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Abstract

Background: VKH is a rare autoimmune disease. Decreased level of vitamin D has recently been found to be
involved in the pathogenesis of
Vogt-Koyanagi-Harada (VKH) disease. This study was designed to screen the vitamin D pathway genes for
pathogenic mutations, if any, in VKH patients.

Methods: Genomic DNA was extracted from blood samples collected from patients with VKH disease and healthy
controls. Entire coding region, exon-intron junctions of four genes were sequenced in DNA from 39 Saudi VKH
patients and 50 ethnically matched healthy individuals. All patients and controls were unrelated.

Results: Vitamin D levels in VKH patients were found either insufficient (21–29 ng/mL) or deficient (<20 ng/mL).
Sequencing analysis of the VDR, CYP24A1, CYP27B1 and CYP2R1 detected twelve nucleotide changes in these genes in
our cohort of 39 patients; 4 of which were non-coding, 6 were synonymous coding and 2 were non-synonymous
coding sequence changes. All synonymous coding variants were benign polymorphisms with no apparent clinical
significance. A non-synonymous coding sequence variant (c.2 T > C; p.1Met?) found in VDR is an initiation coding
change and was detected in control individuals as well, while another variant (c.852G > A; p.284 M > I) found in CYP2R1
is predicted to be disease causing by mutationtaster software. This potentially pathogenic variant was found in 17 out
of 39 VKH patients.

Conclusions: Screening of four Vitamin D pathway genes in 39 VKH patients shows that a potentially pathogenic
sequence variant in CYP2R1 may cause VKH in a subset of patients. These findings support the previous observation
that low vitamin D levels might play a role in VKH pathogenesis and mutations in genes involved in vitamin D
anabolism and catabolism might be of importance in
VKH pathobiology.
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Background
Vogt-Koyanagi-Harada (VKH) syndrome is a rare multi-
system autoimmune disease that affects melanin contain-
ing tissues, including the eye, inner ear, meninges and
skin. The disease is characterized by bilateral uveitis asso-
ciated with a varying degree of auditory, neurological and
cutaneous manifestations [1–3]. VKH affects more
frequently people with darker skin pigmentation. Asians,
Native Americans, Middle Easterners and Hispanics
are most frequently affected [4]. It predominates in
patients aged between 20 and 50 years with a female:male
ratio of 2:1.
The classic clinical course is characterized by severe

bilateral granulomatous panuveitis, hypoacusis and men-
ingitis in addition to cutaneous involvement with polio-
sis, vitiligo and alopecia. If not treated appropriately it
results in severely decreased vision or even leads to
blindness [2, 5, 6]. Although the exact cause of VKH
disease remains unclear, studies have shown that an
autoimmune response directed against melanocytes
plays a major role in the onset of this disease [7, 8].
Although a number of HLA and non-HLA genes have
been shown to be associated with VKH [9–12] the gen-
etic basis of VKH still remain illusive. Therefore, further
studies on the association of autoimmune modulatory
genes may yield informative data for the genetic back-
ground of VKH disease.
Vitamin D is produced in the skin or obtained from the

diet [13]. Its receptor has been found in the immune cells,
and some immune cells are able to produce Vitamin D3
[14–17]. The biologically active metabolite of Vitamin D3,
1,25(OH)2D3, has been shown to have immunomo-
dulatory action alongside its role in the bone and calcium
metabolism [18, 19]. Vitamin D receptor (VDR) gene
negative mice showed a significantly increased suscep-
tibility to several autoimmune diseases, such as auto-
immune encephalomyelitis [20, 21], autoimmune uveitis
[22] and allergic asthma [23]. Moreover, multiple studies
found decreased levels of serum Vitamin D in several
human autoimmune diseases, such as multiple sclerosis
[24–26], rheumatoid arthritis [27, 28], Behçet’s disease
[29], Graves disease [30] and systemic lupus erythemato-
sus [31]. It has been reported that decreased 1,25(OH)2D3

level may play a role in the development of VKH disease
[32]. Vitamin D deficiency, compromising the immuno-
regulatory action leading to the autoimmune diseases like
VKH could result from either environmental factors or
defect in genes concern with Vitamin D metabolism path-
way or both. We, therefore, entertained the hypothesis
that genetic variation in the Vitamin D genes could be as-
sociated with VKH disease.
In Saudi Arabia, VKH is a common cause of uveitis

