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Abstract

Mesenchymal stem cells (MSC) have become a promising tool for cell therapy in regenerative medicine. They are
readily available, demonstrate powerful differentiation capabilities and present immunosuppressive properties that
aid them in surviving from host immune rejection for its great potential use in allograft. Currently clinical trials are
underway using MSC, both culture-expanded allogeneic and autologous, for the treatment of a range of diseases
not treatable by conventional therapies. A vast array of studies has dedicated towards the use of MSC for treating
corneal diseases with very promising outcomes. MSC have successfully differentiated into keratocytes both in vitro
and in vivo, and corneal epithelial cells in vitro, but it is uncertain if MSC can assume corneal epithelial cells in vivo.
However, to date few studies have unequivocally established the efficacy of MSC for treating corneal endothelial
defects. Currently, the diversity in protocols of the isolation and expansion of MSC are hindering to the assessment
of cell treatment ability and the further development of treatment regimens. Therefore, future studies should
develop international standards for MSC isolation and characterization. In this review, we discuss recent advances in
MSC for treating ocular surface diseases.

Introduction
Mesenchymal stem cells (MSC) are a group of fibroblast-
like multipotent mesenchymal stromal cells [1, 2]. They
were originally identified as multipotent stromal precursor
cells in bone marrow by Friedenstein and his co-workers
in 1970s [3–5]. The name of MSC was first introduced by
Caplan in 1991 [6] who found these cells attained multi-
potent characteristics and could differentiate into multiple
distinctive specialized cells. Since the stemness of MSC
was potentially useful for treating diseases [2, 7, 8], MSC
attracted the attention of many researchers. Besides from
the bone marrow, MSC are also found in many other
connective tissues, such as umbilical cord [9], adipose
tissue [10] and corneal stroma [11, 12]. MSC have been
isolated, cultured and characterized in various ways by
numerous investigators, which makes it hard to compare
the cell properties and the treatment outcomes obtained
from different laboratories. In light of these discrepancies
the Mesenchymal and Tissue Stem Cell Committee of
The International Society for Cellular Therapy has sug-
gested a minimal criteria to define the MSC: MSC are

plastic-adherent, must present a certain surface molecule
profile (markers) and be able to differentiate to a charac-
teristic tri-cell lineage, i.e., osteoblasts, adipocytes and
chondrocytes in vitro [1, 13].
Most of MSC studies draw attention to their therapeutic

efficacy, which have been extensively conducted in many
body systems and organs, such as central nervous system,
heart, blood, lung, liver, kidney, pancreas, joint, skin and
eye, etc. [2]. The application of MSC in ocular diseases
was superbly summarized in elegant reviews by Joe et al.
[14] and Yao & Bai [15] and Li and Zhao [16]. The former
mainly focused on the efficacy of treating retina degener-
ation, uveitis and glaucoma optic neurophathy, while the
latter two focused on corneal reconstruction. In this
review, we will summarize the characterization of MSC
and discuss the advance of MSC research made in treating
cornea and other ocular surface diseases, e.g., dry eye
diseases.

Identification and characterization of MSC
Like many other cell types, MSC isolated from tissues
are able to adhere to the plastic surface of cell culture

* Correspondence: Winston.Kao@UC.Edu
Department of Ophthalmology, University of Cincinnati, Ohio, USA

© 2015 Zhang et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Zhang et al. BMC Ophthalmology 2015, 15(Suppl 1):155
DOI 10.1186/s12886-015-0138-4

http://crossmark.crossref.org/dialog/?doi=10.1186/s12886-015-0138-4&domain=pdf
mailto:Winston.Kao@UC.Edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


dish and propagate in vitro. They are fibroblast-like and
express certain cell surface markers, though no single
marker or a set of markers can be simply applied to define
MSC. Multiple characterization tests must be performed
and the combined results are used to identify the MSC
thereby avoiding misclassification.

MSC immunophenotype
Immunophenotype analysis is one of the essential tests
for MSC. In general, the minimum cell surface mole-
cules that should be examined include positive markers:
CD105 (endoglin), CD73 (5'-nucleotidase) and CD90
(Thy-1); and negative markers: CD45, CD34, CD14,
CD11b (integrin αM chain), CD79α, CD19 and HLA-DR
surface molecules [13]. Many other markers have also
been suggested to be indicative for the identification of
MSC, such as the expression of CD13, CD29, CD44,
CD106, CD166, and the lack of CD38, CD31 [17]. Stem
cell-related transcription factors, such as Nanog, Oct-4
and Sox-2 [18], are also helpful in characterizing MSC.
Fluorescence-activated cell sorting is routinely conducted
to evaluate the purity of cell population.

