; the data were visually examined. Finally, an 8-mm 
isotropic Gaussian kernel was used to smooth the nor-
malized GM images.

DFC analysis
DFC analysis was conducted by utilising RESTplus-based 
Temporal Dynamic Analysis toolkits. Sliding time-win-
dow analysis was adopted to characterize FC temporal 
dynamics. The minimum window length was required to 
be greater than or equal to 1/fmin to avoid creating spuri-
ous fluctuations in dFC (fmin is the minimum frequency 
of the time course) [23]. In addition, the window length 
should not be excessively long for fear that the time-vari-
ability of FC is disrupted [24]. Based on previous studies, 
50 TRs’ window length was chosen in order to achieve 
equilibrium between capturing patterns of resting-state 
fluctuations in dFC and producing credible estimations 
of correlations between regions [24–26]. The entire time 
course was divided into 181 windows by using hamming 
windows with window length = 50 TRs (100  s) and step 
size = 1 TR (2 s). The brain regions that have been proven 
to have significant differences in GMV between OCD 
and HCs were selected as the region of interest (ROI). 
The seed-based dFC analysis was then performed on 

each window, i.e., Pearson correlation coefficients were 
computed between the averaged time course of each ROI 
and all other voxels in the whole-brain to build a FC map 
for each window. The FC maps were then improved for 
normality by applying Fisher’s r-to-z transformation. For 
each subject, the standard deviation of FC maps across 
time windows was computed, which is considered as the 
summary measure of dFC [27]. The larger standard devi-
ations are indicative of greater fluctuations in FC inten-
sity over time.

Statistical analysis
SPSS (v. 23.0 Chicago, IL, USA) was utilized for the sta-
tistical analysis of demographic and clinical data. If the 
continuous variables were normally distributed, the two-
sample t test was performed; otherwise, the Mann-Whit-
ney U test was adopted. Categorical data were analyzed 
by using the chi-square test.

The standard deviation values of FC maps across 
time windows of all subjects in each group were sum-
marized together to obtain the dFC values at the group 
level. GMV and dFC values were compared between two 
groups (OCD vs HCs) through voxel-wise two-sample 
t-tests by taking age, gender, education level, total intra-
cranial volume and mean framewise displacement (FD) 
as covariates. The significant threshold was P < 0.05 
(Gaussian random field corrected, voxel P < 0.001, cluster 
P < 0.05). Finally, we retrieved the mean GMV and dFC 
values from brain areas with significant inter-group dif-
ferences and conducted a partial correlation analysis with 
clinical parameters (i.e., disease duration, Y-BOCS total 
and subscale scores, HAMA and HAMD scores). Age, 
gender and education level were controlled as covariates, 
and the significance level was set at P < 0.05 (Bonferroni 
adjusted).

Support vector machine for classification analysis
Support vector machine (SVM) is widely applied in clas-
sification because of its ability to process high-dimen-
sional data and high classification accuracy [28]. In this 
study, we performed SVM analysis on the basis of the 
LIBSVM package in MATLAB to determine whether 
changed GMV and dFC can discriminate between OCD 
and HCs. Brain regions with altered GMV and dFC val-
ues were input into the classification model as feature 
variables. All the sample data were divided into a train-
ing set and a test set. The training set was employed to 
train the SVM classifier, and the test set was adopted to 
evaluate classification performance. Linear kernel was 
used to reduce the risk of data overfitting. Considering 
the small sample size, we adopted “leave-one-out” cross-
validation (LOOCV) to verify the classifier’s capacity 
to discriminate between two groups, and acquired the 
greatest sensitivity and specificity values. This operation 
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was repeated for each sample for the purpose of obtain-
ing the total accuracy of SVM. The permutation test was 
at a repetition of 5,000 times in order to evaluate the sta-
tistical significance of classification accuracy. Finally, the 
receiver operating characteristic (ROC) curve was gener-
ated to demonstrate the performance of the SVM model.

Validation analyses
Based on the parameter settings in previous studies, we 
used different window lengths (i.e., 30 TRs [60 s], 80 TRs 
[160 s]) and step sizes (i.e., 3 TRs [6 s] and 5 TRs [10 s]) 
to exclude the influence of parameter selection and to 
verify dFC stability [29–32]. Meanwhile, the static FC 
map of each ROI was calculated and compared voxel-
wise between OCD and HCs.