[33] but no study has been conducted to explore the role
of vitamin D pathway genes in VKH pathogenesis. In

the present study, we screened Vitamin D metabolism
pathway genes (VDR, CYP24A1, CYP27B1 and CYP2R1)
to examine the possible involvement of variation in
these genes with VKH disease in Saudi patients. We
identified a novel missense variant in CYP2R1 in VKH
patients which might be responsible for low vitamin D
level in these patients. Overall, our results showed that a
variation/polymorphisms in Vitamin D pathway genes
tested here are not responsible for VKH in Saudi popu-
lation. However, we detected a variant in CYP2R1 gene
that may be pathogenic for VKH disease.

Methods
Subjects
All subjects were recruited from Magrabi Hospital
Almadinah Almunawarah. We collected 39 VKH pa-
tients and 50 control individuals for this study. All af-
fected and control individuals signed informed written
consent prior to start of the study. In case of minor, con-
sent was taken from parents. All patients were examined
clinically by a senior ophthalmologist and diagnosed as
VKH. Revised diagnostic criteria has been used for VKH
diagnosis [3]. Systemic observations for vertigo, poliosis
and alopecia, vitiligo, hearing impairment and tinnitus
were recorded for all VKH patient. Ethical approval for
the study was obtained from the IRB of the Center for
Genetics and Inherited Diseases (CGID), Taibah University
Almadinah Almunawarah. All experimental procedures
were conducted in accordance with the tenets of the
Declaration of Helsinki.
All patients were diagnosed using slit lamp bio-

microscopy while cornea was found clear. Fundus exam-
ination was carried out using indirect ophthalmoscope
and a 20× diopter aspheric lens.

Blood collection and gDNA extraction
In this study, we screened 39 VKH patients and 50 con-
trols for 4 vitamin D pathway genes. Peripheral blood
samples of 6 ml was collected from each of the patients
and the controls in EDTA tubes. Extraction of genomic
DNA was performed using Qiagen blood mini kit. DNA
was quantified using Maestro spectrophotometer.

Vitamin D measurement
Serum levels of 25-hydroxyvitamin D3 (25OHD3) were
measured in all 39 VKH patients and 50 controls by
radioimmunoassay using the Wallac 1470 Gamma
Counter (Wallac Inc, Gaithersburg, MD, USA). 25OHD3
level of >30 ng/mL was considered normal. Vitamin D
deficiency was defined as a serum level of 25OHD
of ≤20 ng/mL and insufficiency as a serum level between
21–29 ng/mL.
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Table 1 Clinical characteristics and genetic variants identified in VKH patients

Patient ID Age/Sex Age at onset Vitamin D level Clinical description Variant identified

VKH1 40–45/M 40–45 (A) 14.4 ng/mL De-pigmented fundus OU, Keratoconus OU,
Diffuse vitiligo, Poor improvement of VA on
treatment

CYP24A1 (g. 632 T > G; c.234 T > G)
VDR (g.63937 T > C; p.1Met?, g.65058 T > C;
c.1056 T > C)

VKH2 16–20/M 16–20 (C) 16 ng/mL De-pigmented fundus OU, Vertigo, Tinnitus,
Improved VA on treatment

VDR (g.63937 T > C; p.1Met?)
CYP2R1 (c.852G > A; p.284 M > I)

VKH3 10–15/F 6–10 (A) 23 ng/mL De-pigmented fundus OU, Band
keratopathy, Vertigo, Tinnitus, Maintained
VA, Vitiligo, Poliosis

CYP27B1 (g.2989C > T)
VDR (g.63937 T > C; p.1Met?, g.64978 G > T;
-49 int 9G > T)