MSC differentiation capacity
The MSC multipotent capacity was usually assessed by
their multilineage differentiation into several mesenchy-
mal tissues. The capacity of tri-cell-lineage differentiation,
i.e., osteogenesis, adiposegenesis and chondrogenesis is
the gold standard for identifying MSC and any cell prepar-
ation must meet this minimum requirement prior to being
classified as MSC [13]. For such, MSC are cultured in a
specific induction medium for 2 to 3 weeks in order to
induce differentiation into the specific cell types. There-
after, stainings for calcium, lipids and proteoglygans are
performed to show whether the cells have been func-
tionally specialized into osteocytes, adipocytes and chon-
drocytes, respectively. The potential of MSC for neural
differentiation [17] and cardiogenesis [9] have also been
used as criteria in some studies, however, this is not used
as a routine method.

Others
There are other tests that may be employed for estimating
the function of MSC. Colony-forming unit-fibroblast
(CFU-F) assay [19] is useful to quantify the colony gener-
ation capacity of MSC. Cell growth kinetics measurement
can refelct the cell expansion ability. Cytokine expression
spectrum is also a means of evaluating the secretion ability
of MSC. MSC have been found to secrete SCF, LIF,
M-CSF, Flt-3, IL-6, GM-CSF, G-CSF, SDF-1/CXCL12
and VEGF, however, not IL-3 [17].

Characteristics of MSC from different tissues
MSC were initially isolated from the bone marrow
[5, 19, 20]. Thereafter, many other tissues were found to
contain MSC, such as umbilical cord [9, 21, 22], placenta
[23], adipose tissue [10, 24], skeletal muscle [25, 26] and
dental pulp [27]. The relatively abundant tissue sources
and easy isolation procedures make MSC an excellent
option of stem cells for autologous and allogeneic applica-
tion in treating diseases. Studies have shown that different
tissue origins provide advantages and disadvantages in
terms of their future clinical application. The bone mar-
row was the first MSC source to be investigated and is still
the most abundantly studied. However, the isolation of
bone marrow MSC (BMMSC) requiring the invasive
aspiration from donor greatly restricts its application.
Wharton’s jelly isolated from human umbilical cord is a
rich source of MSC that can be easily expanded and
stored in liquid nitrogen for immediate use [9]. MSC
derived from the umbilical cords (UMSC) are believed to
be more primitive than cells obtained from adult tissues.
Moreover, umbilical cords are plentiful and usually dis-
carded as biological waste. Recently, the adipose tissue is
becoming a popular source for MSC isolation. The
adipose tissue is another rich source of MSC (ATMSC)
and enables auto-graft.
Whether MSC isolated from different sources

present similar properties is an important question
since it may determine which is most suitable for
treating specific disease(s). Several comparison studies
have been performed toward this objective [28–32].
Morphology and cell marker analysis to date has not
identified significant differences among MSC isolated
from bone marrow, umbilical cord blood (UCBMSC)
and adipose tissue [28]. However, their colony gener-
ation, proliferation and differentiation capacities are
not equal. For example, the colony generation fre-
quency is different with the highest in ATMSC and
lowest in UCBMSC. The proliferation capacity is the
highest in UCBMSC and the lowest in BMMSC. In
comparison to the BMMSC, UCBMSC have higher
osteogenic ability but lower adipogenic potential [29].
ATMSC have higher chondrogenic potential than
UMSC from Wharton jelly [30], but lower osteogenic
potential than BMMSC [31]. Additionally, different
MSCs present distinct immune modulatory capabil-
ities [32]. ATMSC have been shown to be the most
effective in inhibiting the differentiation of monocyte-
derived dendritic cells when compared to BMMSC
[32]. However, MSC from BM, Umbilical Wharton’s
jelly and AT present no differences in inhibiting
phytohemagglutinin-induced T-cell proliferation. So
far, it is not clear if these discrepancies provide any
insight into which MSC treatment would be the most
appropriate for treating various diseases.
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Transdifferentiation of MSC to various corneal cell types
MSC can give rise to a variety of mesodermal cells as
described above, and also have transdifferentiation ability
to assume phenotypes of neural ectodermal cells and epi-
thelial cells [33]. Furthermore, it has been shown that
BMMSC could resemble limbal fibroblast cells which
assist in maintaining the limbal epithelial stem cells in the
limbal niche [34]. Both BMMSC and limbal fibroblasts
show a highly similar gene expression profile, including
CD106, CD54, CD166, CD90, CD29, CD71 and CD105.
In addition, BMMSC and keratocytes all express CD13,
CD29, CD44, CD56, CD73, CD90, CD105 and CD133 but
not HLA-DR, CD34, CD117 and CD45 [35]. These studies
suggested a possibility that MSC can be guided to differ-
entiate towards corneal cells. Nevertheless, in vivo there is
a lack of direct evidence to substantiate the differentiation
of MSC to assume corneal epithelial cell phenotypes.
Although, the differentiated cells in vitro could be used in
corneal tissue engineering or cell replacement treatment.
In Table 1, we summarize the current studies on MSC
transdifferentiation towards corneal cells types (Table 1).

