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Abstract 

Background Congenital Heart diseases (CHDs) account for 1/3rd of all congenital birth defects. Etiopathogenesis 
of CHDs remain elusive despite extensive investigations globally. Phenotypic heterogeneity witnessed in this devel-
opmental disorder reiterate gene-environment interactions with periconceptional factors as risk conferring; and 
genetic analysis of both sporadic and familial forms of CHD suggest its multigenic basis. Significant association of 
de novo and inherited variants have been observed. Approximately 1/5th of CHDs are documented in the ethnically 
distinct Indian population but genetic insights have been very limited. This pilot case–control based association study 
was undertaken to investigate the status of Caucasian SNPs in a north Indian cohort.

Method A total of 306 CHD cases sub-classified into n = 198 acyanotic and n = 108 cyanotic types were recruited 
from a dedicated tertiary paediatric cardiac centre in Palwal, Haryana. 23 SNPs primarily prioritized from Genome-wide 
association studies (GWAS) on Caucasians were genotyped using Agena MassARRAY Technology and test of associa-
tion was performed with adequately numbered controls.

Results Fifty percent of the studied SNPs were substantially associated in either allelic, genotypic or sub-phenotype 
categories validating their strong correlation with disease manifestation. Of note, strongest allelic association was 
observed for rs73118372 in CRELD1 (p < 0.0001) on Chr3, rs28711516 in MYH6 (p = 0.00083) and rs735712 in MYH7 
(p = 0.0009) both on Chr 14 and were also significantly associated with acyanotic, and cyanotic categories sepa-
rately. rs28711516 (p = 0.003) and rs735712 (p = 0.002) also showed genotypic association. Strongest association was 
observed with rs735712(p = 0.003) in VSD and maximum association was observed for ASD sub-phenotypes.

Conclusions Caucasian findings were partly replicated in the north Indian population. The findings suggest the con-
tribution of genetic, environmental and sociodemographic factors, warranting continued investigations in this study 
population.
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Background
Congenital Heart Defect (CHD) is common structural 
abnormality occurring at the time of foetal development. 
Limited information is available on the exact mechanism 
of CHD pathogenesis. It affects 9 in 1000 live births glob-
ally [1]. This corresponds to 17% of the world CHD load 
from India [2], yet meagre genetic information available 
for the disease in the country. In early gestation, inci-
dence is even higher as certain CHDs are complex and 
have been shown to result in foetal demise [3]. Septa-
tional abnormalities account for half of the cardiac con-
genital defects ranging from nonpathological to lethal [4]. 
Cardiac development is a complex process and requires 
intricate coordination of several molecular events for 
eventual normal structure and function of the heart. 
Any error/s in these steps result in pathogenic remodel-
ling of heart [5]. Chromosomal aneuploidies like Trisomy 
21, 18 and 13 are commonly associated with CHDs [6, 
7]. Though 80% CHDs are sporadic in origin [8], some 
familial cases of Atrial Septal Defect (ASD), Ventricular 
Septal Defect (VSD) and Hypoplastic Left Heart Syn-
drome (HLHS) are recorded but the inheritance patterns 
are complex [9, 10]. The recurrence risk in off springs 
of CHD patients varies from 3- 20% depending on the 
lesion, with slightly higher recurrence in females [11]. 
Almost one half of the siblings with recurrent lesions in 
a family have a different lesion suggesting multifactorial 
etiology and illusive molecular mechanisms [8, 9, 12].

Technological advances now enable study of these 
developmental defects, thus closing the gap of knowl-
edge between the morphology and genetics [6]. Novel 
techniques identify regions in the genome on which tran-
scription factors act, driving their target genes and pro-
vide new knowledge on CHD development. The T-box 
transcription factors (TBX5) gene is reported to interact 
with Nk2 Homeobox 5 (NKX2.5) and GATA binding pro-
tein 4 (GATA4) both transcriptional activator of Natriu-
retic peptide B, which positively regulates the developing 
heart. The involvement of several well-established car-
diac transcription factors that are expressed in cardio-
genic plates such as NKX2.5, GATA4, TBX5, TBX20, 
Myosin heavy chain 6 (MYH6), Actin alpha cardiac mus-
cle (ACTC1) and Myocyte enhancer factor 2C (MEF2C) 
have been extensively studied in both human and animal 
experiments [13-17]. Role of Mutations in transcription 
factors have been studied for non-syndromic CHDs [18].

