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Abstract

Background: Amygdala hyper-reactivity is sometimes assumed to be a vulnerability factor that predates depression;
however, in healthy people, who experience early life stress but do not become depressed, it may represent a
resilience mechanism. We aimed to test these hypothesis examining whether increased amygdala activity in
association with a history of early life stress (ELS) was negatively or positively associated with depressive symptoms
and impact of negative life event stress in never-depressed adults.

Methods: Twenty-four healthy participants completed an individually tailored negative mood induction task during
functional magnetic resonance imaging (fMRI) assessment along with evaluation of ELS.

Results: Mood change and amygdala reactivity were increased in never-depressed participants who reported ELS
compared to participants who reported no ELS. Yet, increased amygdala reactivity lowered effects of ELS on
depressive symptoms and negative life events stress. Amygdala reactivity also had positive functional connectivity
with the bilateral DLPFC, motor cortex and striatum in people with ELS during sad memory recall.

Conclusions: Increased amygdala activity in those with ELS was associated with decreased symptoms and increased
neural features, consistent with emotion regulation, suggesting that preservation of robust amygdala reactions may
reflect a stress buffering or resilience enhancing factor against depression and negative stressful events.
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Background

Increased reactivity to emotional information is charac-
teristic of depression, and has been linked with increased
and sustained reactivity in the amygdala [1-4]. Hyper-
reactivity is often associated with vulnerability to depres-
sion as it occurs in populations that tend to become
depressed such as children with anxiety or depressed
parents [5] as well as those at risk for depressive relapse
[6], those with early life stress (ELS) [7], cognitively vul-
nerable individuals [8], and individuals with inhibited
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temperament [9]. That said, not all individuals with high
levels of vulnerability become depressed. Rather, we will
consider whether amygdala hyper-reactivity, as a conse-
quence of early stress, may contribute to resilience
against developing depression in otherwise vulnerable
individuals. This is important as intervening on hyper-
reactivity prior to the onset of depression would be either
indicated or contra-indicated based on its causal role.

A specific vulnerability factor for depression, history of
ELS, has been linked to both amygdala hyper-reactivity
[10] and hypo-reactivity [11]. Effects of stress on the
amygdala [12] are hypothesized to underlie alterations in
cognition, mood, and behavior [13-15]. These changes
have been further hypothesized to shape individual dif-
ferences in vulnerability for mood and anxiety disorder,
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such as emotional reactivity [16—18]. That said, there is
scant evidence for this complete causal pathway.

Rather, a great deal of data shows that early life
stressors are associated with increased amygdala reactivity
in the absence of psychiatric diagnoses [15]. This could
represent vulnerability for future depression, or could sug-
gest that neural adaptations to stress are protective.

In fact, decreased amygdala activity may be a vulner-
ability factor. For example, patients with borderline per-
sonality disorder are vulnerable to depression and
frequently display decreased amygdala activity during
emotional challenges [19]. The capacity to react to emo-
tional information is hypothesized to be protective with
blunted reactivity being more clearly associated with
pathology [20] including depression [21].

Here we suggest that in vulnerable individuals, robust
amygdala reactivity may be protective compared to more
blunted amygdala reactivity. Adaptive responses to
stressors in childhood can have a “stress inoculating”
effect, and lead to resilience to future stressors [22]. To
clarify the role of amygdala reactivity in resilience, we
examined, using functional magnetic resonance imaging
(fMRI), whether increased amygdala activity down-
modulated depressive symptoms and the impact of life
events in individuals with a history of ELS but no history
of depression. Since our goal was to examine the extent
to which ELS might confer vulnerability for future de-
pression via increasing depressive severity within a sub-
clinical range, we recruited healthy people who did not
have severe depressive symptoms. Subclinical depressive
severity was interpreted as an index of vulnerability [23].
Also, to examine potential mechanisms for preserved
reactivity we further explored functional connectivity
with the amygdala in this sample.