Corneal epithelial cells
During development, the corneal epithelium derives from
the surface ectoderm [36]. Whether MSC can be

reprogrammed to cells of ectodermal lineage has been
investigated. Early experiments reported that the MSC
transplanted onto cornea do not transdifferentiate into
epithelial cells in vivo [37]. In this study, human BMMSC
were seeded on amniotic membrane and sutured on the
chemically injured rat cornea. BMMSC could survive and
repress the cornea inflammation, but failed to undergo
corneal epithelium differentiation determined by CK3 ex-
pression [37]. However, a later study carried out in rabbits
inclined to draw a positive conclusion [38]. BrdU labelled
BMMSC were placed on fibrin gels and transplanted onto
the alkali burned cornea. These BrdU positive cells partici-
pated in the cornea healing and were found to express
CK3, implicating BMMSC differentiated into corneal epi-
thelial cells.
The outcome of many in vitro experiments supported

the idea that MSC are able to assume cornea epithelial
cell phenotype under certain conditions, however to date
in vivo data has shown contradictory results. The first
in vitro experiment described was performed by co-
culturing rabbit BMMSC with corneal limbal stem cells
(LSCs) or LSC conditioned medium [38]. The BMMSC
were found to change morphology from fibroblast-like
to the broad and flattened epithelial shape in both cul-
ture systems. The immunofluorescence staining and flow

Table 1 Summary of the studies on MSC differentiating into corneal cells

Cornea cell
Differentiation

MSC
type

In vitro In vivo Reference

Method Differentiation test Method Differentiation test

Epithelium Human
BMMSC

No No Rat alkali burn model
received BMMSC on AM

Human Krt3 (−);
human keratin-pan (−)

[37]

Rabbit
BMMSC

Coculture with Rab-LSC or
Rab-LSC conditioned medium

Krt3 (+) Rabbit alkali burn model
received BMMSCs on fibrin gel

Krt3 (+) [38]

Rat
BMMSC

Coculture with rat corneal
stromal cell

Krt12 (+) Rat alkali burn model received
induced MSCs on AM

Clinical assessment;
Krt12 (+)

[39]

Human
ATMSC

Coculture with basal culture
medium conditioned with
human corneal epithelial cells

Krt3 (+); Krt12 (+) No No [40]

Human
BMMSC

Sphere culture treated with RA,
BMP4 and EGF followed by the
cell dissociation and Matrigel
culture

Krt3 (+); Krt12 (+);
Krt8(+); Transepithelial
Electrical Resistance
test

No No [41]

Keratocyte Human
UMSC

No No Kera−/− mouse and lum−/−
mouse received UMSC
corneal injection

Human keratocan (+);
Lumican (+); CD34 (+);
ALDH3A1 (+)

[44]

Mouse
BMMSC

No No Kera−/− mouse received
BMMSC corneal injection

Human keratocan (+) [45]

Human
BMMSC

Cultured in human keratocyte
conditioned medium

Human keratocan (+);
Lumican (+); ALDH1A1

No No [46]

