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Abstract

Background: Recent decreases in neonatal mortality have been slower than expected for most countries. This
study aims to predict the risk of neonatal mortality using only data routinely available from birth records in the
largest city of the Americas.

Methods: A probabilistic linkage of every birth record occurring in the municipality of São Paulo, Brazil, between
2012 e 2017 was performed with the death records from 2012 to 2018 (1,202,843 births and 447,687 deaths), and a
total of 7282 neonatal deaths were identified (a neonatal mortality rate of 6.46 per 1000 live births). Births from
2012 and 2016 (N = 941,308; or 83.44% of the total) were used to train five different machine learning algorithms,
while births occurring in 2017 (N = 186,854; or 16.56% of the total) were used to test their predictive performance
on new unseen data.

Results: The best performance was obtained by the extreme gradient boosting trees (XGBoost) algorithm, with a
very high AUC of 0.97 and F1-score of 0.55. The 5% births with the highest predicted risk of neonatal death
included more than 90% of the actual neonatal deaths. On the other hand, there were no deaths among the 5%
births with the lowest predicted risk. There were no significant differences in predictive performance for vulnerable
subgroups. The use of a smaller number of variables (WHO’s five minimum perinatal indicators) decreased overall
performance but the results still remained high (AUC of 0.91). With the addition of only three more variables, we
achieved the same predictive performance (AUC of 0.97) as using all the 23 variables originally available from the
Brazilian birth records.

Conclusion: Machine learning algorithms were able to identify with very high predictive performance the neonatal
mortality risk of newborns using only routinely collected data.
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Background
High rates of infant mortality are a persistent challenge
for most developing countries. Despite recent improve-
ments, the Millenium Development Goal (MDG) target
of reducing child mortality globally by two thirds be-
tween 1990 and 2015 was not achieved [1]. The first 28
days of life, i.e. the neonatal period, is considered the
most crucial for child and young adolescent survival. Be-
tween 2018 and 2030, there will be an estimated 27.8
million worldwide deaths in the first month of life in
case every country maintains their current rate of reduc-
tion [2].
Progress in neonatal mortality has been slower than

for other young age groups. The global neonatal mortal-
ity rate fell 42% from 2000 to 2018 (from 31 to 18 deaths
per 1000 live births), while for older children and young
adolescent the decrease was of 53% (from 15 to 7 deaths
per 1000 children) [3]. In Brazil, neonatal mortality in
2017 was 8.5 deaths per 1000 live births, which is higher
than the rate among other upper-middle income coun-
tries (7.1 per 1000 live births) [2].
Machine learning models have provided accurate pre-

dictions in a variety of settings such as infant growth [4],
differentiation of sepsis and non-infectious systemic in-
flammatory response syndrome (SIRS) in critically ill
children [5], and mortality risk in critically-ill patients
with cancer [5, 6]. Mortality risk prediction can be espe-
cially impactful in the case of neonatal mortality [7], as
most cases can be prevented with basic adequate care in
low and middle-income countries [8]. However, in order
to be readily available for health professionals these pre-
dictive algorithms must use as input data collected
within the daily routine of healthcare services.
The objective of the study was to use official data from

Brazilian birth records to train machine learning models
to predict neonatal mortality risk. We also tested the
predictive performance of these algorithms using only
the minimum set of perinatal indicators from the World
Health Organization and then suggested additions to
this list.

Methods
Initially, all live births occurring in the Municipality of
São Paulo between 2012 and 2017 (N = 1,202,843) were
included. Births with missing results and with a gesta-
tional age of less than 15 weeks or greater than 45 weeks
were excluded, leading to a final sample of 1,128,162 live
births (93.79% of the original population). A probabilistic
linkage of these live births records with neonatal deaths
occurring between 2012 and 2018 was performed
through a collaboration with the municipal secretary of
health, by using the mother’s name, date of birth and
the name of the deceased, and a total of 7282 deaths
were identified (a neonatal mortality rate of 6.46 per

