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Abstract 

Background Evidence on the effect of gut microbiota on the number of metabolic syndrome (MetS) risk factors 
among children is scarce. We aimed to examine the alterations of gut microbiota with different numbers of MetS risk 
factors among children.

Methods Data were collected from a nested case–control study at the baseline of the Huantai Childhood Cardiovas-
cular Health Cohort Study in Zibo, China. We compared the differences in gut microbiota based on 16S rRNA gene 
sequencing among 72 children with different numbers of MetS risk factors matched by age and sex (i.e., none, one, 
and two-or-more MetS risk factors; 24 children for each group).

Results The community richness (i.e., the total number of species in the community) and diversity (i.e., the richness 
and evenness of species in the community) of gut microbiota decreased with an increased number of MetS risk fac-
tors in children (P for trend < 0.05). Among genera with a relative abundance greater than 0.01%, the relative abun-
dance of Lachnoclostridium (PFDR = 0.009) increased in the MetS risk groups, whereas Alistipes (PFDR < 0.001) and Lach-
nospiraceae_NK4A136_group (PFDR = 0.043) decreased in the MetS risk groups compared to the non-risk group. The 
genus Christensenellaceae_R-7_group excelled at distinguishing one and two-or-more risk groups from the non-risk 
group (area under the ROC curve [AUC]: 0.84 − 0.92), while the genera Family_XIII_AD3011_group (AUC: 0.73 − 0.91) 
and Lachnoclostridium (AUC: 0.77 − 0.80) performed moderate abilities in identifying none, one, and two-or-more 
MetS risk factors in children.

Conclusions Based on the nested case–control study and the 16S rRNA gene sequencing technology, we found that 
dysbiosis of gut microbiota, particularly for the genera Christensenellaceae_R-7_group, Family_XIII_AD3011_group, and 
Lachnoclostridium may contribute to the early detection and the accumulation of MetS risk factors in childhood.
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Background
Metabolic syndrome (MetS) has attracted widespread 
attention due to its association with cardiovascular dis-
ease (CVD), which is a major contributor to the burden 
of disability and the leading cause of death worldwide 
[1–3]. MetS is a complex disorder with several risk fac-
tors including abdominal obesity, dyslipidemia (increased 
triglyceride [TG] and decreased high-density lipoprotein 
cholesterol [HDL-C]), elevated blood pressure (BP), and 
hyperglycemia [4]. It has been reported that the preva-
lence of individual and clustering of MetS risk factors 
among children and adolescents has been alarmingly 
increasing in recent years [5, 6]. In addition, the num-
ber of MetS risk factors was associated with gradually 
increasing odds of short-term and long-term cardio-
vascular damage [7, 8]. Therefore, early detection of the 
accumulation of MetS risk factors is important for the 
prevention of CVD and related morbidity later in life.

Recently, microbiome-based interventions have been 
gaining popularity to treat and prevent metabolic disor-
ders. Previous studies based on mice models and adults 
showed the association of alteration of gut microbiota 
with MetS and its risk factors [9–12]. However, limited 
studies have paid attention to the association in chil-
dren. The gut microbiota of children has been shown to 
be more susceptible to environmental factors than that 
of adults, and thus the gut microbiota associated with 
adult MetS cannot be generalized to children [13]. Sev-
eral studies have investigated the effect of the change in 
gut microbiota on individual MetS risk factor (e.g., obe-
sity, elevated BP, hyperglycemia) among children [14–18]. 
However, to the best of our knowledge, little is known 
about the gut microbiota in identifying the number of 
MetS risk factors among children. Clarifying this associa-
tion may open avenues for convenient prevention, diag-
nosis, and treatment of the clustering of MetS risk factors 
in childhood and thus reduce the huge burden of CVD in 
adulthood.

Therefore, in this study, we aimed to identify the differ-
ential gut microbiota among children aged 10 − 11 years 
with none, one, and two or more numbers of MetS risk 
factors.