Endothelium To be
studied

To be studied To be studied To be studied To be studied

This table lists all the references of studies on the MSC differentiating to all corneal cell types
BMMSC bone marrow derived mesenchymal stem cell, ATMSC adipose tissue derived mesenchymal stem cell, UMSC umbilical cord derived mesenchymal stem
cell, Krt3 keratin 3, Krt12 keratin 12, Krt8 keratin 8, AM amniotic membrane, Rab-LSC rabbit limbal stem cell, ALDH1A1 aldehyde dehydrogenase 1 family
member A1
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cytometry analysis identified transiently increased CK3
expression in BMMSC. Jiang et al. subsequently reported
that corneal stromal cells also have the similar ability to
induce BMMSC to become epithelial cells. They seeded
these cells on amniotic membrane and transplanted
them onto the cornea of limbal stem cell deficient rats.
The results showed that corneal neovascularization was
significantly reduced by the transplantation of epithelium
equivalent seeded on amniotic membrane. It is surprising
to note that UMSC-derived epithelium equivalent yielded
a better outcome than that of the direct transplantation of
MSC seeded on amniotic membrane. Why the differenti-
ated epithelium is more effective in neovascularization
repression and ocular surface reconstruction deserves
further investigation [39]. After co-culture with corneal
stromal cells, ATMSC exhibited epithelial cell morphology
and expressed the corneal epithelial cell marker CK12.
Furthermore, the authors examined if the differentiated
cells presented corneal epithelial cell biological function.
Recently, adipose tissue derived ATMSC were shown to
attain the ability to differentiate into the corneal epithe-
lium. After culture in corneal epithelial cell conditioned
medium for 15 days, ATMSC switched their morphology
to epithelial-like and up-regulated Krt12 expression [40].
Even though diverse groups have described the differenti-
ation of MSC into corneal epithelial cells, the precise
mechanism remains elusive.
A recent investigation has revealed a few factors which

may contribute to the MSC transdifferentiation. In
the study by Katikireddy et al. [41], BMMSC were in-
duced to assume ectodermal cell types by culturing in
3-dimensional spheres in medium containing retinoic
acid (RA), bone morphogenetic protein-4 (BMP-4)
and epidermal growth factor (EGF). The expression of
p63 and CK8 of mRNAs were measured to indicate
successful transdifferentiation. Moreover, it was found
that MSC that are positive for stage-specific embry-
onic antigen-4 (SSEA4), an early embryonic stem cell
marker [42], have higher potential to differentiate into
corneal epithelial cells than SSEA4 negative MSC.
The SSEA4+ MSC expressed higher levels of stem
cell markers, such as Sox2, Oct4, Nanog, Rex1,
ABCG2 and TRA-1-60, and can be further induced to
present epithelial cell morphology and express corneal
epithelium specific molecules, i.e., CK3 and CK12.
The epithelium barrier integrity test, trans-epithelial
electrical resistance (TER), showed the cells induced
from SSEA4+ MSC present a 2-fold increase in bar-
rier integrity than SSEA4- cells. However, they did
not get to the normal TER range of corneal epithelial
cells. Certainly, further optimization of the induction
conditions and a longer follow up may help to con-
firm the possibility of obtaining functional epithelium
from MSC.

Corneal keratocyte
Keratocytes are derived from the periocular mesenchyme
cells of neural crest origin [43]. Successful differentiation
of umbilical and bone marrow MSC into keratocytes
was performed in animal studies [44, 45]. In these experi-
ments, DiI-labeled BMMSC and UMSC were transplanted
into mouse cornea stroma under disease conditions. One
to two weeks after the surgery, MSC became dendritic
and expressed keratocyte specific proteins, KS-keratocan
(keratan sulfate keratocan) and KS-lumican.
In vitro differentiation study further confirmed the

in vivo result [46]. When BMMSC were cultured on am-
niotic membrane nourished with keratocyte-conditioned
medium, they quickly exhibited dendritic cell shape,
within 24 h. Moreover, they produced keratocan, lumi-
can and aldehyde dehydrogenase 1 family member A1
(ALDH1A1). It was thought that some secreted factors
from the keratocytes were essential for MSC differenti-
ation to corneal stromal cells. However, no critical factor
that promotes such cell fate change was identified in this
study.

Corneal endothelial cells
Only two previous studies were related to the potential
of umbilical mesenchymal stem cells and bone marrow
mesenchymal stem cells in differentiation to assume the
corneal endothelial cell phenotypes, Joyce and coworkers
showed that hUMSC could adhere to the denuded
corneal endothelium and assume corneal endothelial cell
like phenotypes in an ex vivo culture model [47]. Liu
and Zhao showed that in a rabbit model autologous
BMMSC transplanted on denuded corneal endothelium
became irregular in shape similar to corneal endothelial
cell [48]. However, the characteristics and functions of
transplanted UMSC and BMMSC were not rigorously
examioned.

