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Abstract

Background: Thyroid eye disease (TED) is the most common autoimmune disease and usually occurs in patients
with hyperthyroidism. In this disease, eye-related tissue, such as eye muscles, eyelids, tear glands, etc., become
inflated, which causes the eyes and eyelids to become red, swollen, and uncomfortable. The pathophysiology of
this disease is still poorly known.

Aim: This study aims to discover potential biomarkers and regulatory pathways of TED which will not only help to
diagnose the disease and understand orbital involvement in thyroid dysfunction but also provide an insight for
better therapeutics.

Methods: We applied a data-driven approach by combining gene biomarkers both from published literature and
computationally predicted from microarray gene expression data. Further, the DAVID tool is used for Gene
Ontology-based enrichment analysis.

Results: We obtained a total of 22 gene biomarkers, including 18 semi-automatically curated from the literature
and 4 predicted using data-driven approaches, involved in the pathogenesis of TED that can be used as potential
information for therapeutic targets. Further, we constructed a regulatory pathway of TED biomarkers comprises of
310 connected components, and 1134 interactions using four prominent interaction databases.

Conclusion: This constructed pathway can be further utilized for disease dynamics and simulation studies.
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Introduction
Thyroid eye disease (TED), also known as Graves’ eye
disease (GED), or Graves’ ophthalmopathy (GO), is an
autoimmune condition in which immune cells attack
the thyroid gland due to secretion of excess amount
of thyroid-stimulating hormone (TSH). These excess
hormones increase metabolism (hypermetabolism)
which is characterized by fast heartbeat, palpitation,
profuse sweating, high blood pressure, heat

intolerance, weight loss, etc. [1, 2] The hyperthyroid-
ism leads to the eye protruded from eye orbit due to
inflammatory disorder and also leads to permanent
facial disfigurement. It causes swelling of muscle, fat,
tissues, i.e. periorbital tissues leading to proptosis [3].
In fact, autoimmune attack generally targets the eye
muscles because these tissues contain proteins that
seem similar to the immune system as those of the
thyroid gland [4, 5]. According to the ReportLinker
report, the global treatment market of TED is ex-
pected to pump up from USD 211.49 Million in 2019
to USD 344.19 Million by the end of 2025 [6]. In an-
other report published by MarketWatch News, the
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TED market projected a compound annual growth
rate (CACG) of 8.53% during the forecast period of
2020–2026 [7].
In TED, tissues around the eye are attacked, leading to

inflammation and swelling, which causes redness and
pain, puffiness around the eyes, erythema, conjunctivitis,
proptosis, and upper eyelid retraction [8]. Environmental
factors like smoking and radioactive iodine are more
predisposed to TED [9]. There are many other factors
but smoking has a major influence [10]. Smoking in-
duces thyroid functional changes, like a decrease or in-
crease in thyroid hormones and also the risk of thyroid
cancer [11]. Like thyroid disease, women are more vul-
nerable to TED than males with the female to male ratio
of 4:1 [12]. Immune cells attack the periorbital tissues
that lead to the expansion of eye muscles or fat [2, 12].
Hyperthyroidism leads to an overactive thyroid gland,
i.e., more secretion of TSH. The TSH helps to maintain
body metabolism, and it’s over secretion develops several
consequences like high blood pressure, fatigue, weight
loss, and irritabilitye [13]. Further, autoimmune cells at-
tack the enlarged thyroid gland as well as eye muscles
and periorbital tissue. These tissues contain proteins that
appear similar to the thyroid gland, like thyroid-
stimulating hormone receptor (TSH-R), target as im-
mune assault [14]. The progressive eye swelling may
trigger acute pressure inside the eye socket, pressure-
pain which worsens movements of the eye, decreased vi-
sion when swollen tissues push on the optic nerve [2].
The TED is diagnosed by a blood test, thyroid com-