1000 live births). The study was approved by the ethics
committee of the School of Public Health of the Univer-
sity of São Paulo (CAAE: 98163018.2.0000.5421).
Completion of a birth record is mandatory for every

live birth occurring in Brazil. In the case of São Paulo,
the municipal Secretary of Health has sought to guaran-
tee its full coverage, which is around 99.8% of total live
births [9]. For this study, every birth occurring between
2012 and 2016 (N = 941.308; or 83.44% of the total) was
used to train the machine learning algorithms, and
births occurring in 2017 (N = 186.854; or 16.56% of the
total) were used to test the predictive performance of
these algorithms on new unseen data (test set). The per-
formance of five popular machine learning algorithms
(logistic regression, neural networks, extreme gradient
boosting trees, lightGBM and catboost) was analyzed on
the test set.
With the exception of logistic regression that does not

have hyperparameters, all algorithms had their hyper-
parameters tuned with 10-fold cross-validation with
Bayesian optimization (Additional file 1). Predictive per-
formance was assessed using the area under the ROC
curve (AUC). Other performance metrics calculated for
each algorithm include F1-score, precision (also known
as positive predictive value, PPV), negative predictive
value, area under the precision recall curve (AUPRC),
sensitivity (recall), specificity, and percentage of total
deaths included among the 5% highest predicted risk
and lowest 5% predicted risk.
We used as predictors all variables available from the

Brazilian live birth record: place of delivery (hospital, other
health facility, residence, others), health facility type (pub-
lic or private), age of the mother (in years), sex, 1st minute
Apgar score, 5th minute Apgar score, birth weight (in
grams), gestational age (in weeks), type of pregnancy (sin-
gle, double or triple or more), type of delivery (vaginal or
cesarean), maternal education, presence of congenital
anomaly (yes/no), maternal ethnicity, antenatal visits,
month of first antenatal visit, type of presentation (ceph-
alic, breech, transversal or other), induced labor (yes/no),
professional that assisted the labor (physician, nurse, mid-
wife or others), number of previous live births, number of
previous fetal losses and abortions, number of previous
pregnancies, number of previous vaginal deliveries and
number of previous cesarean deliveries.
The importance of ensuring predictive fairness for vul-

nerable population groups has been a growing concern
in the application of machine learning algorithms [10,
11]. The algorithm with the best performance (extreme
gradient boosting trees), was then applied separately for
vulnerable subgroups (non-white mothers, mothers with
low education, i.e. less than basic education, and teenage
mothers) in order to compare each group’s predictive
performance with its complementary group.
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The performance of the extreme gradient boosting
trees algorithm to identify neonatal mortality risk was
also tested by using as predictors only the minimum set
of perinatal indicators to be collect for all births, as sug-
gested by the World Health Organization: maternal age,
place of delivery, mode of delivery, birth weight and ges-
tational age (in weeks) [12]. In addition, with the aim of
suggesting inclusions to this list, we analyzed differences
in performance by sequentially adding the three individ-
ual variables that contributed the most to improve the
predictive performance of the model.
Finally, we also analyzed the predictive performance of

deaths of children under 1 year of age (i.e. infant mortal-
ity, which also includes the neonatal period, N = 10,902),
again using births from 2012 to 2016 for training and
births from 2017 for testing.

Results
Table 1 presents the predictive performance on the new
unseen data (from 2017) for the five machine learning
algorithms (logistic regression, artificial neural networks,
extreme gradient boosting trees, lightGBM and cat-
boost). For every predictive measure, the best perform-
ance was obtained by the extreme gradient boosting
trees (XGBoost) algorithm, with a very high AUC of
0.971, precision of 0.729, sensitivity of 0.440, specificity
of 0.99, F1-score of 0.548, NPV of 0.997 and AUPRC of
0.586. The 5% births with the highest predicted risk of
neonatal death included more than 90% of the actual
neonatal deaths, which may help to identify focused pri-
orities for interventions. On the other hand, there were
no deaths among the 5% births with the lowest predicted
risk.
Graph 1 presents the calibration curve results for each

of the machine learning algorithms. Overall, all the five
models presented high calibration, meaning that the pre-
dicted risk matches the real percentage of cases. For ex-
ample, for the extreme gradient boosting trees

algorithm, there was a 93% mortality rate for newborns
with a 90 to 95% predicted mortality risk, and an 8%
mortality rate for newborns with a 5 to 10% predicted
mortality risk. We also analyzed feature importance
using the Shapley Values for the best-performing algo-
rithm (extreme gradient boosting trees) and found that
the five most important variables were 5th minute
Apgar, birth weight, 1st minute Apgar, presence of con-
genital anomaly and gestational age, respectively (Add-
itional file 1).
Table 2 presents the performance of the extreme gra-

dient boosting trees algorithm separately for each vul-
nerable subgroup. The results indicate that there were
no significant differences in the AUC between each
complementary group: white mothers vs. non-white,
adolescent mothers vs. non-adolescent, and mothers
with low education vs. with average/high education. Re-
garding other metrics, for non-white mothers, the results
of precision, sensitivity and F1-score were better than
for white mothers, while for adolescents it was the op-
posite. Finally, the results for low education were mixed.
Graph 2 shows the results of the AUC and F1-score