Point mutations of cardiac transcription factor genes, 
single nucleotide polymorphism (SNPs), aneuploidy, and 
chromosomal copy number variants (CNVs) are directly 
associated with CHDs. Association of single SNPs sel-
dom lead to complex disease manifestation [19]. There 
are substantial genetic predispositions to inherited as 
well as de novo variants with variable effect sizes towards 

disease risk. Since mutations are rare it requires large 
numbers to be screened, also same mutations may not 
be present in all samples. Conventionally a multifactorial 
inheritance model has been proposed for CHD involving 
a multitude of susceptibility genes, with low-penetrant 
common variants or intermediate-penetrant rare vari-
ants, superposed on unfavourable environmental factors 
as causal [15, 20, 21]. Several ethnic or racial differences 
may also be observed [22]. It is important to investigate 
genotype–phenotype correlation to provide leads with an 
opportunity to predict the prognosis.

Limited genetic diagnosis is available for many of 
the CHDs. Therefore several commercial ventures to 
sequence genes have been undertaken [23, 24]. These 
ventures discovered several de novo mutations in the 
known as well as new genes [6, 12]. Genome wide associ-
ation studies (GWAS) involve the comparison of genetic 
variants (known as well as unknown), which can be used 
to detect genetic risk factors of big and small effect to 
CHD manifestation [12, 25, 26]. So far more than 500 
genes have been estimated with a potential role in the 
development of CHD [27]. Genetic studies on transcrip-
tion factors like GATA4, NKX2.5, TBX1and TBX20 have 
previously shown to identify new mutations in Indian 
population. [28-33]. Till date limited candidate gene 
studies have been done in India [34] and only one using 
exome sequencing [35].

Next generation sequencing (NGS) technologies meet 
a high standard of evidence and also afford correct pre-
dictions in novel datasets. In this study we select asso-
ciation findings from GWAS on CHDs and evaluate in a 
north Indian cohort. Screening for SNPs and not muta-
tions may reflect better in an association study. There-
fore, we chose to assess association of common variants 
primarily from previous GWAS or meta-analysis studies 
[26, 36-39] in Caucasians and tested their replicability in 
our adequately powered study samples.

Methodology
Study samples
Cases
The study was approved by Institutional Ethics Commit-
tee (IEC) at Sri Sathya Sai Sanjeevani Research Founda-
tion (SSSSRF), Palwal, India. Samples were recruited 
from the Sai Sanjeevani biobank for Congenital Heart of 
SSSSRF from the period of September 2018 to Septem-
ber 2021. n = 306 CHD cases who underwent surgery or 
cath interventions at Sri Sathya Sai Sanjeevani Interna-
tional Centre for Child Heart Care & Research, Palwal, 
Haryana were recruited for this study. All methods were 
performed in accordance with the relevant guidelines 
and regulations laid down by Indian Council of Medi-
cal Research(ICMR). Samples from clinically identified 
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known syndromes or showing distinct extracardiac fea-
tures were excluded from the study. All the samples 
selected for the study were non-syndromic based on 
medical examination and the clinical phenotypes were 
segregated into cyanotic and acyanotic types. n = 108 
cyanotic and n = 198 acyanotic CHD cases were included. 
Categorization of cases into 10 subphenotypes (ASD; 
VSD; TOF: Tetralogy of Fallot; VSD + PS:VSD + Pulmo-
nary Stenosis; DCRV: Double Chamber Right Ventricle; 
TGA: Transposition of the Great Arteries; SV: Single 
Ventricle; AVSD: Atrioventricular Septal Defect; TAPVC: 
both Total and Partial Anomalous Pulmonary Venous 
Connection; Miscellaneous cases) was accomplished 
based on intervention procedure, ECHO findings and 
patient history. Sample distributions are given in Supple-
mentary Table 1.

Controls groups
Age matched control group of north India origin was an 
ideal control for this study but was unavailable and is a 
limitation of the study. Therefore, we compared it to ade-
quately numbered adults of north Indian origin available 
in public database [40] (http:// asia. ensem bl. org/ Homo_ 
sapie ns/ Varia tion) and published literature [41, 42]. The 
three groups described below were combined to get a 
substantial number of controls [43].

Control group1: n = 48 adults of north Indian origin 
unaffected for CHD based on clinical evaluation as well 
as an ECHO for confirmation were included in the study. 
Control group2: Since the inhouse control group was 
small, n = 489 open source 1000 Genomes South Asian 
data was also used as part of reference controls. Control 
group3: Comparable genotypes for 8 common markers 
from north India controls in a published study on Celiac 
Disease [41, 42] was available for n = 1170 adults.