puted tomography (CT) scan, magnetic resonance im-
aging (MRI) scan, radioactive iodine uptake test, low
thyroid TSH test, positive thyroid-stimulating immuno-
globulin (TSI) test, increase free thyroxine (T4), and ele-
vated anti-peroxidase [15, 16]. Since TED occurs due to
the immune system’s attack on the healthy tissues,
therefore, treatment of the thyroid gland does not im-
prove eye disease [17]. Some of the prevalent methods of
treatment of Graves’ disease are anti-thyroid drugs, such
as Thionmaids, Methimazole, Teprotumumab (under
clinical trial and study by FDA) [18] or beta-blockers
(such as Propranolol, Atenolol, Metoprolol), use of radio-
active iodine, or surgery [19]. These treatments are
based on age and the degree of illness of the patient
[20]. The use of anti-thyroid drugs, which reduces the
release of thyroids hormones, is the least invasive
method to treat Graves’ disease. Radioactive iodine ther-
apy is the most common method to treat Graves’ disease
in the United States. The definite treatment of Graves’
disease is thyroidectomy, a surgery to remove the thy-
roid gland [21, 22]. As far as TED is concerned, mild
cases may be treated with sunglasses, artificial tears, or
ointments. However, more serious cases may be treated
with corticosteroids which reduce swelling of tissues

around the eyes. Orbital therapy and orbital decompos-
ition surgery are also used to treat TED [23, 24].
The molecular mechanism underpinning TED is grad-

ually becoming clearer due to advancements in both
experimental and computational techniques. The avail-
ability of large-scale biological data (i.e., multi-omics) of-
fers a paradigm shift from sub-optimal treatment to
optimal targeted therapy [25]. Biomarkers are of pivotal
importance which serves as a useful noninvasive tool in
the clinical armamentarium for disease studies including
its diagnosis, prevention, drug target identification, de-
signing drug for a particular receptor, and biological
processes to a therapeutic intervention [26]. It can be
genes, mRNAs, and metabolites. In the case of TED, a
set of biomarkers were identified in immunogenetics,
hormones, antibodies, cytokines, urine, orbital fat, and
tear. Peroxisome proliferation activation receptor
gamma (PPAR-γ) activation leads to an eye’s protrusion.
Triiodothyronine (T3) and Thyroxine (T4) dysfunction
secretion and antibodies (TRAbs) levels are associated
with the severity of TED [9, 27]. IL-1β, IL-10, IL-8, C-C
chemokine ligand 20 (CCL20), IL-17 are the pro-
inflammatory cytokines. Polymorphism of IL-10 is asso-
ciated with the incidence of TED [28]. Soluble vascular
cell adhesion molecules-1 (sVCAM-1) and intercellular
adhesion molecules-1 (ICAM-1) are elevated in the
blood of TED patients [29]. CLAT-4 immunoglobulin
functions as an immune checkpoint and downregulates
immune responses [30]. Further, CD152, an expression
product of CTLA-4 genes, downregulates T-cell activa-
tion [31]. IL-1β and IL-6 level in orbital fat associated
with the smoking status of TED patients [32]. IFN-γ is
differentially upregulated in TED, and platelet-derived
growth factor (PDGF) responsible for the physiological
event in TED [32]. PDGF and IL-1β induce adipogenesis
through the enzyme cyclooxygenase-2 (COX-2). Levels
of TSHR-Ab are a useful tool for the measurement of
TED [33]. PAI-1 and SERPINE1 regulate the proteolytic
activity [34]. Wong and colleagues [35] reported the as-
sociation of IL-1A and other IL genes with Graves’s
Ophthalmopathy (GO). Tear proteins, like S100A4 and
PIP, also serve as biomarkers to predict ocular and sys-
temic disease progression [36]. PTPN22 (protein tyro-
sine phosphatase) shows negative regulation of T-cell
activation [37]. NF-kB (nuclear factor kappa-B) is a tran-
scriptional factor activated by various cytokines. Other
genetic factors like TLR-9, CD86, CD103, glucocorticoid
receptors, CTLA-4, TNF-alpha, HLA-DRB-1 are also as-
sociated with TED [38]. A review on biomarkers associ-
ated with TED can be found in Turck et al. [32] and
Longo et al. [34]
Even though few studies have been carried out to

identify gene biomarkers in TED, but its study at the
genome-wide scale is lacking. Further, the possible
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regulatory pathway of biomarkers in TED has not been
studied earlier. Hence, in the present study, we applied a
data-driven approach to detect gene biomarkers in TED,
which combines biomarkers both from reported litera-
ture as well as we computationally predicted using
microarray gene expression profiles. Further, a regula-
tory pathway of biomarkers is constructed followed by
various Gene Ontology-based enrichment analyses. This
regulatory pathway can be further utilized for disease
dynamics, molecular docking, and simulation studies.