Therapeutic application of MSC
The application of MSC for treating various dysfunctions
in different systems has been extensively studied and
reviewed [2, 49, 50], including applications in the eye
[14]. Currently, there are about 200 ongoing clinical trials
registered in the National Institute of Health public data-
base http://clinicaltrials.gov. The treatments cover a wide
variety of diseases, such as bone/cartilage diseases, im-
mune/autoimmune disorders, heart diseases, gastrointes-
tinal diseases, neurodegeneration and diabetes. Relatively
few MSC clinical trials have focused on ocular diseases.
However, many animal studies have been dedicated
towards exploring the therapeutic potential of MSC for
treating retinopathy, uveitis, glaucoma and ocular surface
disorders [14]. Cornea is an immune privileged tissue
and its external location and transparency allows easy
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assessment facilitating the evaluation of the therapeutic
efficacy in live animal after MSC transplantation mak-
ing it a valuable model for MSC studies. Our lab and
other labs have reported that MSC transplantation
could treat both congenitally diseased corneas and
chemically damaged corneas (Table 2).

Animal studies

a. Congenital corneal diseases

Lumican null mice
Lumican (Lum) is a member of keratan sulfate proteo-
glycans which belongs to the small leucine-rich proteo-
glycan family [51]. It is expressed as a glycoprotein in
most connective tissues, while the cornea presents the
proteoglycan form, containing KS side chains. KS-Lum
is primarily synthesized by keratocytes in corneal stroma
and plays a major role in maintaining the corneal trans-
parency by regulating the collagen fibrils assembly. The
Lum−/− mice present thin and opaque corneas due to
the irregularly spaced and thickened collagen fibrils
which results from the lack of keratan sulfate proteogly-
cans (KSPG) [44, 52, 53]. The phenotype displayed by
these mice serves as a model for general congenital disor-
ders which involve corneal opacities due to irregularities
in collagen arrangement.
Our group found that human UMSC were able to ef-

fectively treat the corneal opacity of these mice [44]. In
this study, both human UMSC and umbilical cord-derived
hematopoietic stem cells (UHSC) were intrastromally
transplanted into the Lum−/− mouse corneas. Only UMSC
but not UHSC transplantation improved the corneal
transparency. The cornea thickness increased and the
collagen fibers were re-organization enabling the corneas
to become transparent. The UMSC presented reduced
proliferation after transplantation and morphologically
resembled the dendritic keratocyte. Moreover, they
expressed keratocyte specific proteins, such as keratan

sulfate proteoglycans, KS-keratocan and KS-lumican.
Follow-up observations showed that injected UMSC
which were labeled with DiI were present in the cor-
nea for at least 3 months. The relatively long-term sur-
vival of xenografted UMSC was supposedly made possible
by the immune modulatory ability of the MSC. This was
supported by the immunostaining results in which less
infiltration of leukocytes and macrophages were seen in
UMSC transplanted corneas when compared to those
transplanted with UHSC.

Mucopolysaccharidosis type VII (MPS VII) mice
MPS VII, also known as Sly syndrome, is a lysosomal
storage disease. It is an autosomal recessive inherited
disease caused by a mutation in the GUSB gene
coding β-glucuronidase [54–56]. The deficiency of the
β-glucuronidase enzyme impedes the catabolism of hepa-
ran sulfate, dermatan sulfate and chondroitin sulfate at
the glucuronic acid residues leading to the accumulation
of glycosaminoglycans (GAGs) in lysosomes, which affects
a multiple tissues and organs, such as the brain, bone and
eye. The MPS VII mouse corneas exhibit a cloudy appear-
ance. Our group showed that UMSC transplantation sig-
nificantly reduced the cornea opacity [57]. The total
GAG content in treated corneas decreased approxi-
mately 30 %, when compared to the untreated cor-
neas, reaching levels similar to the littermate control
mice. The lysosomal-associated membrane protein 2
(LAMP2) staining manifested that the number and size of
lysosomes in keratocytes drastically decreased throughout
the treated corneas when compared to the untreated lit-
termate controls. This study unveiled that UMSC were
able to secrete exosomes which spread throughout the
entire cornea and were up-taken by both host keratocytes
and endothelial cells. These observations strongly indi-
cated that the intercellular trafficking between UMSC and
host cells contributed to the catabolism of GAG enabling
lysosomal recycling in the diseased cornea. It is very likely
that these vesicles carry endoglycosidases which enable

Table 2 Summary of the studies on MSC in treating corneal diseases

Cornea anomalies Species Application Reference

Inherited cornea anomalies Lumican null Mouse Intrastromal injection [44]

MPS IIV Mouse Intrastromal injection [57]