Methods
Participants and sample collection
This was a nested case–control study from the base-
line of the “Huantai Childhood Cardiovascular Health 
Cohort Study” including 1515 children aged 6 − 11 years 
old, among whom we identified 24 children with two or 
more MetS risk factors. To control for confounding fac-
tors such as age and sex, we conducted a 1:1:1 propensity 
score matching to select 24 children without MetS risk 
factors and 24 children with one MetS risk factor (none 

MetS risk factor: 10.83 ± 0.35  years old; one MetS risk 
factor: 10.73 ± 0.32 years old; two-or-more MetS risk fac-
tors: 10.72 ± 0.33  years old; male: female = 15:9 in each 
group). Thus, a total of 72 children aged 10 − 11  years 
without the use of antibiotics and probiotics in the past 
three months were included in this study (24 children 
without MetS risk factors, 24 with one risk, and 24 with 
two or more risks). All included children were without 
a history of gastrointestinal disorders or diarrhea and 
were not taking medications at the time of the study. The 
informed consent was written by all participants and 
their guardians. This study was approved by the Ethics 
Committee of Shandong University.

Clinical data collection
Anthropometrics (e.g., weight, height, BP, and waist cir-
cumference [WC]), demographic characteristics (e.g., age 
and sex), and blood biochemistry indexes (e.g., fasting 
plasma glucose [FPG], TG, HDL-C, and low-density lipo-
protein cholesterol [LDL-C]) were collected in this study. 
Specifically, height and weight were measured twice in 
light clothes without shoes using an ultrasonic height 
and weight scale (Shengyuan Co. Ltd, HGM-300, Henan, 
China). The mean values of two height and weight meas-
urements were used for data analyses with an accuracy of 
0.1 cm and 0.1 kg for height and weight, respectively [19]. 
Body mass index (BMI) was calculated by weight (kg) 
divided by height (m) squared. WC was measured twice 
using a non-elastic measuring tape at 1  cm above the 
navel around a week horizontally, and the mean values of 
two WC measurements were used for data analyses with 
an accuracy of 0.1 cm [19]. BP was measured three times 
continuously with the deviation of any two BP values 
controlled within 4 mmHg (OMRON-HEM 7012, Osaka, 
Japan), and the mean values of three BP measurements 
were used for data analyses [20]. FPG, TG, HDL-C, and 
LDL-C were measured using a Beckman Coulter AU480 
automatic analyzer (Mishima, Shizuoka, Japan) [20].

Definition
Children received one point for each MetS risk fac-
tor if they met the criteria outlined as follows: (1) 
elevated BP: systolic BP (SBP) and/or diastolic BP 
(DBP) ≥ the age- and sex-specific  90th percentile 
[21]; (2) hyperglycemia: FPG ≥ 5.6  mmol/L [22]; (3) 
dyslipidemia: TG ≥ 1.47  mmol/L; (4) dyslipidemia: 
HDL-C ≤ 1.03  mmol/L [23]; (5) abdominal obesity: 
WC ≥ the age- and sex-specific  90th percentile [24]. Thus, 
based on the number of MetS risk factors, children were 
classified into three groups (non-risk, one-risk, and two-
or-more-risks). In this study, alterations of gut microbi-
ota refer to the difference in the composition and relative 
abundance of dominant species, community richness 
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(i.e., the total number of species in the community) and 
diversity (i.e., the richness and evenness of species in the 
community), and differential species among groups with 
an increasing number of MetS risk factors compared 
with the group without MetS risk factors.

Basic characteristics
The frequency of fruit and vegetable intake each day, the 
frequency of soft drink intake every week, and physical 
activity were classified into < 3 times/day vs. ≥ 3 times/
day, < 3 times/week vs. ≥ 3 times/week, and < 1  h/day 
vs. ≥ 1 h/day, respectively. Parental education was divided 
into lower than high school and high school or higher 
(i.e., one of parents with high school or higher). Both 
paternal smoking and drinking were classified as yes and 
no.

Fecal samples collection and processing
Fresh fecal samples from children who had not received 
antibiotics within the past three months were collected in 
sterile fecal tubes and then frozen in − 80 °C refrigerators. 
Microbial genomic DNA (gDNA) was extracted from the 
fecal samples and detected by 1% agarose gel electropho-
resis [25]. 16S rRNA gene was selected as bacterial spe-
cific fragment using 338F (5’-ACT CCT ACG GGA GGC 
AGC AG-3’) and 806R (5’-GGA CTA CHVGGG TWT 
CTAAT-3’) primers [26]. Amplifications were performed 
using TransGen AP221-02: TransStart Fastpfu DNA 
Polymerase [27]. A two-stage PCR was performed in the 
ABI GeneAmp® 9700 (Applied Biosystems Inc. USA) in 
triplicate [28]. Then, the PCR products of the same sam-
ple were mixed and detected using 2% agarose gel elec-
trophoresis, followed by recovering with AxyPrepDNA 
Gel Recovery Kit (Axygen; Corning, Inc., Corning, NY, 
USA) and eluting with Tris–HCl [29].