Methods
The thyroid eye disease (TED) is a complex disease having
an overlap with other Grave’s disease and there are several
molecular players involved. Here, we constructed a sys-
tematic network of gene regulatory pathways of TED. The
network is based in semi-automated curate literature-
based information reported to be gene biomarkers of TED
and predicted information using high-throughput gene ex-
pression data. The constructed network has been topo-
logical, gene ontology (GO) and tissue-specifically
analyzed to translate it into meaningful disease-specific
and tissue-specific markers and can be utilized as targets
in the diagnosis and therapy of TED. The methodological
pipeline adopted in this study is depicted in Fig. 1.

Extraction of experimentally determined biomarkers
To extract TED genes from published literature, we used
the Entrez System of the National Center for Biotechnol-
ogy Information (NCBI) and performed a query with the
MeSH (Medical Subject Headings) terms “((thyroid eye
disease) AND biomarker)”. The Entrez (https://www.
ncbi.nlm.nih.gov/) is an online cross-database search sys-
tem that helps the users to perform a global query in
NCBI’s various genomics, genes, proteins, genetics, lit-
erature, and other health sciences databases. The search
results provide a summary of hits in various NCBI
databases. We recorded the list of genes from the NCBI-
Gene database and a list of published literature in NCBI-
PubMed for manual screening of biomarker genes in
TED. The manually screened biomarker genes were
cross-checked by two independent reviewers.

Prediction of gene biomarkers using gene expression
profiles
To predict gene biomarkers of TED, we took microarray
gene expression data from the NCBI-GEO database
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE58331). In this dataset, RNA was extracted and ana-
lyzed with Affymetrix from anterior orbit and lacrimal
gland tissues of the collected biopsies. The data contains

Fig. 1 Methodological pipeline
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gene expression of various inflammatory diseases includ-
ing TED, but we considered only TED gene expression
data from anterior orbit tissue for this study. The con-
sidered datasets contain 27 TED samples and 22 control
samples, both from anterior tissues of men as well as
women.

Construction of gene regulatory pathway
Molecular interaction data of the identified gene bio-
markers were collected from four major databases in-
cluding STRING [39], GeneMania [40], TRRUST [41],
and KEGG Pathway [42]. These interaction data were
merged to construct a consolidated gene regulatory
pathway for further downstream analysis.

GO enrichment analysis
Gene Ontology (GO) enrichment is performed to study
various enrichment analyses of a given gene set, i.e., a
list of gene biomarkers, that finds which GO terms are
either over-represented or under-represented using
stored annotations in the database. We utilized DAVID
6.8 tool [43] for studying GO enrichment analysis, func-
tional category analysis, disease enrichment, and disease
class enrichment analysis, and KEGG pathway enrich-
ment analysis. The DAVID 6.8 server can be accessed
from https://david.ncifcrf.gov/.

Results
After performing the query with the MeSH term “((thy-
roid eye disease) AND biomarker)” in NCBI’s Entrez
System, we obtained a list of 24 genes in NCBI’s Gene
database along with a list of 285 publications in
PubMed. We manually screened these 24 genes to verify
their role as biomarkers in TED. Further, we also manu-
ally screened all the obtained publications to obtain
more reported biomarkers in TED. Finally, after the
manual screening of each gene and reported literature,
we shortlisted a list of 18 experimentally verified genes
reported to be involved in the pathogenesis of TED, as
shown in Table 1 along with PubMed ID (PMID) of
supporting literature, and its involvement in various
pathways. To predict gene biomarkers using microarray
gene expression data of TED (GEO Accession No.
GSE58331), we executed the GEO2R tool on both TED
samples and normal samples. In other words, we per-
formed a case-control analysis to find out differentially
expressed genes (DEGs) that can be utilized as disease
biomarkers. We applied the fold-change statistics to
compute DEGs, along with several other statistics in-
cluding p-value, and false discovery rate (FDR). To filter
significant genes that may be the potential gene bio-
markers of the disease under study, we applied a thresh-
old of p-value <=0.05 and have at least two-fold change
(i.e., − 1.0 > = logFC > = + 1.0) in their gene expression,