Cornea Chemical burn Mouse Intrastromal injection [58]

Rat Cornea surface transplantation [37]

Rat Topical application [59]

Rat Subconjunctival injection [60]

Rabbit, rat, mouse Systematically application [63–65]

Persistent cornea epithelium defect Human Cornea leision injection [66]

GVH dry eye Human Blood infusion [67]

This table summarizes the current research on MSC treating corneal diseases both in animal and human. The MSC application methods are specified
PMS IIV Mucopolysaccharidosis type VII
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the turnover of the accumulated GAGs in host kerato-
cytes, endothelial cells, and extracellular matrix.

b. Chemical burn

Corneal chemical and thermal burns are common eye
traumas. The injured area and the severity can vary a lot
with damage ranging from only limited on the ocular
surface causing epithelium wounds, corneal stroma opa-
city and/or neovascularization, to much more severe
which penetrates into the eye leading to persistent intra-
ocular inflammation and destructions. In the corneal
alkali burn rat model, human BMMSC were seeded onto
an amniotic membrane which was then sutured on the
cornea surface [37]. This treatment regimen successfully
aided corneal epithelium regeneration, and at the same
time suppressed the corneal neovascularization. The rats
vision was improved as determined by behavioral assay.
The immunostaining for cell markers and cytokines
indicated that the treatment efficacy of MSC was due to
their ability to suppress inflammation. MSC survived on
the cornea surface for at least four weeks after the trans-
plantation. Nonetheless, they did not assume corneal
epithelial cell phenotype.
We have recently shown that UMSC transplanted into

the alkali burnt mouse cornea suppress the immune
response enabling recovery of a transparent cornea within
2 weeks, while control mice present severe inflammatory
response as this same time-frame [56]. Moreover, we
further unveiled that the UMSC secrete a specific glycoca-
lyx which traps and suppresses the immune cells [58].
In another study of ethanol burned rat corneas, it was

found that both MSC and MSC conditioned media
applied 3-times per day were able to reduce the cornea
inflammation and neovascularization, in turn increased
the corneal transparency [59]. The inflammatory response
assay showed a reduction of CD4+ T cells infiltration into
the treated cornea accompanied by reduced secretion of
pro-inflammatory cytokines, e.g., IL-2 and IFN-γ, while
anti-inflammatory cytokines, e.g., IL-10 and TNF-β in-
creased. This study suggested that the anti-inflammatory
and anti-angiogenic effect of MSC most likely relies on
their paracrine capacity. This idea was further supported
by another experiment of a rat alkali burn model in
that the subconjunctival injected MSC promoted cornea
wound healing via attenuated inflammation and neovascu-
larization [60]. The results suggested that it is not neces-
sary to transplant MSC in the wounded area to achieve
therapeutic effects.
In a study involving chemical burn in rabbit corneas,

Rb-MSCs were suspended in fibrin gels and transplanted
onto injured rabbit corneas, restoring the corneal surface
[15, 38]. These MSC showed expression of cytokeratin
3 (CK3), a corneal epithelial-specific marker. Another

in vivo study confirmed that MSC have the ability to
differentiate into corneal epithelial cells in experimental
limbal stem cell deficiency rabbit model, maintaining stem
cell characteristics, while some even transdifferentiated
into epithelial progenitor cells [61]. Human MSC (hMSC)
are also able to survive and migrate into the cornea
stroma after transplantation onto the surface of the alkali-
burned rabbit cornea, not only differentiating into corneal
epithelium cells but differentiating into cells other than
epithelia [62].
Furthermore, several groups have shown that the thera-

peutic effect of MSC in cornea could also be obtained
via systemic administration. After the corneal injury,
the intravenous or intraperitoneal infusion of MSC all
increased the corneal transparency and suppressed the
inflammation. These observations were obtained in several
experimental animal models, such as rabbit, rat and
mouse. However, the opinions on whether the introduced
MSC could engraft into the cornea are inconsistent. For
example, some studies showed the systemically trans-
planted cells could home to cornea, since the labeled
MSC injected through vein was eventually seen in the
injured cornea [63–65]. In contrast, other studies pre-
sented evidence that injected MSC could not be detected
in cornea, even when using sensitive techniques such as
quantitative PCR [64]. Instead, they proposed that MSC
treatment effect might be derived from the TSG-6 secreted
by MSC, and TSG-6 systematically or locally administra-
tion can reciprocate the MSC therapeutic effect.