According to the preliminary quantitative results of 
electrophoresis, the PCR products were detected and 
quantified with the QuantiFluor™-ST Blue Fluorescence 
Quantitative System (Promega Corp., Madison, WI, 
USA) [30]. The purified amplicons were pooled in equi-
molar amounts and sequenced on an Illumina Hiseq3000 
platform (Illumina, SanDiego, CA, USA) according to the 
standard protocols.

Sequence processing and analysis
Quality control of the raw sequencing reads was per-
formed using the FastQC tool (https:// www. bioin forma 
tics. babra ham. ac. uk/ proje cts/ fastqc/) [31] to filter the 
bad reads, the low-quality bases, adapters, and N-bases 
[32]. According to the overlap relation between Pair-end 
(PE) reads, we merged pairs of reads into a sequence with 
a minimum length of overlap of 10 bp [33]. After detect-
ing and filtering the chimera sequence, the data were 

analyzed with the Quantitative Insights Into Microbial 
Ecology (QIIME 1.9.1; http:// qiime. org/ insta ll/ index. 
html) toolkit to obtain the optimization sequence [34]. 
The raw sequencing reads have been submitted to the 
Sequence Read Archive (SRA) of the National Center for 
Biotechnology Information (NCBI) database (BioProject 
ID: PRJNA775883; https:// www. ncbi. nlm. nih. gov/ biopr 
oject/ PRJNA 775883), and this deposited data is available 
in the NCBI database.

According to a 97% similarity cut-off, the Operational 
Taxonomic Units (OTU) clustering was performed for 
non-repeating sequences (excluding single sequences) 
using Uparse software (version 7.0.1090; http:// drive5. 
com/ uparse/). At the same time, chimeric sequences 
were identified and removed to obtain representative 
sequences of OTUs [29]. According to the Silva data-
base (Release 138; http:// www. arb- silva. de), taxonomic 
annotation was performed on the OTUs representative 
sequences of each sample based on the RDP classifier 
Bayesian algorithm Classifier (version 2.11; http:// sourc 
eforge. net/ proje cts/ rdp- class ifier/) with a 0.7 confidence 
threshold [29].

Statistical analyses
The continuous variables were presented as mean and 
standard deviation (SD), and the categorical variables 
were presented as n (%). The Analysis of Variance was 
performed to compare the differences in age, WC, BMI, 
SBP, DBP, FPG, TG, LDL-C, and HDL-C among the three 
groups, and the Chi-square test was performed to com-
pare the differences in sex, the frequency of fruit and veg-
etable intake each day, the frequency of soft drink intake 
every week, physical activity, parental education, paternal 
smoking, paternal drinking, parental BMI, parental his-
tory of hypertension, heart disease, stroke, and diabe-
tes among the three groups. SPSS 25.0 software (IBM, 
Armonk, NY, USA) and R language (version 3.3.1) were 
used for analysis. Two-sided P values < 0.05 indicate a sig-
nificant difference.

The rarefaction curve was used to explore the sequenc-
ing depth as well as the abundance of sample species with 
different sequencing quantities based on the Sobs index 
(community richness) and Shannon index (community 
diversity). The Venn diagram analysis was performed to 
count the number of common and unique OTUs among 
the three groups. Among genera with a relative abun-
dance greater than 0.01%, the bar plot and the non-par-
ametric Kruskal–Wallis H test were used to compare the 
changes in composition and relative abundance of genera 
among the three groups with the adjustment of the false 
discovery rate (FDR).

The α-diversity indexes including the Ace, Chao 
1, Shannon, and Inverse Simpson were calculated to 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://qiime.org/install/index.html
http://qiime.org/install/index.html
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA775883
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA775883
http://drive5.com/uparse/
http://drive5.com/uparse/
http://www.arb-silva.de
http://sourceforge.net/projects/rdp-classifier/
http://sourceforge.net/projects/rdp-classifier/
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evaluate the community diversity and richness of gut 
microbiota at the OTU level using the Mothur software 
platform (version 1.30.2; https:// www. mothur. org/ wiki/ 
Downl oad_ mothur) [35]. A trend test was used to esti-
mate trends in P values for the α-diversity indexes of gut 
microbiota and the number of MetS risk factors. The dif-
ference in β-diversity among the three groups was calcu-
lated according to the Bray–Curtis distance matrix using 
permutational ANOSIM in the Principal Coordinate 
Analysis (PCoA) and Non-metric multidimensional scal-
ing analysis (NMDS) [36].