Marker selection
Assuming large hypothesis-free studies would reflect true 
associations with disease, most of the GWAS associations 
were tested in this study. In the absence of contempo-
rary Indian data, associations from Caucasians who are 
closer to north Indians in ancestry [44], were tested for 
their contribution. Top 50 markers associated in GWAS 
catalogue for CHD phenotypes or through maternal 
influence were shortlisted but only 35 could be accom-
modated in the assay pool. SNPs having p >  10–6 and a 
Minor Allele Frequency(MAF) > 0.001 were selected for 
inclusion. Priority was given to polymorphic SNPs having 
a functional implication on the gene product. The study 
samples had 80% power to detect associations for the 
SNPs having MAF > 0.1 and an Odds Ratio > 1.5.

Experimental method
Samples were isolated by the conventional phenol–
chloroform phase separation method. The coded sam-
ples were blinded and genotyped through a commercial 
facility (Genes2Me: https:// www. genes 2me. com) using 
Agena MassARRAY technology, which is based on 
matrix-assisted laser desorption/ionization—time of 
flight (MALDI-TOF) mass spectrometry. Genetic poly-
morphisms are distinguished by analysis of their indi-
vidual mass, excluding the need for fluorescence or 
labelling. Control samples, duplicates, negatives and 
positives were used for quality control. Out of 35 SNPs, 
two failed in assay design and ten SNPs (rs6763159; 
rs11894932; rs365990; rs17189763; rs2010963; 
rs350916; rs436582; rs4366490; rs8061121; rs870142) 
gave ambiguous reads on QC and were removed from 
the analysis. Only 23 markers and samples which 
had > 80% genotype calls were retained in the study. A 
chi-square test was used for association measures and 
Fisher’s exact test was used, if the expected number was 
less than five. Statistical tools like SPSS version 21.0 
and free online tools [45] (https:// vassa rstats. net/) were 
used for analysis. Power was calculated using Quanto 
[46] (http:// biost ats. usc. edu/ Quanto. html).

Results
A total of n = 23 SNPs in Hardy Weinberg Equilibrium 
(stringent cut off:  p > 0.001) were included in the analy-
sis (Supplementary Table  2). Since two SNPs rs2046060 
and rs12165908 were monomorphic hence they could 
not be utilised further for association study. No signifi-
cant allelic association was seen among cyanotic and acy-
anotic cases groups. These were still analysed separately 
vs all controls.

Markers with allelic and genotypic associations are 
tabulated and presented in Table  1 and 2 for acyanotic, 
cyanotic and combined categories.

Allelic Association: rs73118372 on chr. 3, rs28711516 
and rs735712 on chr. 14 exhibited association for all three 
categories (acyanotic, cyanotic and combined categories; 
Table  1). rs73118372 in CRELD1(χ2 = 15.7; p < 0.0001); 
rs28711516 in MYH6(χ2 = 11.18; p = 0.00083) and 
rs735712 in MYH7 (χ2 = 10.98; p = 0.0009) showed strong 
allelic associations. Variant rs11874 in GOSR2 had nomi-
nal association (χ2 = 3.81; p = 0.051) and rs185531658 
an intergenic SNP on Chr 5 [39] showed association on 
Fisher’s test as allele counts were low (p = 0.043) while 
rs659366 in UCP2 and rs2388896 intergenic SNP demon-
strated a weak trend of association (Table 1).

All associations were mainly driven by similar associa-
tion in the larger acyanotic group. For the SNP rs659366 
the association strengthen (χ2 = 5.74; p = 0.017) in the 

http://asia.ensembl.org/Homo_sapiens/Variation
http://asia.ensembl.org/Homo_sapiens/Variation
https://www.genes2me.com
https://vassarstats.net/
http://biostats.usc.edu/Quanto.html
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acyanotic group. The cyanotic association was estab-
lished only for rs73118372, rs28711516 and rs735712.

Genotypic association
Similar trend was observed for genotypic associations 
as illustrated in Table  2. rs1975649(χ2 = 5.74; p = 0.057) 
of SYNPR on Chr 3; rs28711516 (χ2 = 11.75; p = 0.0028) 
and rs735712 (χ2 = 13.03; p = 0.0015) on Chr 14 showed 
genotypic association. rs659366 demonstrated a trend on 
association (χ2 = 5.46; p = 0.065).

Associations with CHD subtypes
Seven allelic associations with ASD; three with TOF; 
two with VSD + PS; one each with TGA and AVSD phe-
notypes were observed. rs735712 of MYH7 (p = 0.0029) 
showed strongest association with VSD subtype amongst 
all associations observed. ASD, VSD and TOF catego-
ries were adequately numbered for association analysis. 
All subtypes except ASD, VSD and TOF were combined 
for analysis and showed association for rs73118372, 
rs28711516 and rs735712 (Table 3).