Clinical trials: treatment of dry eyes with MSC
The application of MSC in treating cornea diseases has
made great strides in animal studies. However, few human
clinical trials have been conducted due to the safety con-
cerns. So far, only two clinical studies of MSC in treating
ocular surface diseases have been performed with very
promising results.
One was a case report in which the ATMSC were

found to facilitate the epithelial healing in one persistent
sterile corneal epithelial defect patient [66]. This patient
had keratoconus and got corneal cross-linking treatment
one year before an injury occurred in his eye. After the
accident, the cornea epithelial cells failed to regenerate,
and accompanied by the underlying stromal opacification
and mild conjunctival inflammation. He received many
medications including antibiotic, anti-herpetic, anti-fungal
treatments, artificial tears and soft contact lens within
7 weeks after the injury. None of these treatments showed
any signs of improvement. Then, he consented to try
MSC transplantation. Autologous ATMSC were topically
injected into the bottom of cornea ulcer. Eleven days after
the injection, the area of corneal epithelial defect started
to regress. And one month later, the cornea was com-
pletely healed. This case is the first report of autologous
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MSC application in human cornea. The result is consist-
ent with animal studies that revealed MSC do have the
ability of facilitating corneal epithelial cell regeneration.
A clinical trial of MSC was designed to treat dry eye dis-

order associated with chronic graft-versus-host disease
(GVHD) [67], which is a common complication of the
allogeneic bone marrow transplantation [68]. The GVHD
can damage multiple organs and tissues, such as skin, eye,
liver, lung and immune system. About half of the patients
have dry eye problems after receiving hematopoietic stem
cell transplantation [69–73]. MSC have been successfully
used to treat severe cases of GVHD in humans [74, 75].
Their treatment efficacy for dry eye was observed by
Weng et al. [67, 76]. They recruited 22 GVHD-related dry
eye patients and gave them intravenous injection of MSC.
Twelve out of 22 patients presented improved clinical
symptoms as judged by the dry eye scores, the ocular
surface index and the Schirmer test results. The peripheral
blood test found the number of CD8+CD28− T cells, a
subgroup of regulatory T (Treg) cells, was higher in
patients who responded to MSC treatment than those
patients showed little improvement. Thus, it was proposed
that MSC may enhance the generation of CD8+CD28−

Treg cells that further modulate the balance of Th1 and
Th2 cell populations in the immune response involved in
GVHD [77].
In a another study, a one-week topical application of

MSCs lead to an increase in aqueous tear volume and
improvement in ocular surface evaluation tests in a dry
eye model in rats [78]. These authors demonstrated that
topical application of MSCs can decrease inflammation
by their anti-inflammatory effects, increase aqueous tear
volume and improve ocular surface evaluation tests in a
BAC induced dry eye model in rats.

Mechanism of MSC therapy
MSC have shown treatment efficacy for different types
of diseases. The molecular mechanisms of their treat-
ment success remains largely unclear. Several possible
mechanisms have been proposed.

Cell replacement
The classical cell replacement therapy uses MSC to func-
tionally reconstitute the hematopoietic microenvironment
of bone marrow [79]. When MSC is transplanted into
bone marrow of non-obese diabetic/severe combined im-
munodeficiency mice, they differentiate into multiple cell
types essential for keeping hematopoietic cells primitive in
terms of function and phenotype.
In congenital cornea diseases, the therapeutic effect of

MSC is at least partially attributed to either the supple-
mentation or substitution of corneal cells. In Lum−/−

cornea [44], the introduced MSC assumed keratocytes
morphology and function. The transplanted UMSC laid

down the essential structural components in cornea
stroma such as, lumican and keratocan, which helped to
re-organized the collagen fibrils leading to normal corneal
thickness and transparency. Similarly, MSC transplanted
into MPS VII mice cornea also presented keratocytes
phenotype [57]. The transplanted MSC provided the func-
tional metabolic enzymes that allowed the degradation of
the accumulated GAGs thereby assisting in the lysosome
recycling.