At the genus level, the Linear Discriminant Analysis 
Effect Size (LEfSe) and the linear discriminant analy-
ses (LDA) were performed to evaluate the extent of the 
contribution of differential gut microbiota to the differ-
ent numbers of MetS risk factors. The random forest 
model analysis was conducted to screen out the top ten 
genera biomarkers to distinguish the groups with at least 
one MetS risk group from the non-risk group based on 
the randomForest package of the R language. We further 
evaluate the differences in the relative abundance of these 
top ten genera biomarkers among the three groups based 
on the non-parametric Kruskal–Wallis H test with the 
FDR. Finally, the significant genera in the LEfSe analy-
sis, the random forest analyses, and the non-parametric 
Kruskal–Wallis H test were selected as potential diag-
nostic biomarkers for the different numbers of MetS risk 
factors in children. The receiver operating characteristic 
curve (ROC) was performed to evaluate the ability of 
these selected genera in identifying the number of MetS 
risk factors (i.e., area under the ROC curve [AUC]) based 
on the pROC package of the R language.

Phylogenetic Investigation of Communities by Recon-
struction of Unobserved States 2 (PICRUSt2) software 
was performed to predict the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways of gut microbiota 
based on the Greengene database [37]. The non-paramet-
ric Kruskal–Wallis H test was performed to compare the 
differences in KEGG level 3 pathways among the three 
groups. Then, the Post-hoc test with Tukey Kramer was 
used for further pairwise comparisons on the differential 
pathways based on the STAMP software [38] (Additional 
file 1).

Results
Study population
A total of 72 children aged 10.8 ± 0.3 years were included 
in this study and were categorized into three groups, 
including the non-risk group (n = 24), the one-risk group 
(n = 24), and the two-or-more-risk group (n = 24). The 
number of children with different MetS risk factors in 
each group is presented in Table S1. As shown in Table 1, 
no significant differences were observed in age, sex, FPG, 

LDL-C, the frequency of fruit and vegetable intake each 
day, the frequency of soft drink intake every week, paren-
tal education, paternal smoking, paternal drinking, and 
physical activity among these three groups. Compared 
with the non-risk group, the other two groups with at 
least one MetS risk factor reported a significantly higher 
WC (P < 0.001), BMI (P < 0.001), SBP (P < 0.001), DBP 
(P < 0.001), and TG (P < 0.001), and a marginally lower 
HDL-C (P = 0.052). Moreover, there were no significant 
differences in parental BMI, parental history of hyperten-
sion, heart disease, stroke, and diabetes across the three 
groups (Table S2).

OTU analysis among the three groups
A total of 1,026 OTUs were obtained. In the Venn dia-
gram, 590 OTUs were shared by three groups, and 144, 
47, and 30 unique OTUs were observed in the non-risk, 
one-risk, and two-or-more-risk groups, respectively (Fig. 
S1a). The rarefaction curves of the Shannon and Sobs 
index revealed that the sequencing data met the require-
ments (i.e., the sample size of participants and sampling 
depth were reasonable) of the analysis (Fig. S1b, c).

Differences in community diversity and richness of gut 
microbiota
The results of α-diversity analyses showed that the com-
munity richness indexes including Ace index (one vs. 
none: P = 0.001; two-or-more vs. none: P < 0.001; and 
two-or-more vs. one: P = 0.019, Fig. 1a) and Chao 1 index 
(one vs. none: P = 0.001; two-or-more vs. none: P < 0.001; 
and two-or-more vs. one: P = 0.035, Fig. 1b) were highest 
in the non-risk group, followed by the one-risk and two-
or-more risk groups. The community diversity indexes, 
including the Shannon index (one vs. none: P = 0.019; 
two-or-more vs. none: P < 0.001, Fig. 1c) and the Inverse 
Simpson index (one vs. none: P = 0.024; two-or-more vs. 
none: P = 0.005, Fig.  1d), were only statistically differ-
ent between the non-risk group and the one-risk group 
or two-or-more-risk group. The trend analyses showed 
that all the Ace index, Chao 1 index, Shannon index, 
and Inverse Simpson index decreased with the increased 
number of MetS risk factors (all P for trends < 0.01).