Methods

Participants

Thirty healthy volunteers, who did not have any physical
and mental problems, were recruited through adverts in
local newspapers and public notices. All participants
were interviewed by a psychiatrist or psychologist to
assess for a health condition and a lifetime history of
DSM-IV psychiatric disorders using the MINI Inter-
national Neuropsychiatric Interview [24, 25]. Exclusion
criteria were as follows: being left-handed or ambidex-
trous [26], history of seizures, head trauma, use of psy-
chotropic medications, magnetic resonance imaging
(MRI) contraindications or technical alterations, unsuc-
cessful induction of negative mood and participants who
exceed the cutoff score for depressive symptoms (Beck
Depression Inventory II >29) [27, 28]. All participants
scored in the normal range on a cognitive screen [29, 30],
with a verbal 1Q-equivalent >80. We excluded three par-
ticipants in whom the negative mood induction failed to
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produce an increase in negative mood or decrease in posi-
tive mood, two who exceeded the cutoff score for depres-
sive symptoms [27, 28], and one who showed excessive
head movement (>3.0 mm over the functional MRI run).
Thus, 24 participants (6 male) were included in the ana-
lyses. One participant was missing fMRI data from one
rest block. As such, their data was included in analyses of
block-related averages but not in time-series analyses for
which complete data were required.

The study was approved by the Research Ethics Com-
mittee of Hiroshima University. After complete descrip-
tion of the study to the participants, written informed
consent was obtained. Participants received 5,000 Japanese
yen (~US$42) to compensate them for their time.

Self-report Measures

We assessed early life stress (ELS) using the Japanese
version of the Child Abuse and Trauma Scale (CATS)
[31, 32]. The CATS is a 38-item retrospective self-report
questionnaire that measures subjective perception of
four ELS subtypes (negative home environment/neglect,
sexual abuse, punishment, and emotional abuse). Partici-
pants rated how frequently they experienced particular
adverse events experience during their childhood and ado-
lescence using a five—point scale (0= never, 4 = always).
Scores for each factor are calculated based on the mean
value of the individual items for each subscale, and range
between 0 and 4. Higher mean values represent more
severe ELS. The CATS has favorable psychometric
properties, including adequate test-retest reliability,
internal consistency, and concurrent validity [31, 33].
As shown in Table 1, participants reported similar CATS
scores to those in a previous study that used healthy
undergraduate students [31]. Scores generally fell within
what is described by the measure’s authors as the mild
to moderate range.

Table 1 Demographic and Subjective Data

Measure Mean (SD) [Range]
Age (years) 40.70  (11.05) [24-60]
Verbal Intelligence 11036 (6.62) [97-120]
PHQ-9 367 (378 [0-14]
CATS Total Score 084  (060) [0.2-2.5]
Negative Home Environment/Neglect 0.85 (0.64) [0-2.8]
Sexual Abuse 010  (0.18) [0-0.7]
Punishment 151 (0.74) [0-2.7]
Emotional Abuse 089  (0.85) [0-2.9]
LES Impact of Negative Life Event 258  (4.86) [0-23]
Difficulty to recall sad memory 321 (2.77) [0-9]
Vividness of recalled sad memory 608  (2.87) [1-10]

CATS Childhood Abuse and Trauma Scale, LES Life Experiences Survey, PHQ-9
Patient Health Questionnaire-9
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Participants’ mood states during the scanning session
were assessed using a computer based Visual Analogue
Scale (VAS) (Fig. 1). Participants rated their moods on
three unipolar VAS measuring happiness, sadness, and
anxiety dimensions by moving a cursor with a four but-
ton response pad. The VAS dimensions were projected
onto a screen in the MR scanner. The scales ranged
from 0 to 100, with O indicating “not at all” and 100
indicating “extremely”. In a debriefing session after scan-
ning, we asked participants to rate the extent to which
they were successfully engaged in the mood induction
task (which required recall of personal experiences) on
two 11-point scales (0—10). Participants rated “difficulty to
recall memory,” and “vividness of the recalled memories.”

We assessed the impact of recent negative life events
using the Japanese version of the Life Event Stress Scale
(LES) [34, 35]. For the LES, participants were asked to
indicate which of 57 events had occurred during the pre-
vious 12 months, and to rate the impact of each event
using a seven-point scale, ranging from extremely nega-
tive (-3) to extremely positive (+3). The total scores for
impact of negative life events were used.

Current symptoms of depression were assessed using
the Japanese version of the Patient Health Questionnaire-
9 (PHQ-9) [36, 37]. Verbal intelligence was estimated
using the Japanese National Adult Reading Test [29, 30].