VKH4 16–20/M 17 (A) 13 ng/mL De-pigmented fundus OU, CNVM, Vertigo,
Tinnitus, Decrease hearing, Improved VA on
treatment

CYP27B1 (g.2989C > T)
VDR (g.64978 G > T; -49 int 9G > T)

VKH5 30–35/M 30–35 (A) 17 ng/mL De-pigmented fundus OU, Improved VA on
treatment

CYP24A1 (g.512G > T; c.114G > T, g. 632 T > G;
c.234 T > G, g.821C > T)

VKH6 46–50/F 36–40 (A) 14 ng/mL De-pigmented fundus OU, Peripheral
Anterior Synechea, Improved VA on
treatment, Vitiligo

CYP2R1 (c.852G > A; p.284 M > I)
CYP24A1 (g.821C > T)

VKH7 20–25/F 20–25 (A) 22 ng/mL De-pigmented fundus OU, Cataract,
Improved VA on treatment

VDR (g.63937 T > C; p.1Met?)

VKH8 56–60/F 56–60 (C) 26 ng/mL De-pigmented fundus OU, Improved VA on
treatment

CYP2R1 (c.852G > A; p.284 M > I)

VKH9 30–35/F 30–35 (A) 16 ng/mL De-pigmented fundus OU, Improved VA on
treatment, Alopecia, Vitiligo

CYP24A1 (g.512G > T; c.114G > T)

VKH10 50–55/M 50–55 (A) 11 ng/mL De-pigmented fundus OU, Cataract,
Improved VA on treatment

CYP24A1 (g. 632 T > G; c.234 T > G)

VKH11 16–20/F 16–20 (A) 15 ng/mL De-pigmented fundus OU, Improved VA on
treatment

CYP2R1 (c.852G > A; p.284 M > I)
VDR (g.63937 T > C; p.1Met?)

VKH12 36–40/M 36–40 (Acute) 24 ng/mL De-pigmented fundus OU, Improved VA on
treatment

CYP27B1 (g.2989C > T)

VKH13 56–60/F 56–60 (A) 22 ng/mL De-pigmented fundus OU, Improved VA on
treatment

CYP24A1 (g.512G > T; c.114G > T,
g.2989C > T)

VKH14 40–45/F 30–35 (A) 25 ng/mL De-pigmented fundus OU, Improved VA on
treatment, Alopecia, Vitiligo

VDR (g.65058 T > C; c.1056 T > C)

VKH15 16–20/F 10–15 (A) 13 ng/mL De-pigmented fundus OU, Improved VA on
treatment, Alopecia, Vitiligo, Poliosis

VDR (g.63937 T > C; p.1Met?)

VKH16 30–35/F 10–15 (A) 12 ng/mL De-pigmented fundus OU, Improved VA on
treatment, Vitiligo

CYP24A1 (g.2989C > T)

VKH17 20–25/M 16–20 (A) 17 ng/mL De-pigmented fundus OU, Peripheral
Anterior Synechea, Improved VA on
treatment, Vitiligo

VDR (g.64978 G > T;–49 int 9G > T)
CYP24A1 (g.2989C > T)

VKH18 30–35/M 30–35 (A) 25 ng/mL De-pigmented fundus OU, Keratoconus OU,
Diffuse vitiligo, Poor improvement of VA on
treatment

CYP2R1 (c.852G > A; p.284 M > I)
CYP24A1 (g.2989C > T)

VKH19 40–46/M 36–40 (A) 17 ng/mL De-pigmented fundus OU, Band
keratopathy, Vertigo, Tinnitus, Maintained
VA, Vitiligo, Poliosis

CYP2R1 (c.852G > A; p.284 M > I)
CYP24A1 (g.512G > T; c.114G > T,
g.2989C > T)

VKH20 20–25/F 20–25 (A) 13 ng/mL De-pigmented fundus OU, Cataract,
Improved VA on treatment

VDR (g.64978 G > T;–49 int 9G > T)

VKH21 50–55/M 46–50 (C) 26 ng/mL De-pigmented fundus OU, Peripheral
Anterior Synechea