β‑diversity analysis of gut microbiota among the three 
groups
The PCoA analysis indicated that the gut microbiota 
across the three MetS risk factor groups could be statisti-
cally separated (P = 0.006; Fig. S2a). Additionally, NMDS 
analysis showed that the composition of gut microbiota 
was statistically separated among three MetS risk factor 
groups (P = 0.006; Fig. S2b).

https://www.mothur.org/wiki/Download_mothur
https://www.mothur.org/wiki/Download_mothur
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Differences in the composition and relative abundance 
of gut microbiota among the three groups
Among genera with a relative abundance greater than 
0.01%, the relative abundance of Faecalibacterium, Bifi-
dobacterium, Bacteroides, and Subdoligranulum ranked 
the top four in the non-risk group, while Bacteroides, 
Faecalibacterium, Bifidobacterium, and Agathobac-
ter ranked the top four in both the one-risk group and 
two-or-more-risk group. In addition, the relative abun-
dance of Lachnoclostridium (PFDR = 0.001) significantly 
increased in the one-risk group and two-or-more-
risk group, while the relative abundance of Alistipes 
(PFDR < 0.001) and Lachnospiraceae_NK4A136_group 
(PFDR = 0.017) decreased in the one-risk group and two-
or-more-risk group compared with the non-risk group 
(Fig. 2).

Screening out biomarkers associated with the number 
of MetS risk factors
Under the LDA threshold of 2.0, LEfSe and LDA analyses 
showed that a total of 33, 4, and 4 genera were enriched in 
the non-risk group, one-risk group, and two-or-more-risk 
group, respectively (Fig. S3a and Table S3). The random 
forest analysis found that Christensenellaceae_R-7_group, 
Family_XIII_AD3011_group, Ruminiclostridium_6, 
Tyzzerella_4, Ruminococcaceae_UCG-002, Lachnoclo-
stridium, unclassified_o__Bacteroidales, Lachnospira, 
Parasutterella, and Ruminococcaceae_UCG-005 were the 
top ten biomarkers associated with the different numbers 
of MetS risk factors at the genus level (Fig. S3b and Table 
S4), and these ten genera were also significant in the 
LEfSe and LDA analyses. Furthermore, we found Lach-
noclostridium (PFDR = 0.009) was significantly enriched 
in the one-risk group and two-or-more-risk group, 

Table 1 Characteristics of children among three groups

Note: aAnalysis of Variance; bchi-square test; cFisher’s exact test; sd standard deviation, WC waist circumference, BMI body mass index, sd standard deviation, SBP 
systolic blood pressure, DBP diastolic blood pressure, FPG fasting plasma glucose, TG triglyceride, HDL-C high-density lipoprotein cholesterol, LDL-C low-density 
lipoprotein cholesterol

Parameters and clinical data Non‑risk
(n = 24)

One‑risk
(n = 24)

Two‑or‑more‑risks 
(n = 24)

F/χ2 P‑value

Age (years; mean ± sd) 10.83 ± 0.35 10.73 ± 0.32 10.72 ± 0.33 0.72a 0.492

Sex (male, n %) 15 (62.5%) 15 (62.5%) 15 (62.5%) 0.00b 1.000

WC (cm; mean ± sd) 60.71 ± 3.34 72.09 ± 11.31 82.35 ± 9.40 37.09a  < 0.001

BMI (kg/m2; mean ± sd) 16.28 ± 1.44 21.30 ± 4.00 25.41 ± 3.70 47.39a  < 0.001

SBP (mmHg; mean ± sd) 104.06 ± 6.00 111.77 ± 7.48 117.54 ± 6.94 23.51a  < 0.001

DBP (mmHg; mean ± sd) 60.98 ± 4.19 64.48 ± 5.66 68.02 ± 6.73 9.41a  < 0.001

FPG (mmol/L; mean ± sd) 4.61 ± 1.08 4.43 ± 1.77 4.81 ± 1.24 0.46a 0.636

TG (mmol/L; mean ± sd) 0.75 ± 0.29 0.97 ± 0.47 1.26 ± 0.46 9.14a  < 0.001

HDL-C (mmol/L; mean ± sd) 1.70 ± 0.54 1.41 ± 0.71 1.31 ± 0.41 3.09a 0.052

LDL-C (mmol/L; mean ± sd) 2.16 ± 0.79 2.08 ± 1.00 2.52 ± 0.85 1.68a 0.194

Fruit-vegetables (n %) 0.79b 0.673

  < 3 times/day 12 (50.0%) 15 (62.5%) 14 (58.3%)