Mood induction paradigm

To develop an individualized, negative mood inducing
fMRI task, we used a combination of re-experiencing
personal emotional episodes and listening to music asso-
ciated with sad mood. We modified a mood induction
paradigm developed by Ramel et al. [6] and Segal et al.
[38], which was used in an individualized version of a
block design paradigm.
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For the memory recall procedure, participants were
asked to write four detailed autobiographical scripts
about two very sad personal experience (sad memory)
and two specific but unemotional days in their lives
(neutral memory). On a scale from 1 (neutral) to 9 (ex-
tremely sad), they were encouraged to describe sad epi-
sodes that they rated 5 or higher. For the neutral
memory, participants were also asked to write in detail
about a specific but unemotional day in their lives. The
scripts were sent to participants about one week prior to
the session day.

In a pre-scanning session, participants were asked to
listen to the first minute of four music pieces on a PC.
Using a computer-based VAS, they rated (a) the degree
to which the music created a sad impression and (b) the
degree to which the music was able to bring about sad-
ness. The VAS ranged from 0 to 100, with 0 indicating
“not at all” and 100 indicating “extremely”. The music
consisted of a standard selection battery [39], which has
been used in multiple mood induction studies [6, 40, 41].
These included: Russia under the Mongolian Yoke com-
posed by Sergei Prokefiev, played at half speed; Adagio for
Strings composed by Samuel Barber; Peer Gynt - The
Death of Ase, composed by Edvard Grieg; and Adagio in
G Minor composed by Tomaso Albinoni. The sad mem-
ory recall procedure was accompanied by the two sad
music selections that were rated most highly on each VAS
for each individual. The neutral recall condition was
accompanied by the musical pieces Venus, the Bringer of
Peace and Neptune, the Mystic by Gustav Holst.

To ensure that an appropriate mood was induced in
participants, we used an altered block design paradigm
(Fig. 1) in which a standardized 30 s block from the
same emotional set of stimuli commenced only after the
participant indicated (via a button press) that they were

-
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Fig. 1 Procedure of modified version of mood induction paradigm. VAS, Visual Analogue Scale
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clearly experiencing a neutral or sad mood. While in the
MR scanner, participants listened to the selected musical
piece (presented via headphones) while reading and
attempting to re-experience the sadness of the event
depicted in the autobiographical script, which was pro-
jected onto a screen. Each musical piece and autobio-
graphical script was presented for up to 5 min (an
individualized recall period) before each of the 30 s
blocks. The duration of presentation depended on the
time it took for the participant to achieve the appropri-
ate mood state. Music was not played during the 30 s
block periods.

All participants were exposed to eight 30 s alternating
blocks of recall (sad or neutral) followed by resting
periods, in addition to the individualized recall period.
Participants’ mood state was assessed using a VAS during
the scanning session. Participants were first asked to recall
an emotionally neutral memory and then a sad memory.
On the basis of a previous study [42], this design was
adopted to avoid contamination of the neutral stimuli by
the sad stimuli.

fMRI image acquisition

Images were acquired using a 3.0 T MRI scanner
(SIGNA HDxt; GE; single-shot, echo planar imaging
(EPI) with whole-brain coverage, 32 axial slices per
2500 ms TR, TE =30 ms, flip angle = 90°, matrix size =
64 x 64, FOV =240 mm, slice thickness =4 mm, inter-
slice gap =0 mm). A high resolution T1-weighted image
provided anatomical localization (Ir-P FSPGR; TE =
1.9 ms, TR=6.9 ms, flip angle=20°, matrix size =
256 x 256, FOV =25.6 mm, slice thickness=1 mm,
inter slice gap =0 mm, 180 slices).

fMRI data preprocessing

Preprocessing and analysis of fMRI data were conducted
using the statistical parametric mapping software pack-
age, SPM 8 (Wellcome Department of Cognitive Neur-
ology, London, UK). The first 4 volumes of the fMRI
run were discarded to ensure a steady-state MR signal.
Time-series were slice-time corrected, volume registered
to the mean image, and coregistered with T1-weighted
structural images. T1 images were bias-corrected and
segmented using the International Consortium for Brain
Mapping (ICBM) tissue probability maps for gray matter,
white matter, and cerebrospinal fluid. Time-series data
were spatially normalized to the ICBM152 template,
smoothed with an 8 mm FWHM Gaussian kernel, and
high-pass filtered at 0.008 Hz.