Results
Demographics and clinical data
No significant differences were found in age, gender, edu-
cation and mean FD between the two groups. Y-BOCS 
total, obsessive and compulsive subscale scores, HAMD 
and HAMA scores showed significant inter-group differ-
ences (Table 1).

VBM results
Compared with the HCs, OCD exhibited significantly 
decreased GMV in the left STG and right supplementary 
motor area (SMA) (Table 2; Fig. 1).

DFC results
OCD displayed significantly decreased dFC between the 
left STG and the left cerebellum Crus I and left thalamus; 
and decreased dFC between the right SMA and the dor-
solateral prefrontal cortex (DLPFC) and left precuneus 
(Table 3; Fig. 2).

Correlations between GMV and dFC values and clinical 
variables
No correlations were found between decreased GMV, 
dFC and clinical variables (i.e., Y-BOCS total and sub-
scale scores, HAMA and HAMD scores and illness dura-
tion) in OCD.

SVM results
Six feature variables (A = GMV of left STG; B = GMV of 
right SMA; C = dFC of left STG-left cerebellum Crus I; 
D = dFC of left STG-left thalamus; E = dFC of right SMA-
right DLPFC; F = dFC of right SMA-left precuneus) were 
entered into the classification models. The area under the 
curve (AUC), accuracy, specificity and sensitivity for each 
feature are summarized in Supplementary Table S1 and 
Fig. S1. The combination of six brain regions both with 
altered GMV and dFC values (features A, B, C, D, E and 
F) could differentiate OCD from HCs with an accuracy of 
0.85, sensitivity of 0.90 and specificity of 0.80 (P < 0.001, 
nonparametric permutation test). In addition, the AUC 
of the ROC curve that was used to verify the perfor-
mance of SVM was 0.9044 (Fig. 3).

Validation analyses
The results of dFC between two groups with diverse slid-
ing window lengths and step sizes were similar to those of 
dFC with sliding window length = 50 TRs and step size = 1 
TR (Supplementary Tables S2–S5 and Fig. S2–S5). More-
over, we found no differences in static FC between OCD 
and HCs (Fig. S6).

Table 1  Demographic and clinical characteristics of participants
Variables OCD 

(n = 50)
Mean ± SD

HCs 
(n = 50)
Mean ± SD

t/χ2/U P-value

Age (years) 26.36 ± 7.97 25.60 ± 7.94 0.478a 0.634

Gender (male/
female)

29/21 32/18 0.378b 0.539

Education (years) 13.16 ± 2.92 12.38 ± 3.03 1.312a 0.193

Illness duration 
(months)

64.04 ± 72.58 -- -- --

Y-BOCS

Total 25.36 ± 6.07 1.02 ± 0.87 28.052a < 0.001*

Obsessive subscale 
score

13.04 ± 4.28 0.34 ± 0.48 20.871a < 0.001*

Compulsive sub-
scale score

12.32 ± 4.30 0.66 ± 0.69 18.924a < 0.001*

HAMD 8.60 ± 4.34 1.38 ± 0.97 11.488a < 0.001*

HAMA 11.06 ± 7.03 1.02 ± 0.96 10.004a < 0.001*

FD 0.07 ± 0.02 0.07 ± 0.04 1133.000c 0.420
Data was displayed with mean ± standard deviation

a. Two sample t-test

b. Pearson chi-square

c. Mann-Whitney U test

*. Significant difference

Abbreviations: OCD = obsessive-compulsive disorder; HCs = healthy controls; 
Y-BOCS = Yale-Brown Obsessive-Compulsive Scale; HAMD = 17-item Hamilton 
Depression Rating Scale; HAMA = Hamilton Anxiety Rating Scale; FD = framewise 
displacement

Table 2  Brain regions with abnormal gray matter volume in 
OCD
Cluster location Peak (MNI) Cluster 

size 
(voxels)

t 
valuex y z

Left Superior Temporal 
Gyrus

-57 -21 11 102 -4.381

Right Supplementary 
Motor Area

9 -3 63 143 -5.394

The significant threshold was P < 0.05 (Gaussian random field corrected, voxel 
P < 0.001, cluster P < 0.05). Age, gender, and the total intracranial volume 
were used as covariates to minimize the potential effects of these variables. 
MNI = Montreal Neurological Institute; OCD = obsessive-compulsive disorder
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Discussion
In the present research, we employed VBM and dFC 
methods to investigate both the structural and dynamic 
functional alterations in brain regions at rest in OCD. 