Discussion
50% of tested SNPs were substantially associated in either 
allelic, genotypic or sub-phenotypes of north Indian 
CHD cohort validating their strong correlation with dis-
ease manifestation. Burden of CHD is overall heavy in 
India [2] and is prominent in north India. Several genetic 
determinants of this complex developmental disorder 
have been reported based on conventional candidate 
genes and contemporary GWAS but mostly in Cauca-
sian populations. However it is very poorly investigated 
in the ethnically distinct Indian population. This study 
was an attempt to test the association of Caucasian find-
ings prior to performing a hypothesis-free approach in 
the study cohort. Of the 23 SNPs which were success-
fully genotyped in the modest sized study cohort, 11 
SNPs showing allelic or genotypic or association with 
the CHD sub-phenotypes (Table 1, 2, 3) in a trans ethnic 
population was noteworthy and reiterates the functional 
relevance of the associated genes/pathways in CHD 
pathogenesis.

Of the seven associations observed, four SNPs namely 
rs73118372 (missense variant) Chr 3; rs659366 (pro-
moter region) on Chr 11; rs735712 (synonymous variant) 

Table 1 Allelic association for all analysed SNPs

A1 Allele 1, A2 Allele 2, F_A Frequency of A1 in cases, F_U Frequency of A1 in controls, ChiSq Pearson’s correlation, p Significance
* Fishers test p values (in cell counts less than five), All Significant ChiSquare p values in bold font

SNP details All Controls Vs 
Acynanotic

All Controls Vs Cynotic All Controls 
Vs Combined 
cases

Mapped gene SNP A1 A2 F_A F_U ChiSq; p ChiSq; p ChiSq; p

ENSA rs12045807 C T 0.10 0.06 0.81;0.37 0.35;0.55 0.13;0.72

CRELD1 rs73118372 C T 0.01 0 10.89;0.001 5.71;0.02 15.7; < 0.0001
SYNPR-AS1, SYNPR rs1975649 T C 0.35 0.46 0.58;0.45 0.13;0.72 0.65;0.42

INTERGENIC rs185531658 C T 0.005 0 0.02* 1* 0.04*
ELN rs2071307 A G 0.25 0.24 1.4;0.24 0.75;0.39 0.19;0.66

CHD7 rs3763592 T C 0.05 0.10 0.11;0.74 0.49;0.48 0.03;0.86

LINC02676 rs2388896 A G 0.28 0.29 1.27;0.26 2.37;0.12 3.14;0.08

NRP1 rs2228638 T C 0.09 0.07 0.09;0.76 1.22;0.27 0.77;0.38

UCP2 rs659366 T C 0.39 0.44 5.74;0.02 0.01;0.92 3.57;0.06

ATXN2-AS, BRAP rs11065987 G A 0.05 0.02 1.18;0.27 0.02;0.89 0.77;0.38

SH2B3, PTPN11 rs11066320 A G 0.05 0.02 0.38;0.54 0.44;0.51 0.66;0.42

INTERGENIC rs1497062 A T 0.33 0.34 0.17;0.68 1.23;0.27 0.09;0.76

MYH6 rs28711516 T C 0.04 0.01 4.65;0.03 9.22;0.002 11.18;0.0008
MYH7 rs735712 A G 0.05 0.06 7.29;0.01 4.98;0.03 10.98;0.0009
LINC02252, GJD2 rs6495706 C G 0.05 0.06 1.64;0.2 0.38;0.54 1.67;0.2

PCSK6 rs3784481 G A 0.49 0.5 0.07;0.79 0.89;0.35 0.5;0.48

INTERGENIC rs6499100 C T 0.446 0.489 0.19;0.66 0.05;0.82 0.22;0.64

PKD1L2 rs55788414 T C 0.058 0.035 1.49;0.22 0.19;0.66 1.32;0.25

GOSR2 rs11874 A G 0.02 0 4.31;0.04 0.48;0.49 3.81;0.05
JAG1 rs35761929 C G 0.153 0.257 0.19;0.66 0.38;0.54 0;1

MYH7B rs3746446 C T 0.248 0.128 0.17;0.68 0.01;0.92 0.06;0.81
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and rs28711516 (missense variant) on Chr 14; are of 
functional relevance. Strongest allelic association was 
observed for rs73118372, rs28711516 and rs735712.