Behavioral data analyses

To test whether participants showed both greater
increases in sadness and greater reductions in happiness
after sad memory recall than after neutral memory
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recall, we used a two-way repeated measures analysis of
variance (ANOVA). We used two within-subject factors
(mood: happy, sad, and anxious; time: baseline /VASI,
post-1* neutral memory recall [NR] /VAS2, post-1*
rest/VAS3, post-2"¢ NR/VAS4, post-2"9 rest/VAS5, post-
1** sad memory recall [SR] /VAS6, post-3" rest/VAS7,
post-2"¢ SR/VASS, and post-4™ rest/VAS9). To control for
Type I errors across the analyses, we used the Bonferroni
procedure. Significance level was set at p < 0.05. One par-
ticipant was excluded from the analysis due to missing
data following a scanner problem.

To examine the relationships between mood change,
ELS, depression, the impact of recent negative life events,
and the degree of task engagement, we conducted a Pear-
son’s correlation analysis. Mood change (the effect of
mood induction on mood) was operationalized by
comparing mood after sad memory recall with mood
after neutral memory recall, i.e., mood change
= ([VAS6 + VAS8] — [VAS2+ VAS4])/2. Significance
level was set at p < 0.05 (two-tailed).

All behavioral analyses were performed using SPSS v.
22.0 (SPSS Japan Inc., Tokyo, Japan).

fMRI data analyses

To visualize the amygdala region activated during sad
memory recall, preprocessed time series data for each
participant were analyzed using multiple regression. We
measured amygdala activity during the sad/neutral mood
elaboration period (30 s; Fig. 1). The model included a
regressor for the contrast term ‘sad mood recall vs.
neutral mood recall’. Thus, for each voxel, amygdala
reactivity = BOLDg,q recan — BOLDnNeutral Recanr Given
our focus on amygdala reactivity, amygdala activation
was examined using small volume correction. We used
a statistical threshold of p<0.05, family wise error
(FWE) corrected, for the bilateral amygdala with an
extent threshold of 10 contiguous voxels. The amygdala
was defined according to Tzourio-Mazoyer et al. [43],
and one bilateral amygdala mask was created using the
WFU PickAtlas [44]. In a second step, the mean con-
trast values for the significant cluster from the initial
analysis were extracted using the MarsBaR region of
interest (ROI) toolbox (version 0.43) [45], and further
analyzed using SPSS 22 (SPSS Japan Inc., Tokyo, Japan).
Subsequent analyses were performed using mean con-
trast values, except for two analyses of the time-series
of amygdala activity and the generalized psychophysio-
logical interaction (gPPI) analysis.

We conducted Pearson’s correlation analyses using
each of the four CATS subscale scores and amygdala
activity, to examine the association of history of ELS and
amygdala responsiveness. We also evaluated a hierarchical
multiple regression model predicting amygdala reactivity
using the CATS scores, age, PHQ-9 scores, LES negative
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life events scores, and task engagement (difficulty recal-
ling a memory and the vividness of the recalled memory).
Significance for correlations was set at p < 0.05 (two-tailed).
We also investigated the differences in the time-series
of amygdala activity between people with a past history
of ELS and people with no history. Activity in the signifi-
cant clusters within the amygdala, derived from the
mood induction task, were extracted and averaged using
the 12 scans (30 s) preceding each VAS rating during the
mood elaboration period. Activation in the amygdala
was expressed as a percentage difference from a pre-
stimulus baseline (VAS1). We performed a three-way
repeated measures ANOVA with one between-subject
factor (group: ELS and non-ELS) and two within-subject
factors (mood; time). One non-ELS participant was ex-
cluded due to missing data following a scanner problem.
Finally, to examine the moderated effect of amygdala
reactivity on depressive symptoms and the impact of
negative life events in people with a history of ELS, we
performed moderated multiple regression involving ELS
as a predictor, amygdala reactivity as a moderator, and
depression and impact of negative life events as dependent
variables. To capture the way in which activity in other
brain regions modulates amygdala reactivity, we used the
gPPI toolbox [46]. The seed regions were significant clus-
ters of activity in the bilateral amygdala that were identi-
fied in the preceding analysis for mood induction. As a
task regressor, we used the contrast term ‘sad mood
recall — neutral mood recall’. The obtained individual
gPPI images were used to perform a random effect ana-
lysis using a whole-brain two sampled t-test. The
threshold of the gPPI analysis was set at p <0.005, uncor-
rected. Cluster k extent, determined by 1000 Monte Carlo
simulations at the whole-brain level, was implemented in
AlphaSim [47] for 290 voxels (for the left amygdala seed)
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and 253 voxels (for the right amygdala seed), and at
cluster levels of p < 0.05, corrected.