CYP24A1 (g.2989C > T)

VKH22 30–35/F 30–35 (A) 12 ng/mL De-pigmented fundus OU, Improved VA on
treatment, Alopecia, Vitiligo

CYP2R1 (c.852G > A; p.284 M > I)
VDR (g.64978 G > T;–49 int 9G > T)

VKH23 16–20/F 16–20 (A) 17 ng/mL De-pigmented fundus OU, Cataract,
Improved VA on treatment

CYP27B1 (g.2989C > T)

VKH24 30–35/F 30–35 (A) 23 ng/mL De-pigmented fundus OU, Improved VA on
treatment, Alopecia, Vitiligo

CYP2R1 (c.852G > A; p.284 M > I)
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Sequencing of vitamin D pathway genes
gDNA was diluted to 20 ng/ul concentration and PCR
amplification of coding regions of all four genes was per-
formed using primers flanking exons following a protocol
used earlier [34]. Primer sequences are available on re-
quest. Bidirectional sequencing of all fragments was carried
out using BigDye (Applied Biosystems, Foster city, CA)
chain termination chemistry. Fragments were then sepa-
rated on AB 3500 genetic analyzer (Life Technologies). All
sequenced fragments were analyzed using BioEdit software
(http://www.mbio.ncsu.edu/bioedit/bioedit.html) and com-
pared to the reference sequences of corresponding genes
from UCSC genome browser (http://genome.ucsc.edu/cgi-
bin/hgGateway).
In house controls were used and it was ensured that

controls are healthy individuals without having any
ocular disease(s) or previous ophthalmic surgeries.

Results
Clinical description of subjects
In this study, 39 unrelated VKH patients (Table 1) and
50 unrelated controls were screened for four genes by
Sanger sequencing. Of the 39 VKH patients there were

27 females and 12 males with a mean age of 32.58 years.
Of the 50 controls there were 29 females and 21 males
with a mean age of 34.75.
History of ocular trauma and ocular surgery before the

onset of the disease was ruled out in all patients. No sign
of optic atrophy was found in all VKH patients. Distri-
bution of eye involvement is bilateral affecting the whole
middle layer of the eye (Pan-uveitis OU). All patients
had depigmented fundus OU from mild to severe.
Best Characterized Visual Acuity (BCVA) in all VKH

patients was observed in the range of 20/20–20/200
(BCVA). Patients with BCVA of 20/200 had severe
depigmentation of the retina and significant retinal pig-
mentation of epithelium (RPE) changes in the macular
area. Some patients developed complications including
cataract, glaucoma, subretinal neovascular membranes
and two patients developed subretinal fibrosis as well.
Recurrence was observed in four cases.
All patients and controls were screened for serum

vitamin D levels. Most of the patients were found
Vitamin D deficient (Table 1). Among 50 controls, 12 were
found Vitamin D deficient, 23 were Vitamin D insufficient
and 15 showed Vitamin D levels of more than 30 ng/mL.

Table 1 Clinical characteristics and genetic variants identified in VKH patients (Continued)

VKH25 46–50/F 36–40 (A) 27 ng/mL De-pigmented fundus OU CYP2R1 (c.852G > A; p.284 M > I)

VKH26 40–45/M 36–40 (C) 12 ng/mL De-pigmented fundus OU, Peripheral
Anterior Synechea, Improved VA on
treatment, Vitiligo

VDR (g.63937 T > C; p.1Met?)
CYP2R1 (c.852G > A; p.284 M > I)

VKH27 56–60/M 50–55 (C) 16 ng/mL De-pigmented fundus OU CYP27B1 (g.2989C > T)

VKH28 26–30/F 26–30 (A) 25 ng/mL De-pigmented fundus OU, Cataract,
Improved VA on treatment

CYP24A1 (g.512G > T; c.114G > T)

VKH29 40–45/F 40–45 (C) 14 ng/mL De-pigmented fundus OU, Improved VA on
treatment, Alopecia, Vitiligo

CYP27B1 (g.2989C > T)

VKH30 50–55/M 26–30 (A) 25 ng/mL De-pigmented fundus OU, Keratoconus OU,
Diffuse vitiligo, Poor improvement of VA on
treatment

CYP2R1 (c.852G > A; p.284 M > I)
VDR (g.63937 T > C; p.1Met?)