as generally applied and suggested by researchers [44–
47]. Further, duplicate genes and genes with missing
names and statistical values were removed from the list.
In this way, we obtained a list of 63 genes for down-
stream analysis. To further narrow down and perform
significant analysis of predicted gene biomarkers, we
shortlisted only those genes which are transcription fac-
tors (TFs), and associated with autoimmune or thyroid
disease, and/or involved in autoimmune or thyroid dis-
ease KEGG pathway, and/or GO enriched with the term
“thyroid” or “autoimmune” as a biological process,
shown in Table 2. For this purpose, we utilized the
TRRUST v2 database [41]. Hence, we obtained a total of
22 gene biomarkers, including 18 semi-automatically cu-
rated from the literature and 4 predicted, involved in the
pathogenesis of TED that can be used as potential infor-
mation for therapeutic targets.
To construct a consolidated gene regulatory path of

TED biomarkers, we retrieved and merged the inter-
action of identified 22 biomarkers from four major data-
bases. All the duplicate interactions were eliminated.
The network in Fig. 2 shows the identified regulatory
pathway of TED biomarkers consists of 310 connected
components, 1134 interactions, the average number of
neighbors of 7.3, two self-loops, and a clustering coeffi-
cient of 0.234. This network is scale-free and follows
power-law. To further narrow down the list of the most
significant genes for TED, we performed GO enrichment
analysis, functional category analysis, disease enrich-
ment, and disease class enrichment analysis, and KEGG
pathway enrichment analysis using the DAVID tool. The
terms and keywords used for this enrichment analysis
and their subsequent results are presented in Table 3.
To focus our analysis on TED, we considered GO en-
richment terms as “inflammatory response” and “im-
mune response”, and analysis results show that most of
the identified gene biomarkers are enriched with either
of these two terms or both (Table 3). Similarly, in dis-
ease enrichment class analysis, most of the disease terms
are enriched with “vision” or “immune” or both (Table
3). In the KEGG pathways analysis, most of the genes
are either enriched with the term “autoimmune thyroid
disease” or “cytokine-cytokine receptor interaction”
(Table 3). Hence, these deeper analysis results provide
that the identified gene biomarkers are involved in the
pathogenesis of TED.

Discussion
The disease biomarkers is an important noninvasive tool
in the clinical armamentarium for the study of diseases.
This study focuses on the discovery of potential bio-
markers and regulatory pathways in TED that can be
utilized for disease diagnosis and helps us know insight
for better therapeutics. Our analysis of combined gene
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Table 1 List of experimentally verified and reported gene biomarkers of TED

S.No. GeneID Gene
Symbol

Gene
Description

KEGG Pathway / Disease Term (Selected) Map
Location

Genomic
Nucleotide
Accession

Exon
count

PMID

1 3091 HIF1A hypoxia inducible
factor 1 subunit
alpha

Thyroid hormone signaling pathway (hsa04919),
Thyroid cancer (hsa05216)

14q23.2 NC_
000014.9

16 27,610,652

2 3576 CXCL8 C-X-C motif
chemokine ligand
8

Cytokine-cytokine receptor interaction
(hsa04060), Chemokine signaling pathway
(hsa04062), NF-kappa B signaling pathway
(hsa04064)

4q13.3 NC_
000004.12

4 31,149,053, 31,059,
842

3 3627 CXCL10 C-X-C motif
chemokine ligand
10

Cytokine-cytokine receptor interaction
(hsa04060), Chemokine signaling pathway
(hsa04062), TNF signaling pathway (hsa04668)

4q21.1 NC_
000004.12

4 31,059,842, 24,999,
581, 22,378,921

4 3586 IL10 interleukin 10 Autoimmune thyroid disease (hsa05320),
Cytokine-cytokine receptor interaction
(hsa04060), Intestinal immune network for IgA
production (hsa04672)