Each statistical threshold of fMRI data analysis was set
on the basis of previous studies [10, 11, 48].

Results

Mood manipulation check

Mood x time repeated measures ANOVA revealed a sig-
nificant mood x time interaction, Greenhouse-Geisser F
(3.79, 83.35) =24.73, p <. 001, ;7[2, =.53. Paired samples
t-tests of change over time within conditions showed
that after sad memory recall (VAS6 and VASS), partici-
pants demonstrated significantly increased sadness ratings,
and significantly decreased happiness ratings in compari-
son with baseline (VAS1) and before sad memory recall
(VAS2, VAS3, VAS4, and VAS5), while anxiety ratings
remained constant throughout the experiment (Fig. 2).
Most of the participants were able to recall vividly both
neutral memory and sad memory (Table 1). While some
people reported the difficulty of recalling memory, we con-
firmed that their moods were successfully manipulated.

Relationship between early life stress, mood change and
amygdala reactivity

Mood change

There was a non-significant positive correlation between
sad mood change and CATS sexual abuse scores, r=.38,
p=.071, and a significant negative correlation between
happy mood change and CATS sexual abuse, r=-.51,
p =.014. There were no associations of mood change
and other self-report measures, all rs < -.20, ps > .368.

Amygdala reactivity
There were significant bilateral amygdala regions for the
sad vs neutral mood contrast, left amygdala, x =-28,
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y=-4, z=-22, Z=3.65 P FwE-corrected = -001, k=34,
and right amygdala, x =28, y=-4, z=-20. Z=3.92, p pwe.
corrected < -001, k = 68.

CATS sexual abuse scores were significantly correlated
with right amygdala activity, r = .48, p =.018. There was
a non-significant correlation between CATS sexual
abuse and left amygdala activity, »=.38, p =.064. The
other CATS subscales did not significantly correlate with
amygdala activity, all rs < -.27, ps > .195.

Hierarchical multiple regression analysis showed
that sexual abuse scores significantly predicted right
amygdala reactivity above and beyond other features, AF
(1, 18) =9.81, AR*= 29, p =.006, = .61, and for the left
amygdala reactivity, AF (1, 18) = 5.65, AR = .22, p = .029,
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3 =.53. No other CATS subscale had significant effects, all
AFs < 1.82, ps > .195.

Influences of early life stress on time-series of mood
change and amygdala activity

Based on these results, additional analyses further ad-
dressed whether increased amygdala reactivity was likely
to be protective or a vulnerability factor within the child
sexual abuse group. We divided the participants into two
groups: those who had reported child sexual abuse (1 =7,
0 male; ELS group) and those without reported child sex-
ual abuse (17 =17, 17 male; non-ELS group). There were
moderately strong but non-significant differences between
these groups including age, ¢ (22) =1.02, p=.32, d = .46,
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sex, x* (1) = 3.29, p = .13, V = .36, xdepressive symptoms,
t (7.78)=1.10, p=.30, d=.62, negative life events, ¢
(6.45) = 1.32, p = .23, d = .87, vividness of recalled memory,
t (22)=1.88, p = 073, d =.84, and difficulty of memory
recall, £ (22) =1.59, p=.127,d = .71.