VKH31 26–30/F 20–25 (A) 15 ng/mL De-pigmented fundus OU, Improved VA on
treatment

CYP2R1 (c.852G > A; p.284 M > I)
VDR (g.63937 T > C; p.1Met?)

VKH32 40–45/F 16–20 (A) 27 ng/mL De-pigmented fundus OU CYP2R1 (c.852G > A; p.284 M > I)

VKH33 40–45/M 36–40 (C) 12 ng/mL De-pigmented fundus OU, Peripheral
Anterior Synechea, Improved VA on
treatment, Vitiligo

CYP2R1 (c.852G > A; p.284 M > I)
VDR (g.63937 T > C; p.1Met?)

VKH34 50–55/M 50–55 (C) 16 ng/mL De-pigmented fundus OU CYP27B1 (g.2989C > T)

VKH35 26–30/F 20–25 (A) 25 ng/mL De-pigmented fundus OU, Cataract,
Improved VA on treatment

CYP24A1 (g.512G > T; c.114G > T)

VKH36 40–45/F 40–45 (C) 14 ng/mL De-pigmented fundus OU, Improved VA on
treatment, Alopecia, Vitiligo

CYP27B1 (g.2989C > T)

VKH37 26–30/F 20–25 (A) 15 ng/mL De-pigmented fundus OU, Improved VA on
treatment

CYP2R1 (c.852G > A; p.284 M > I)
VDR (g.63937 T > C; p.1Met?)

VKH38 40–45/F 26–30 (A) 27 ng/mL De-pigmented fundus OU CYP2R1 (c.852G > A; p.284 M > I)

VKH39 46–50/F 26–30 (C) 26 ng/mL De-pigmented fundus OU, Improved VA on
treatment

CYP2R1 (c.852G > A; p.284 M > I)

VKH Vogt-Koyanagi-Harada, M Male, F Female, A Acute, C Chronic
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Mutation detection
The full coding region, exon-intron junctions and the 5′
and 3′UTRs of VDR, CYP24A1, CYP27B1 and CYP2R1
were sequenced in all 39 patients. Controls were screened
only for the variants detected in patients. We detected
twelve nucleotide changes in both patients and controls
(Table 1). Of all these, 4 were non-coding (g.64978G > T
in VDR, g.2989C > T in CYP27B1, g.821C > T and
g.15916 T > C in CYP24A1), 6 were synonymous coding
(c.1056 T > C; 352I > I in VDR, c.114G > T; p.37P > P,
c.234 T >G; p.77G >G, c.469C >A; p. 156R > R, c.552C >T;
p. 183A >A, c.1125G >A; p. 374P > P in CYP24A1) and 2
were non-synonymous coding sequence changes (c.2 T >C;
p.1Met? in VDR and c.852G >A; p.284 M> I in CYP2R1).
All non-coding and synonymous coding variants
were benign polymorphisms with no apparent clinical

significance. Non-synonymous coding sequence variant
(c.2 T > C; p.1Met?) in VDR is an initiation coding change
and was found in control individuals as well. Homozygous
variant (c.852G >A; p.284 M > I) in CYP2R1 was identified
in 17 out of 29 patients and no control individual was
found carrying the same variant. This variant (c.852G > A;
p.284 M > I) in CYP2R1 is predicted to be a disease caus-
ing by MutationTaster software (Fig. 1). Multiple sequence
alignment shows that the amino acid methionine at pos-
ition p.284 M is evolutionarily conserved (Fig. 2).