1q32.1 NC_
000001.11

5 30,018,377, 21,067,
483, 23,754,356

5 3605 IL17A interleukin 17A Cytokine-cytokine receptor interaction
(hsa04060), Th17 cell differentiation (hsa04659),
Inflammatory bowel disease (hsa05321)

6p12.2 NC_
000006.12

3 24,994,866

6 50,616 IL22 interleukin 22 Cytokine-cytokine receptor interaction
(hsa04060), Jak-STAT signaling pathway
(hsa04630), Th17 cell differentiation (hsa04659),
Inflammatory bowel disease (hsa05321)

12q15 NC_
000012.12

6 28,839,453

7 3565 IL4 interleukin 4 Tyrosine metabolism (hsa00350), Phenylalanine
metabolism (hsa00360),Tryptophan metabolism
(hsa00380)

5q31.1 NC_
000005.10

5 21,067,483

8 3569 IL6 interleukin 6 Cytokine-cytokine receptor interaction
(hsa04060), Jak-STAT signaling pathway
(hsa04630), Th17 cell differentiation (hsa04659)

7p15.3 NC_
000007.14

6 30,018,377

9 3596 IL13 interleukin 13 Cytokine-cytokine receptor interaction
(hsa04060), Jak-STAT signaling pathway
(hsa04630), Th1 and Th2 cell differentiation
(hsa04658)

5q31.1 NC_
000005.10

6 30,018,377

10 3479 IGF1 insulin like growth
factor 1

EGFR tyrosine kinase inhibitor resistance
(hsa01521), Signaling pathways of MAPK
(hsa04010), Ras (hsa04014) Rap1 (hsa04015), HIF-
1 (hsa04066), FoxO (hsa04068), etc.

12q23.2 NC_
000012.12

7 31,313,753, 25,560,
705,
29,273,685, 26,188,
228

11 7040 TGFB1 transforming
growth factor
beta 1

MAPK signaling pathway (hsa04010), Cytokine-
cytokine receptor interaction (hsa04060), FoxO
signaling pathway (hsa04068), Cell cycle
(hsa04110)

19q13.2 NC_
000019.10

7 20,181,974

12 3458 IFNG interferon gamma Cytokine-cytokine receptor interaction
(hsa04060), Th1 and Th2 cell differentiation
(hsa04658), Th17 cell differentiation (hsa04659)

12q15 NC_
000012.12

4 20,181,974, 24,999,
581, 23,754,356,
26,089,587, 22,378,
921

13 7057 THBS1 thrombospondin
1

Rap1 signaling pathway (hsa04015), p53
signaling pathway (hsa04115), TGF-beta signal-
ing pathway (hsa04350)

15q14 NC_
000015.10

22 31,173,926, 26,154,
823

14 7253 TSHR Thyroid
stimulating
harmone receptor

Autoimmune thyroid disease (hsa05320),Thyroid
hormone synthesis (hsa04918), cAMP signaling
pathway (hsa04024)

14q31.1 NC_
000014.9

12 29,771,755, 28,127,
991, 12,790,806

15 7124 TNF-
Alpha

tumor necrosis
factor-α

Cytokine-cytokine receptor interaction
(hsa04060), T cell receptor signaling pathway
(hsa04660), MAPK signaling pathway (hsa04010)

6p21.33 NC_
000006.12

4 30,018,377, 26,089,
587, 22,378,921

16 3107 HLA-C major
histocompatibility
complex, class I, C

Autoimmune thyroid disease (hsa05320),
Endocytosis (hsa04144), Phagosome (hsa04145)

6p21.33 NC_
000006.12

8 17,521,325,

17 1471 CST3 cystatin C Salivary secretion (hsa04970), Age-related macu-
lar degeneration (H00821), Cerebral amyloid

20p11.21 NC_
000020.11

4 30,018,377, 28,702,
253, 25,829,418
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biomarkers, both curated from published literature and
computationally predicted using microarray gene expres-
sion data, discern its involvement in TED and other
thyroid-associated ocular diseases. Our data-driven ana-
lysis identified a list of 9 Cytokines (CXCL8, CXCL10,
IL10, IL17A, IL22, IL4, IL6, IL13, and IFNG) which are
reported to increase the volume of orbital tissue [32].
Further, enrichment analysis identified 11 genes involved
in the inflammatory response, 11 genes involved in im-
mune response, and 10 genes are enriched in cytokine-
cytokine receptor interaction (refer to Table 3). Cytokine
IL10 is pro-inflammatory and its polymorphism has
been reported to be associated with the incidence of
TED [28]. IFNG is also reported to be differentially up-
regulated in TED [32]. Levels of TSHR-Ab are a useful
tool for the measurement of TED [33]. Our major ana-
lysis results, in-line with the reported literature, are sum-
marized in the following section.