Time-series of mood

Group (ELS and non-ELS) x Mood x Time repeated
measures ANOVA revealed a significant three-way
interaction, Greenhouse-Geisser F (4.40, 92.33) = 3.47,
p =.009, 1712,: .14. As with Fig. 2, both groups demon-
strated significantly increased sadness ratings, and sig-
nificantly decreased happiness ratings after sad memory
recall (VAS6 and VASS; Fig. 3a, b). There were not any
significant group differences for the happiness and anxiety
at each time point, and these groups reported consistent
changes across the experiment (Fig. 3a). However, ELS
participants did not show significant decreases in sadness
at the rest period after sad memory recall (VAS7 and
VAS9) in comparison with the prior time point (VAS6
and VASS), while non-ELS participants showed signifi-
cantly decreased sadness at the same time point (Fig. 3b).
Furthermore, ELS participants rated their sadness as
higher than did non-ELS participants at the rest period
after sad memory recall (VAS7 and VAS9).

Time-series of amygdala activity

Group (ELS and non-ELS) x Time repeated measures
ANOVA showed significant main effects for time for
both amygdala, left amygdala, Greenhouse-Geisser F
(4.58, 96.01) = 3.18, p=.013, 1712, =.13, and right amygdala,
F (8, 168) =3.63, p<.001, 17?,: .15, and a non-significant
interaction for the right amygdala, F (8, 168)=1.95,
p =.055, tyf, =.09. As with the time course of sadness,
for associations of amygdala over time, ELS partici-
pants had similar left and right amygdala activity,
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VAS3-VAS9, rs > .70, ps < .08. Right amygdala activation in
ELS participants was significantly or almost significantly
higher after sad memory recall (VAS6 and VAS8) and
during the rest period (VAS7) than in non-ELS partici-
pants (Fig. 3c). Non-ELS participants had higher activity
on the left, slightly diminishing the significance of the
group difference after sad memory recall during the rest
period, VAS6-VAS9, ps > .177, ds < .60.

Moderation Effects of Amygdala Reactivity on the
Relationship between ELS and Symptom severity
Depression

There was a significant ELS interaction with the left
amygdala, AF (1, 20) =5.43, AR*=.20, p =.030, f3 = -.60,
and right amygdala, AF (1, 20) = 6.71, AR* = .23, p = .018,
S =-72. Results remained significant when age and
behavioral differences including the degree of difficulty
in recalling memories and vividness of memory recall
were covaried out. As shown in Fig. 4a, left and right
high amygdala activity were associated with low pre-
dicted depression scores only for the highest ELS indi-
viduals (+1SD).

Impact of negative stress events

There was a significant ELS interaction with the left
amygdala, AF (1, 20) = 12.03, AR* = .32, p =.002, 8 = -.75,
and right amygdala, AF (1, 20) = 4.77, AR* = .17, p = .041,
3 =-.61. As shown in Fig. 4b, left and right high amygdala
activity predicted low impact of negative life events
only for the highest (+1SD) ELS scorers.

Functional Connectivity of Amygdala with Other Brain Areas

As summarized in Table 2 and Fig. 5, left amygdala activity
in ELS people was mainly accompanied by increased func-
tional interactions with bilateral DLPFC, bilateral motor
cortex, and bilateral striatum. Associations of the right
amygdala with these areas were of similar magnitude
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Fig. 4 Moderation effects of amygdala reactivity. a Slope of the relation between right amygdala activity and depression as a function of ELS. b
Slope of the relation between left amygdala activity and impact of negative life events as a function of ELS.
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Table 2 Left amygdala functional connectivity in early life stress group during sad memory recall

Region Location of centroid voxel Brodmann areas X y z size V4

L prefrontal cortex L inferior frontal gyrus 46, 45,10 -50 32 24 427 447
L motor cortex L postcentral gyrus 6,4,40,9 3 -52 -8 36 551 445
R striatum R putamen - 26 16 0 427 445
R mortor cortex R postcentral gyrus 6,2, 3,4,40,43,1,41,13,9, 22 66 -16 28 1086 445
R prefrontal cortex R middle frontal gyrus 9,10, 46 24 42 32 428 422
R striatum L putamen - -22 4 6 295 412
L left, R right

Note: Threshold was set at uncorrected p < 0.005 for the volume of the whole brain,

but were not significant after correction for multiple
comparisons.