  ≥ 3 times/day 12 (50.0%) 9 (37.5%) 10 (41.7%)

Soft drink (n %) 2.69c 0.351

  < 3 times/week 23 (95.8%) 23 (95.8%) 20 (83.3%)

  ≥ 3 times/week 1 (4.2%) 1 (4.2%) 4 (16.7%)

Parental education (n %) 1.52c 0.469

 Lower than high school 4 (16.7%) 7 (29.2%) 4 (16.7%)

 High school or higher 20 (83.3%) 17 (70. 8%) 20 (83.3%)

Paternal smoking (n %) 0.84b 0.656

 No 10 (41.7%) 7 (29.2%) 9 (37.5%)

 Yes 14 (58.3%) 17 (70.8%) 15 (62.5%)

Paternal drinking (n %) 0.00c 1.000

 No 2 (8.3%) 2 (8.3%) 2 (8.3%)

 Yes 22 (91.7%) 22 (91.7%) 32 (91.7%)

Physical activity (n %) 1.37b 0.504

  < 1 h/day 12 (50.0%) 16 (66.7%) 14 (58.3%)

  ≥ 1 h/day 12 (50.0%) 8 (33.3%) 10 (41.7%)
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whereas Ruminococcaceae_UCG-002 (PFDR = 0.002), 
Christensenellaceae_R-7_group (PFDR < 0.001), Rumi-
nococcaceae_UCG-005 (PFDR = 0.009), Tyzzerella_4 
(PFDR = 0.020), Family_XIII_AD3011_group 
(PFDR < 0.001), Ruminiclostridium_6 (PFDR = 0.002), and 
unclassified_o__Bacteroidales (PFDR < 0.001) were signifi-
cantly enriched in the non-risk group based on the non-
parametric Kruskal–Wallis H test (Fig. S3c and Table 2).

Exploring the diagnostic efficacy of potential biomarkers
We used ROC analyses to explore the diagnos-
tic efficacy of these eight genera and found that 
Christensenellaceae_R-7_group had a higher ability in 
distinguishing the one-risk group (AUC = 0.84, 95% 
CI: 0.73 − 0.95, P < 0.001) and two-or-more-risk group 
(AUC = 0.92, 95% CI: 0.83 − 1.00, P < 0.001) from the 
non-risk group, while this genus had a weak ability to 
distinguish two-or-more-risk group from one-risk group 
(AUC = 0.61, 95% CI: 0.44 − 0.77, P > 0.050; Fig.  3a). 
Besides, Family_XIII_AD3011_group similarly had a 
powerful capacity to differentiate the two-or-more-risk 

group (AUC = 0.91, 95% CI: 0.83 − 1.00, P < 0.001) from 
the non-risk group, and a moderate capacity to dif-
ferentiate the one-risk group from the non-risk group 
(AUC = 0.78, 95% CI: 0.65 − 0.91, P < 0.050), as well as 
the two-or-more-risk group from the one-risk group 
(AUC = 0.73, 95% CI: 0.59 − 0.87, P < 0.050; Fig.  3b). In 
addition, Lachnoclostridium had a moderate ability to 
differentiate these three groups (AUC > 0.77, P < 0.05) 
(Fig. 3c, the ROC for two-or-more vs. none risk and two-
or-more vs. one risk are overlapped). The ROC results of 
the other five genera are presented in Fig. S1d-h.

Differences in KEGG pathways among the three groups
The KEGG pathway analyses showed that D-Glutamine 
and D-glutamate metabolism, cysteine and methionine 
metabolism, polyketide sugar unit biosynthesis, cationic 
antimicrobial peptide (CAMP) resistance, and acarbose 
and validamycin biosynthesis were the differential path-
ways among the three groups (all P < 0.001). Except for 
the cationic antimicrobial peptide (CAMP) resistance 

Fig. 1 Differences in α-diversity of gut microbiota among the three groups. (a) Ace index, (b) Chao 1 index, (c) Shannon index, and (d) Inverse 
Simpson
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pathway enriched in the MetS risk groups, the other four 
pathways were all enriched in the non-risk group (Fig. 
S4).