The GMV values of the left STG and right SMA were 
reduced; the dFC values between the left STG and left 
cerebellum Crus I and left thalamus, and between the 
right SMA and right DLPFC and left precuneus were 
decreased at rest in OCD relative to those in HCs. The 
combination of brain regions with altered GMV and dFC 
values could be utilized to identify OCD. Our present 
results demonstrated that the brain regions with struc-
tural alterations are accompanied by the dynamic func-
tion changes at rest in OCD.

Static FC reflects the average strength of connectivity 
in different brain regions over time, and cannot describe 
the whole process of spontaneous neural activities in the 
brain at rest [33]. DFC is evaluated as the time-varying 
covariance of neural signals between brain regions at 
rest, which can describe the cooperation between brain 
regions in a precise way, and reflect the degrees and pat-
terns of connectivity [10, 33]. The decrease of dFC may 
indicate the obstacle of dynamic functional integration 
within or between brain networks, which is manifested as 

Table 3  Brain regions with abnormal dynamic functional 
connectivity at rest in OCD
Cluster location Peak (MNI) Cluster 

size 
(voxels)

t value
x y z

Seed: left superior 
temporal gyrus

Left Cerebellum Crus I -3 -75 -33 59 -4.0732

Left Thalamus 3 -18 18 62 -4.1757

Seed: right supplemen-
tary motor area

Right DLPFC 24 57 3 23 -5.1543

Left Precuneus 0 -60 36 59 -4.0911
The significant threshold was P < 0.05 (Gaussian random field corrected, voxel 
P < 0.001, cluster P < 0.05). Age, sex, and the mean FD values were used as 
covariates to minimize the potential effects of these variables. MNI = Montreal 
Neurological Institute; DLPFC = dorsolateral prefrontal cortex; OCD = obsessive-
compulsive disorder; FD = framewise displacement

Fig. 1  Brain regions with significant differences on GMV between OCD and HCs. The color bar represents the t values from the two-sample t-tests. 
Blue color denotes decreased GMV in OCD. STG: superior temporal gyrus; SMA: supplementary motor area; GMV: gray matter volume; OCD: obsessive-
compulsive disorder; HCs: healthy controls
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Fig. 3  Classification performance for OCD and HCs combined with GMV and dFC results (features A, B, C, D, E, and F). Left: Classification plots for the SVM 
classifier. Right: ROC curves assessing SVM performance. SVM: support vector machine; GMV: gray matter volume; dFC: dynamic functional connectivity; 
OCD: obsessive-compulsive disorder; HCs: healthy controls

 

Fig. 2  Voxel-wise analysis of dFC patterns in abnormal GMV brain regions. The color bar indicates the t values from one/two-sample t-tests. (A) DFC 
pattern maps of the left STG network and right SMA network in OCD and HC group separately. (B) Brain regions with abnormal dFC in OCD. The blue 
color denotes decreased dFC values in OCD. STG: superior temporal gyrus; SMA: supplementary motor area; dFC: dynamic functional connectivity; OCD: 
obsessive-compulsive disorder; HC: healthy control; L: left; R: right
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the abnormal spontaneous and/or recurrence patterns of 
connectivity [34].

The current research discovered reduced GMV in 
the left STG, and decreased dFC values between the 
left STG and left cerebellum Crus I and left thalamus at 
rest in medicine-free OCD. Consistent with our work, 
a previous study discovered reduced GMV in the left 
STG in patients with OCD [35]. STG has been found to 
be involved in modulation of the reward processing and 
emotional information [36]. The reduced GMV of the 
left STG may participate in the pathophysiology of OCD 
via the roles of STG in reward and emotional processing. 
Moreover, reduced GMV may be a manifestation of the 
long-lasting and highly stable change of the disease [37]. 
For this reason, we infer that the defect in the process-
ing of rewards and emotion may be the stable and lasting 
clinical symptom of OCD [38].

The cerebellum is involved in cognitive control and 
information processing [39, 40]. The thalamus plays a key 
role in perception and thoughts integration, motor and 
executive function [41, 42]. Previous studies reported 
reduced regional homogeneity (ReHo) in the cerebel-
lum and thalamus at rest in OCD [43, 44]. Moreover, the 
decreased dynamic amplitude of the low-frequency fluc-
tuation in the cerebellum was discovered in OCD [45]. 
The decreased dFC values between the left STG and left 
cerebellum Crus I-left thalamus at rest may reflect a mal-
function of functional integration between these brain 
regions in OCD at the time [37].