The variant rs73118372(c.1136  T > C) in Exon 9 of 
CRELD1 is associated with Downs syndrome [47]. 
CRELD1 is involved in the formation of atrioventricu-
lar cushion [48] and disrupts existing exon splicing, 
thus altering the protein configuration and making it 
unstable. It was associated for all cyanotic, acyanotic 
and combined categories, and with ASD and TOF sub-
phenotypes. Intronic SNP rs1975649 (SYNPR; Intron2) 
also on Chr3 exhibited strong association both in allelic 
and genotypic categories and was also associated with 
ASD. Cardiac myosin is the molecular motor that powers 
heart contraction, a property essential for heart function. 
It also plays a pivotal role in muscle regulation, devel-
opment, and mechanotransduction  [49]. The α-MYHC 
(MYH6) is expressed in atrial muscle and the β-MYHC 
(MYH7) in skeletal slow-twitch muscle and have arisen 
through a tandem gene duplication event [50] on Chr. 14. 
The duplication event is not evident in the genomes of 
other vertebrates (e.g. birds, fish, amphibia) [51]. MYH6, 
MYH7 and MYH7B are associated with R amplitude [52]. 
Heterozygous pathogenic variants in MHY7 have been 
associated with septal defects or Ebstein anomaly [48] 
and of MYH6 with HLHS and cardiac conduction [53, 
54]. MYH6 is associated with non-syndromic coarcta-
tion of the aorta [38, 50] and also presented in fami-
lies of Shone complex [54]. Previous reports on MYH6 
rs28711516 (c.166G > A; p.G56R) associations with atrial 
fibrillation [53] and sporadic dilated cardiomyopathy 
[55] and a GWAS study from south India [35] warrant 
further investigation of this gene. MYH7 mutations have 
been reported for Indian families [56, 57]. Exon 12 vari-
ant rs735712 (c.1062C > T; p.G354G) has previously been 
reported in dilated cardiomyopathies in Indian popula-
tion [58]. Previous linkage study using microarray iden-
tified rs1055061in HOMEZ, a ubiquitously expressed 
transcription factor on the same locus, in 83 consanguin-
eous CHD families from India [59]. In present study, syn-
onymous variant rs3746446 in MYH7B was associated 
only with ASD phenotype. This SNP showed strong asso-
ciation with congenital cardiovascular left-sided lesions 
[38]along with rs12045807, a SNP not associated in our 
study.

Allelic and genotypic association for combined 
as well as the acyanotic group for promoter variant 
rs659366 in UCP2, having a role in reactive oxygen spe-
cies (ROS) pathway [60, 61] is already been reported to 
be associated with maternal diabetes in CHD offsprings 
[62] and with dietary factors in Asian populations [60]. 
It was also associated with ASD subtype. rs185531658, 
a SNP with the strongest  association in 4034 patients 

of CHD [39], was nominally associated both with our 
combined data and in acyanotic group.

ELN rs2071307 showed mild association with AVSD 
and PKD1L2 rs55788414 with TGA subtype. GOSR2 
rs11874, a promoter SNP, was detected in patients 
with anomalies of thoracic arteries and veins, and may 
affect the expression of GOSR2 [39]. It showed a mar-
ginal association in our population for combined and 
acyanotic categories. Missense variant rs35761929 in 
JAG1, involved in Notch cell signalling was associated 
with ASD subtype in present study and was previously 
found in ten exome sequenced families from India 
[38]. During development, the notch pathway regulates 
embryonic cells destiny to be part of the heart, liver, 
eyes, ears, and spinal column. The Jagged-1 protein 
continues to play a role throughout life in the develop-
ment of new blood cells. These four markers reported 
are too small in number to make a conclusive statement 
on its role based on the present results and warrant 
replication in larger sample set.

Findings in the study were predominantly from the 
coding region and a few from the intergenic region. The 
CRELD1, MYH6 and MYH7 interact with each other dur-
ing development of the myosin filament, an active and 
essential component of the heart tissue. Only one of the 
strongly associated common variants per gene was tested 
in this study. There may be more rare and common vari-
ants associated from these genes and additional associa-
tion studies are essential to estimate polygenic risk score 
to make a significant genotype- phenotype risk predic-
tion for CHD.

Conclusion
This is a first study testing association of Caucasian 
GWAS SNPs in a north Indian population. All the SNPs 
studied have been previously shown to have a strong 
role in the development of CHD. 11 out of 21 SNPs were 
associated in the study cohort and highlighted the role 
of CRELD1, MYH6 and MYH7 in non-syndromic CHD. 
Strong association of markers from Chr3 and Chr14, and 
with ASD, VSD and TOF sub-phenotypes were notable in 
this study and warrant replication in independent CHD 
cohorts of north Indian origin. This may help uncover the 
mechanism of disease manifestation by a complex land-
scape of events influenced by variations in genetic, envi-
ronmental and demographic patterns.
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