when we included as predictors only WHO’s minimum
set of perinatal indicators (AUC = 0.905 and F1-Score of
0.432). This result improves significantly with the inclu-
sion of the 5-min Apgar score (AUC = 0.953, F-score =
0.489), with a proportionally smaller increase for the
addition of congenital anomaly information (AUC =
0.970, F-score = 0.529) and first-minute Apgar score
(AUC = 0.971, F-score = 0.534). Full results of the per-
formance metrics for each addition can be found in
Additional file 1.
We also performed the same analyses for infant mor-

tality (< 1 year-old mortality). Although the AUC and F-
score results were better for neonatal mortality than for
infant mortality (AUC = 0.971 and F1-score of 0.548 for
neonatal and AUC = 0.942 and F1-score = 0.477 for in-
fant), both predictive performances can be considered

Table 1 Predictive performance for neonatal mortality on the test set for each machine learning algorithm, São Paulo, Brazil, 2017
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high. Regarding the use of only the minimum set, there
was also an initial decrease in the indicators, which was
again reversed with the addition of three variables (Add-
itional file 1).

Discussion
The results show that it is possible to predict with very
high performance the risk of neonatal mortality using
data routinely collected in the largest city of the Ameri-
cas. The use of a smaller number of variables (the five
minimum perinatal indicators) decreased the predictive
performance (a decrease of 6.8% of the AUC, from 0.971
to 0.905), but the results still remained high. With the
addition of only three more variables (1st and 5th mi-
nute Apgar, and presence of congenital anomaly), it was

possible to achieve the same predictive performance as
using the 23 variables available from the Brazilian birth
records.
There is a growing concern that recent machine learn-

ing breakthroughs are not executable at the frontlines of
clinical practice, as most healthcare organizations do not
have the infrastructure to collect the variables needed to
train the algorithms [13]. Our study tackles this limita-
tion by using only routine data collected by the health
system. Despite the very high socioeconomic inequality
in the city of São Paulo [14], 99.8% of all births have a
birth record, and its reliability rate is considered to be
very high [8]. In addition, the fact that we used data
from the last year of the study (2017–2018) to test the
performance of the algorithms, instead of using data

Graph 1 Calibration plot for neonatal mortality on the test set for each machine learning algorithm, São Paulo, Brazil, 2017

Table 2 Predictive performance on the test set for selected vulnerable subgroups, São Paulo, Brazil, 2017
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drawn from the same period for training and testing, as
is often the case in machine learning studies, helps to
simulate its real predictive performance.
Another area of growing interest in the machine learn-

ing literature is testing the fairness of the algorithms, es-
pecially regarding classification parity, i.e. ensuring that
predictive performance measures are similar across
groups with vulnerable attributes [15]. Previous studies
show that machine learning algorithms can be biased to-
wards privileged groups especially due to the higher
quality of data collection and the availability of more ex-
amples to guide the learning process [16]. Our analysis
found that despite a slightly better result for some of the
privileged groups, the specific performance for vulner-
able groups were well within the margin of error.
An important future challenge for the practical appli-

cation of machine learning in routinely collected data
will be to define whether risk scores will be provided for
all cases, or only for the highest risk patients in order to
mitigate alert fatigue [17, 18]. Our study provides prom-
ising results for both possibilities. Due to the imbalanced
nature of the dataset, low calibration could have been an
issue but we found that the predicted risk was close to
the real percentage of cases throughout the entire distri-
bution. We also tried to mitigate this issue by analyzing
the 5% births with the highest predicted risk of neonatal
death and found that it included more than 90% of the
actual neonatal deaths.
It is not clear that algorithms trained for São Paulo

will have the same predictive performance for other cit-
ies, but we have no particular reason to think that this is
a characteristic of only São Paulo. An important scien-
tific challenge for the next years in machine learning for
healthcare will be to test whether the same algorithm
developed for one city or country would have similar

performance in other areas, or if it is necessary to de-
velop a new algorithm even in the case where there is
less available data for training [19].
The availability of enough predictive variables is an-

other challenge for the application of these algorithms,
especially in developing countries [20]. However, our
analyses show that despite the initial decrease of predict-
ive performance when using only WHO’s five perinatal
indicators, the addition of just three variables increases
the performance to the same level as using the 23 vari-
ables originally available from the Brazilian birth
records.
Humans face their lifetime highest risk of dying in the

first month of life, with a global neonatal rate of 18
deaths per 1000 live births [3]. Identifying newborns
with a high mortality risk can be the first step towards
adopting targeted interventions to prevent its occur-
rence. Our study shows that popular machine learning
algorithms are able to identify the neonatal mortality
risk of newborns with a very high predictive perform-
ance using only routinely collected data.
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