In addition, we found reduced GMV in the right SMA, 
and decreased dFC values between the right SMA and 
right DLPFC and left precuneus at rest in OCD. SMA is 
a part of the sensorimotor cortico-striato-thalamo-corti-
cal (CSTC) circuit and is involved in action selection and 
habitual behaviour [46, 47]. A previous meta-analysis dis-
covered low ReHo in the SMA at rest in OCD [44]. Our 
current and previous results suggested that the reduced 
GMV and low local spontaneous neural activity of the 
SMA may work together to contribute the pathophysiol-
ogy of OCD.

As an important part of dorsal cognitive CSTC cir-
cuits, DLPFC is associated with executive functions (e.g., 
response inhibition and planning) [47]. Previous works 
illustrated the key role of DLPFC in the pathophysiol-
ogy of OCD [48–50]. In our previous study, we found 
decreased degree values of the DLPFC at rest in OCD 
[51]. The precuneus is a crucial component of the default-
mode network (DMN) and participates in self-awareness 
processing [52–54]. Additionally, abnormal GMV and 
function in the precuneus at rest have also been found 
in OCD [35, 55–57]. The decreased dFC values between 
the right SMA and right DLPFC and left precuneus at 
rest discovered in the present work may imply the dys-
function of dynamic functional integration between the 

sensorimotor and dorsal cognitive CSTC circuits and 
DMN, and may be related to the insufficient inhibition 
ability for self-awareness and habitual behaviour at rest in 
OCD [46–50, 57].

The SVM analysis revealed that the combination of 
altered GMV and dFC in the left STG, right SMA, left 
cerebellum Crus I, left thalamus, right DLPFC and left 
precuneus were able to distinguish the OCD from HCs 
with an accuracy of 0.85, sensitivity of 0.90 and specific-
ity of 0.80. This result suggested that altered multimodal 
MRI characteristics perform an essential role in the 
pathogenesis and classification of OCD.

Validation analysis revealed that the current findings 
were not dependent on parameter selection (i.e., window 
length and step size) and had good reproducibility. More-
over, static FC did not show differences between the two 
groups, indicating that dFC may be utilized to describe 
voxel-wise FC alterations within a shorter time scale and 
is more sensitive than static FC [29].

Inconsistent with our hypothesis, reduced GMV and 
dFC were not correlated with clinical parameters in OCD. 
Prior studies also discovered that changed structure and 
function had no correlations with clinical parameters in 
OCD [58–61]. Therefore, we inferred that the changed 
GMV and dFC may be a trait alteration of OCD and not 
dependent on the current clinical status [59, 60]. How-
ever, the GMV of the left STG was negatively correlated 
with the severity of OCD [7]. The heterogeneity of OCD, 
relatively small sample sizes, and rigorous Bonferroni 
correction might limit the relationship between abnor-
mal multimodal MRI characteristics and clinical factors 
in OCD, and may explain this contradiction [62, 63].

The current study has some limitations. Firstly, there 
has no consensus on the optimal window length of slid-
ing-window method, and the selection of different win-
dow lengths may have an impact on the results, but our 
validation analysis using different window sizes suggests 
that our findings are stable and not substantially influ-
enced by the choice of sliding window length. Secondly, 
dFC analysis is especially sensitive to head motion [64]. 
Although mean FD values were regressed in statisti-
cal analyses and had no group differences, head motion 
remains a possible source of artifacts. Thirdly, the current 
results were not tested on another independent sample, 
which may lead to the overfitting of the SVM results. 
Finally, whether the brain regions both with abnormal 
GMV and dFC discovered in this study will change with 
the intervention on OCD needs to be investigated in lon-
gitudinal follow-up studies.

Conclusion
We combined the VBM and dFC methods to investigate 
structural and dynamic functional alterations simul-
taneously in medicine-free patients with OCD, and 



Page 8 of 9Ding et al. BMC Psychiatry          (2023) 23:289 

discovered that the GMV abnormalities in the left STG 
and right SMA were accompanied by dFC changes at rest 
in OCD. Moreover, a combination of brain regions both 
with reduced GMV and dFC could be used to identify 
OCD. The current findings highlight the crucial role of 
altered multimodal MRI characteristics in the pathogen-
esis and classification of OCD.
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