Discussion
To the best of our knowledge, we initially found that 
the dysbiosis of gut microbiota was associated with the 
different numbers of MetS risk factors among chil-
dren. There was a downward trend in the community 

diversity and richness of gut microbiota with the 
increased number of MetS risk factors. Among genera 
with a relative abundance greater than 0.01%, the genus 
Lachnoclostridium increased in the MetS risk groups, 
whereas the genera Alistipes and Lachnospiraceae_
NK4A136_group decreased in the MetS risk groups com-
pared with the non-risk group. In addition, the genera 
Christensenellaceae_R-7_group, Family_XIII_AD3011_
group, and Lachnoclostridium performed moderately 
well in identifying the number of MetS risk factors. Our 
KEGG pathway analyses showed that D-Glutamine and 
D-glutamate metabolism and cysteine and methionine 
metabolism pathways might participate in cardiovascu-
lar homeostasis through the regulation of gut microbiota. 
These findings confirmed that gut microbiota played a 
pivotal part in identifying the number of MetS risk fac-
tors among Chinese children.

It has been shown that specific MetS risk factors are 
inversely associated with the community richness and 
diversity of gut microbiota among adults [39]. For exam-
ple, individuals with obesity, dyslipidemia, or hyper-
tension were more likely to obtain a lower community 
richness of gut microbiota compared with normal con-
trols [40–42]. In addition, previous studies found that 
increased BMI and blood lipid levels (e.g., TG) were 
associated with reduced bacterial diversity among adults 
[42, 43]. Alterations in the composition of gut microbiota 
have also been reported to be linked to atherosclerosis, 
hypertension, obesity, and type 2 diabetes mellitus [39]. 

Fig. 2 Differences in the composition and relative abundance of gut microbiota at the genus level among the three groups based on the 
non-parametric Kruskal–Wallis H test

Table 2 The mean relative abundance of gut microbiota 
biomarkers based on the non-parametric Kruskal–Wallis H test

Feature Non‑risk
(n = 24)

One‑risk
(n = 24)

Two‑or‑
more‑
risks
(n = 24)

PFDR

Christensenellaceae_R-7_
group

0.83 0.17 0.10  < 0.001

Family_XIII_AD3011_group 0.06 0.02 0.01  < 0.001

Ruminiclostridium_6 0.04 0.003 0.002 0.002

Tyzzerella_4 0.07 0.04 0.01 0.020

Ruminococcaceae_UCG-
002

0.67 0.36 0.13 0.002

Lachnoclostridium 0.60 1.43 2.03 0.009

Unclassified_o__Bacteroi-
dales

0.02 0.003 0.004  < 0.001

Ruminococcaceae_UCG-
005

0.24 0.08 0.02 0.009
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However, these previous findings only focused on one 
MetS risk factor or were limited to adults, ignoring the 
association between the clustering of MetS risk factors 
and the imbalance of gut microbiota. In this study, we not 
only found that the richness estimators of gut microbiota 
decreased among children with one MetS risk factor, but 
also further found that there was a decreasing trend of 
community diversity and richness with the accumulation 
of MetS risk factors among children.

There were complex interactive effects of genetic back-
ground, gut microbiota, and diet on the development of 
obesity and MetS features [44]. In this study, we found 
that there are no differences in diet across these three 
groups, suggesting that the differential gut microbiota 
across groups might be due to genetic influences. How-
ever, the diet information we collected was self-reported, 
which might bias the true results. Besides, we addition-
ally performed analyses on the difference in parental 
BMI, and parental history of hypertension, heart dis-
ease, stroke, and diabetes across three groups and found 
that there were no differences across three groups. Our 
findings suggest that other unmeasured variables might 
affect the association between gut microbiota and the 
number of MetS risk factors. Future studies with larger 
sample sizes, more accurate dietary information, and 
detailed lifestyle information were called for verifying our 
findings.

Consistent with our findings in the association of 
Lachnoclostridium, Alistipes, and Lachnospiraceae_
NK4A136_group with the different number of MetS risk 
factors, previous animal studies showed that the relative 
abundance of Lachnoclostridium was positively related 
to TG and negatively related to HDL-C in rats [45]. 
However, the relative abundance of Lachnospiraceae_
NK4A136_group was negatively associated with weight 

gain and serum lipid levels in mice [46–48]. Addition-
ally, the relative abundance of Alistipes was reduced in 
obese adults with metabolic diseases from China [49], 
obese adults from the Netherlands [50], and obese indi-
viduals with type 2 diabetes mellitus from Germany [51]. 
These findings suggest that the higher abundance of the 
genus Lachnoclostridium and the lower abundance of the 
genera Alistipes and Lachnospiraceae_NK4A136_group 
might contribute to the accumulation of MetS risk fac-
tors among children.