TSHR as an autoantigen in TED
TSHR is a glycoprotein hormone receptor and a mem-
ber of the G protein-coupled receptor family. It has a
ligand-binding extracellular domain, intracellular
domain, and a transmembrane domain. The thyroid-
stimulating immunoglobulins (TSI), also called thyroid-
stimulating antibodies (TSAb), and TSH bind to TSHR
which leads to activation of the receptor and unregu-
lated production of thyroid hormones [48]. Besides
thyroid epithelium, TSHR is found in several connective
tissues and adipose depots. The mRNA expression level
of TSHR is higher in orbital fibroblasts from TED

patients. In TED, TSIs can activate TSHR that signals
the production of IL-6 [49]. The KEGG pathway enrich-
ment analysis discerns that TSHR is enriched in various
pathways including autoimmune thyroid disease
(hsa05320), Thyroid hormone synthesis (hsa04918), and
cAMP signaling pathway (hsa04024). `.

TSHR-IGF1R cross-talk
In several studies, it is reported that TSHR is the main
target of stimulatory autoantibodies in the pathogenesis
of TED, and stimulatory IGF1R autoantibodies cross-
talk with TSH [50–52]. In fact, signaling initiated from
either of these two receptors can be controlled by inhi-
biting the activity of IGFR1 [53]. These two make a
physically and functionally interactive complex within
orbital fibroblasts, and inhibition of IGF1R reduces
TSH-dependent signalling [25]. Smith et al. [54] call
TSHR-IGF1R cross talk as “partners of crime”, while
Wiersinga [55] calls it “an unfortunate marriage between
TSHR and IGFR1”. Teprotumumab is an IGF1R inhibi-
tor that interrupts the key molecular mechanism of TED
pathogenesis and is reported to have significant potential
to reduce disease manifestations [25, 56, 57].

Cytokines and chemokines in TED
Cytokines and chemokines may induce the expression
level of immunomodulatory proteins in orbital fibro-
blasts and may contribute to disease progression [58].
Cytokines are small proteins that are important in cer-
tain diseases, especially immune response, inflammation,
and host response to infection. They are involved in

Table 1 List of experimentally verified and reported gene biomarkers of TED (Continued)

S.No. GeneID Gene
Symbol

Gene
Description

KEGG Pathway / Disease Term (Selected) Map
Location

Genomic
Nucleotide
Accession

Exon
count

PMID

angiopathy (H01185)

18 12 SERP
INA3

serpin family A
member 3

AACT, ACT, GIG24, GIG25 14q32.13 NC_
000014.9

5 30,018,377

Table 2 List of predicted TF gene biomarkers in TED

S.No. Gene
names

Fold-
change

Regulation
type

Disease ontology term KEGG pathway disease term GO biological process
term

1. EGR1 3.0166 Up autoimmune disease Autoimmune thyroid disease (hsa05320),
Thyroid hormone signaling pathway
(hsa04919)

immune response

2. FOS 3.0109 Up autoimmune disease, thyroid
gland disease

Autoimmune thyroid disease (hsa05320),
Thyroid hormone signaling pathway
(hsa04919)