Discussion
It is known that vitamin D plays an important role in
melanin production and its deficiency has been shown to
be associated with skin depigmentation [35]. In VKH
patients, melanocytes tends to disappear from the outer

Fig. 1 Sequence analysis of potentially pathogenic variant (c.852G > A) in CYP2R1 gene. Partial DNA sequence of CYP2R1 gene from (a) control
individual, showing wild type sequence (b) a heterozygous carrier and (c) a homozygous (VKH patients) showing a transition (G > A). Mutated
position is underlined

Fig. 2 Comparison of partial amino acid sequence of human CYP2R1 with other primates. The shaded Methionine (M) indicates the conserved
residue across different species. Isoleucine (I) indicated by an arrow represent the mutated amino acid observed in the VKH patients in this study
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layer of the choroid leading to depigmented Dellen-Fuchs
scars. Moreover, inflammation of melanocytes of retinal
pigment epithelium cause serous retinal detachment.
Recently polymorphisms in Vitamin D receptor (VDR)

and 7-dehydrocholesterol reductase (DHCR7) genes have
been associated with Behçet’s disease [36–38].
Moreover, studies examining VDR polymorphisms re-

ported significant associations with diabetes, arthritis,
autoimmune diseases and hypertension [39–42]. Signifi-
cant association between polymorphisms in the VDR
gene with asthma have also been reported in several
genetic association studies [43, 44] but has not been
consistently replicated [45]. Feng and colleagues showed
significant association of autoimmune thyroid diseases
(AITD) with VDR gene polymorphisms TaqI (rs731236)
and BsmI (rs1544410) [46].
VDR encodes vitamin D receptor which shows high bind-

ing affinity for vitamin D3. Vitamin D3 binding activates
VDR and ligand-activated VDR performs its function of
gene expression by chromatin modification and the tran-
scription regulation. DHCR7 coverts 7-dehydrocholesterol
to cholesterol and, thus, reduces the substrate for vitamin
D3 synthesis [47]. DHCR7 mutations have been shown to
control vitamin D levels in serum [48, 49]. Similarly, low
vitamin D serum level has been associated with VKH dis-
ease. Both Behçet’s disease and VKH manifest intraocular
inflammation (Uveitis) which strengthens the hypothesis
that variations in vitamin D pathway genes may cause VKH
as well. The current study is based on this hypothesis and
hence, we screened four vitamin D family genes (VDR,
CYP24A1, CYP27B1 and CYP2R1) in 39 VKH patients to
detect possible mutations underlying VKH in Saudi popula-
tion. We identified various population polymorphisms in
all these genes (Table 1). However, we identified a novel
homozygous missense mutation (c.852G >A; p.284 M> I)
in CYP2R1 gene in 17 VKH patients (Fig. 1). This variant in
not present in the homozygous state in 50 control individ-
uals. This mutation changes a conserved amino acid me-
thionine to Isoleucine. In silico analysis predicted that this
mutation is probably pathogenic. I-Mutant software (used
for prediction of protein stability upon single point muta-
tion) predicted the mutant protein as less stable or with
decreased stability [50]. Moreover, we used DUET
(predicting effects of mutations on protein stability via an
integrated computational approach), SDM (predicting
effects of mutations on protein stability and malfunction)
and mCSM (predicting the effect of mutation in protein
using graph based signatures) for prediction of effect of
mutation of the protein and found that this mutation is
indeed destabilizing [51–53].
Failure to detect pathogenic variants in other vitamin

D genes such as CYP24A1, CYP27B1 and VDR does not
rule out the possibility that other relevant vitamin D
gene mutations could cause VKH in Saudi patients.

Deep sequencing in a large number of samples would be
required to find if any other Vitamin D pathway gene
mutations are associated with VKH disease. Also, the
non-genetic factors causing Vitamin D deficiency in
these patients should be explored.

Conclusions
These findings support the previous observation that
low vitamin D levels might play a role in VKH patho-
genesis and mutations in genes involved in vitamin D
anabolism and catabolism might be of importance in
VKH pathobiology. In conclusion, our study for the first
time reports a potentially causative role of CYP2R1
mutation in VKH disease. Studies on larger cohort of
patients are needed to confirm this observation.
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