In this study, we also found that the genera 
Christensenellaceae_R-7_group and Family_XIII_
AD3011_group performed a high ability in differenti-
ating the two-or-more MetS risk factor group from the 
non-risk group. Christensenellaceae_R-7_group was 
found to be negatively related to body weight, visceral 
fat percentage, and FPG levels in animal experiment 
studies [52–54]. Moreover, it has been reported that the 
Family_XIII_AD3011_group was inversely related to gly-
cated hemoglobin, 2 h glucose level and insulin, BMI, and 
secretion index in patients with type 2 diabetes mellitus, 
suggesting that it could be a novel predictive microbial 
biomarker for type 2 diabetes mellitus [55, 56]. These 
findings imply that the Christensenellaceae_R-7_group 
and Family_XIII_AD3011_group may provide a non-
invasive, practical, and clinical diagnosis of the accumu-
lation of MetS risk factors in children.

Previous studies supported our findings that the 
D-Glutamine and D-glutamate metabolism, as well as 
cysteine and methionine metabolism, play an important 
role in the accumulation of MetS risk factors [57–64]. It 
has been reported that the glutamate concentration was 
positively related to TG, glucose, BMI, and the increased 
risks of type 2 diabetes mellitus, whereas the ratio of glu-
tamine/glutamate was negatively related to TG, glucose, 

Fig. 3 Evaluating the diagnostic efficacy of gut microbiota biomarkers associated with MetS risk factors among children. (a) 
Christensenellaceae_R-7_group, (b) Family_XIII_AD3011_group, and (c) Lachnoclostridium (The red curve is the same as the blue curve)
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BMI, and the increased risks of type 2 diabetes mellitus 
in Mediterranean and Spanish populations [57–59]. Fur-
thermore, plasma total cysteine and methionine were 
strongly associated with MetS risk factors such as higher 
total cholesterol concentration, elevated BP, obesity, and 
type 2 diabetes mellitus [60–64]. These findings suggest 
that gut microbiota may be associated with the number 
of MetS risk factors through D-Glutamine and D-glu-
tamate metabolism, as well as cysteine and methionine 
metabolism pathways.

This study has some limitations. First, the sample size 
in this study is smaller compared to studies in adults, so 
further validation with a larger sample size is warranted. 
However, the small sample size could still provide sta-
tistical confidence for our results because of the meas-
urement of substantial changes in gut microbiota [65]. 
Second, due to the case–control study, a causal asso-
ciation between gut microbiota and the number of MetS 
risk factors cannot be concluded. Third, limited informa-
tion on CRP or other cytokines and parental risk factors 
for MetS prohibited us from performing the effects of 
these clinical indicators on the association between alter-
ation of gut microbiota and the number of MetS risk fac-
tors. Fourth, the differential gut microbiota in this study 
should be carefully extrapolated to children of other 
ethnicities, and future studies with children from other 
regions or countries are needed to validate our find-
ings based on qPCR experiments. Fifth, 16S rRNA gene 
sequencing technology provides limited information on 
bacterial genes and their functions, and further research 
is needed to explicate the pathogenesis and mechanism 
of gut microbiota in children with an accumulation of 
MetS risk factors. Sixth, because we focused on MetS risk 
factors, LDL cholesterol as an important cardiovascular 
risk factor was not included in this study. However, we 
compared LDL cholesterol across the three groups and 
found no significant difference, partly suggesting the 
effect of LDL cholesterol on associations between gut 
microbiota and the number of MetS risk factors might be 
attenuated.

Conclusions
In conclusion, we found that the community richness (i.e., 
the total number of species in the community) and diver-
sity (i.e., the richness and evenness of species in the com-
munity) of gut microbiota decreased with the increased 
number of MetS risk factors among children. Specific gut 
microbiota, such as the genera Christensenellaceae_R-7_
group, Family_XIII_AD3011_group, and Lachnoclostrid-
ium, may aid in the identification of the number of MetS 
risk factors among children. The disturbance of D-Glu-
tamine and D-glutamate metabolism and cysteine and 

methionine metabolism pathways might contribute to 
the accumulation of MetS risk factors in children.
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