innate immune response,
immune response

3. MAF 2.4210 Up -- Autoimmune thyroid disease (hsa05320), regulation of immune
response, immune
response

4. NR4A1 2.0338 Up Thyroid carcinoma, Diabetic
Retinopathy, autoimmune
disease

– –
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various cell signaling including autocrine, paracrine, and
endocrine signaling, known as immune-modulating
agents. Interleukins (IL), chemokines, interferons
(TFNs), and tumor necrosis factors (TNFs) are known as
cytokines. Chemokines are small cytokines that produce
various types of cells as immune cells that include four
subfamilies: CXC, CC, XC3C, and XC. In TED, orbital
tissue remodeling is carried out due to cytokine-
dependent fibroblast activation. The literature reports
that cytokines (IL-4, IL-6, IL-10, IL-13, IL-17A, IL-22,
TNFA, IFNG) and chemokines (CXCL8, CXCL10) were
found in extraocular muscles and fat of TED patient
[59], and differential modulation of CXCL8 versus
CXCL10 by cytokines [59]. In our study, some of the

identified cytokines (IL10, IL17A, IL22, IL4, IL6, IL13,
and IFNG) and chemokines (CXCL8, CXCL10) gene
biomarkers of TED are aligned with these findings.

Conclusion
Thyroid eye disease (TED) is an autoimmune disease
and hyperthyroidism where the tissue around the eye is
attacked, leading to inflammation and swelling, which
causes redness and pain, puffiness around the eyes, ery-
thema, conjunctivitis, proptosis, and upper eyelid retrac-
tion. Among the several factors, smoking has a major
influence on TED. Like hyperthyroidism, women are
more vulnerable to TED than males with a female to
male ratio of 4:1. Due to advancements in high-

Fig. 2 Constructed gene interaction of the biomarkers of TED, having several hubs including HIF1A, NR4A1, FOS, TSHR, etc.
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throughput and computational techniques, the molecu-
lar mechanism underpinning TED is gradually becoming
clearer. The availability of large-scale biological data (i.e.,
multi-omics) offers the better discovery of biomarkers
which serves as a useful noninvasive tool in the clinical
armamentarium for disease studies including its diagno-
sis, prevention, drug target identification, designing drug
for a particular receptor, and biological processes to a
therapeutic intervention.
In this study, we applied a data-driven approach to de-

tect gene biomarkers in TED, which combines bio-
markers from both reported in the literature as well as
we computationally predicted. Further, a regulatory
pathway of biomarkers is constructed followed by

various Gene Ontology-based enrichment analyses. This
regulatory pathway provides an insight into the regula-
tion mechanism in TED. Our study reports 22 gene bio-
markers involved in the pathogenesis of TED that can be
used as potential information for therapeutic targets.
Further, we constructed a regulatory pathway of TED
biomarkers consists and performed GO enrichment ana-
lysis, functional category analysis, disease enrichment,
and disease class enrichment analysis, and KEGG path-
way enrichment analysis using the DAVID tool. In this
future work, you may perform a deeper analysis of bio-
markers and constructed networks, perform molecular
docking, and simulation studies against identified poten-
tial biomarkers.

Table 3 Results of various enrichment analysis of identified gene biomarkers

Genes Go Enrichment Term Functional
Categories
(UP_
KEYWORDS)

Disease
enrichment
class (GAD_
DISEASE_
CLASS)

Disease enrichment
(GAD_DISEASE)

KEGG Pathways (Term)

inflammatory
response

Immune
Response

Cytokine Vision Immune autoimmune
disease

grave’s
disease

Thyroid
associated
ophthalmopathies

autoimmune
thyroid
disease

Cytokine-
cytokine
receptor
interaction

HIF1A ✓ ✓

CXCL8 ✓ ✓ ✓ ✓ ✓ ✓ ✓

CXCL10 ✓ ✓ ✓ ✓ ✓

IL10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

IL17A ✓ ✓ ✓ ✓ ✓

IL22 ✓ ✓ ✓ ✓ ✓

IL4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

IL6 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

IL13 ✓ ✓ ✓ ✓ ✓ ✓ ✓

IGF1 ✓ ✓

TGFB1 ✓ ✓ ✓ ✓ ✓ ✓

IFNG ✓ ✓ ✓ ✓ ✓ ✓ ✓

THBS1 ✓ ✓

TSHR ✓ ✓ ✓ ✓

TNF-
Alpha

HLA-C ✓ ✓ ✓ ✓ ✓

CST3 ✓

SERP
INA3

✓ ✓ ✓

EGR1 ✓ ✓

FOS ✓

MAF

NR4A1

Gene
count

11 11 9 14 16 6 6 3 4 10
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