Discussion
We examined the effects of ELS and amygdala reactivity
to mood challenge on symptoms and the impact of
negative life events in healthy participants screened for
current and past psychiatric conditions. Negative mood
induction successfully elicited amygdala activation in
addition to increased sadness and decreased happiness.
Consistent with the prevailing literature [49], ELS was
associated with increased and sustained amygdala and
sad mood reactivity to the negative mood induction,
even after controlling for potential confounds such as an
influence of recent negative life events. This observation
could reflect increased emotional reactivity, possibly as a
result of adaptations to early stress in this group [49].
That said, ELS participants in our sample had low
levels of ELS. Their greater mood changes might be in
contrast to individuals with higher levels of ELS, who
were not measured, but in whom more blunted affect

minimum extent 290 voxels, and at cluster levels of corrected p <.05

has often observed [50]. And higher amygdala reactivity
was associated with decreased effects of ELS on depres-
sive symptoms. These data suggest that while ELS may
increase amygdala and emotional reactivity, this out-
come may reflect a more adaptive response than the
alternative — having low preserved amygdala reactivity,
in never-depressed people.

Preserved robust amygdala reactivity could reflect
automatic reactivity or more of an effortful engagement
process. During sad memory recall, the more the left
amygdala activated, the more purported regulatory areas
such as the bilateral DLPFC [3], motor cortex [51], and
striatum [52] also activated in individuals with abuse his-
tory. Considering that patients with a major depressive
disorder showed the reduced connectivity of the left
amygdala with the cortical regions linked to top-down
regulation [53], these data could suggest that preserved
amygdala activity in healthy individuals reflects a willful
or effortful engagement with emotional material, where
a less regulated individual would have a more blunted-
or dampened-affect presentation.
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Fig. 5 Functional connectivity map of left amygdala during sad memory recall
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Thus we have speculated on a potential protective
effect of preserved amygdala activation in resilient adults
with ELS. These data could indicate that preserved
reactivity in response to early life stress, may indicate
increased ability to react to and process emotional infor-
mation, which may be more adaptive than blunting
strategies such as shutting down or avoiding. Increased
amygdala activity was generally apparent for individuals
with an ELS history. This pattern of increased reactivity
in response to stress is well documented in both animal
and human literature [54] and has been observed to pre-
cede more detrimental apathetic reactions that occur
once an individual has given up hope, e.g., as in learned
helplessness/hopelessness [55, 56]. While increased
amygdala activity following early stress could be benefi-
cial for people who are resilient to depression, as com-
pared to a more blunted style, the same pattern could be
problematic for depressed people, e.g., as it is associated
with rumination in depression [57]. Therefore, accounting
for a history of ELS and amygdala reactivity may be useful
in helping to understand and promote resilience. In indi-
viduals with a history of ELS, prior to development of dis-
order it may be useful to work to increase reactivity to
emotional information to increase resilience. For example,
techniques such as compassion meditation, which is
designed to enhance compassionate feelings, can increase
amygdala response to negative images [58]. In this study,
increased amygdala activation was correlated with
decreased depression scores in the compassion meditation
group composed of healthy adults, which suggests that in
some cases, increased amygdala reactivity may also be
beneficial for oneself.

This study had a number of limitations. We used a
self-report measure to evaluate ELS. Given observed
relationships between current mood and memory recall
bias [59], future studies may benefit from a prospective
analysis of the relationship between ELS and subsequent
changes in amygdala activity, or at least, interview based
measures of childhood maltreatment or documented
cases of ELS. The sample size of this study was relatively
small and there were moderate, if non-significant dif-
ferences between groups on multiple demographic and
clinical variables. Future studies could benefit from larger
and more diverse sample sizes to confirm relationships be-
tween ELS and potentially protective effects of amygdala
activity, above and beyond other clinical and demographic
features. Moreover, all our participants were healthy sub-
jects with no history of depression to exclude the con-
founding factor of psychiatric history on ELS. To
substantiate the protective role of the amygdala, future
studies should include participants with a similar ELS
history, but also with a history of depression as a con-
trol group. Finally, scores for ELS in this study were in
a range described by our measure’s authors as the mild
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to moderate range. Thus, we cannot extend our inferences
to higher levels of ELS.

Conclusions

In conclusion, our results suggest that 1) ELS leads to
increased amygdala reactivity in healthy people in adult-
hood, and 2) this reactivity could be a protective factor
for depression and recent negative stressful events. If
these findings were replicated with an appropriate con-
trol group, interventions to increase amygdala activity in
individuals with a history of ELS may be useful for pre-
vention of depression.
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