Paracrine competence
MSC secrete several signalling molecules, such as neuro-
trophic factors, growth factors or cytokines, which can
diffuse in the local tissue environment and interact with
the surrounding cells. MSC paracrine ability has been
studied in many systems, such as hepatic and central
nervous system [80–85].
In the cornea, MSC paracrine effects have been well

demonstrated by their anti-inflammation and anti-
angiogenesis functions in cornea chemical burn models.
Under the injured condition, the transplanted MSC could
produce a set of signalling effectors that resulted in a
decrease of host pro-inflammatory cytokines, e.g., IL-2,
MMP2, IFNγ and increase of anti-inflammatory cytokine,
e.g., IL-6, IL-10, and growth factor, e.g., TGFβ [37, 59].
These factors then initiate the downstream signalling
transduction and finally repress inflammation. Moreover,
MSC also change the levels of many angiogenesis-
associated factors in cornea, such as TSP-1, MMP-2 and
VEGF, which in turn reduce the neovascularisation [59].
Moreover, our recent study demonstrated that a rich
specific glycocalyx secreted by UMSC can trap and inhibit
inflammatory cells [56].

Exosome-mediated intercellular trafficking
Exosomes are microvesicles with diameter about 40 to
100 nm, which originate from the fusion of intracellular
multivesicular bodies (MVBs) with cell membrane and
are released into the extracellular spaces [86]. They are
composed of a bi-layered lipid membrane, proteins,
mRNA and miRNA [86, 87]. Exosomes are secreted by
many types of cells including MSC [88–90]. The MSC-
derived exosomes have been reported to have many
important biological functions, such as treating cardio-
vascular disease [89], ameliorating renal oxidative stress
[91] and suppressing VEGF expression in breast cancer
cells [92].
Our group detected the exosomes released by the trans-

planted UMSC in the diseased cornea of MPS VII mice,
and also found that these exosomes were able to enter
into host corneal keratocytes and endothelial cells [57].
The in vitro experiments further discovered that UMSC-
secreted exosomes assisted in the recycling process of
accumulated GAGS in the lysosomes in MPS VII cells.
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This study proposed a new mechanism of MSC in treating
corneal disease.

Immunomodulatory ability
One of many amazing functions of MSC is that it can
regulate the recipient immune response by modulating
the maturation and the function of multiple immune
cells, such as myeloid dentritic cells [93], natural killer
(NK) cells [94], T cells [95–98] and B cells [99, 100] and
macrophages. One good example in eye for this immuno-
modulatory ability is the treatment effect for GVHD-
associated dry eye patients [67]. In patients with treatment
effect, the level of CD8+CD28− T cells was observed
higher than those patients without effect. The in vitro co-
culture experiment showed that MSC could facilitate CD8
+ cell to undergo CD8+CD28− Treg cell fate, a cell type that
may regulate the balance of T-helper 1/T helper 2 activity.

Tissue homing capacity for treating congenital
MSC administrated systemically can home into a wide
range of tissues and exist in situ for a relatively long
period of time. A non-human primate study reported
that the infused GFP labelled MSC was detected in 16
distinct tissues with different cell quantities by quantita-
tive PCR at even 21 months after the infusion [101].
Moreover, the amount of MSC in tissues is higher in
animals that received lethal whole body irradiation and
hematopoietic support than in the non-conditioned
animal. It seems that injury facilitates MSC infiltration
into tissues.
A similar observation was made for cornea wound

healing process [65]. Q-dot or GFP labelled MSC was
intravenously injected into mice that received thermal
cauterization in one side of the cornea. MSC homed to
the injured cornea but not the naïve contralateral unin-
jured cornea. This led to a faster corneal epithelium
recovery than the untransplanted control mice.

Future research direction
MSC isolated from different tissues by different tech-
niques may possess different levels of abilities which may
directly impact their efficacies on treating various diseases.
Thus, optimizing the isolation and propagation procedure
is critical to make a more reproducible and homogenous
cell preparation. Moreover, since the current minimal
criteria to define MSC proposed by The International
Society for Cellular Therapy is not able to fully indicate
the competence of MSC on treating disease, a therapeutic
test is required evaluate the cell quality.
So far, the precise mechanism by which MSC treat dis-

eases remains elusive. Further investigations of how MSC
modulate the immune response, communicate with host
cells and become resident cells will help to delineate the

molecular and cellular basis of utilizing MSC to treat
diseases.
As for cell replacement therapy in the cornea, one

interesting research direction could be inducing MSC to
differentiate into corneal endothelial cells in vitro, and
then performing the corneal endothelial transplant. It is
known that cornea endothelial cells are critical in main-
taining cornea transparency. Once damaged in adult
humans, the endothelial cells are not able to regenerate
[102]. Clinically, corneal endothelial keratoplasty has
been performed successfully to provide the functional
endothelium. However, this surgery is still limited by the
availability of suitable donor corneas. If MSC could be
guided to transdifferentiate into endothelial cell, it would
provide a plentiful source of endothelium graft in lieu of
the whole cornea suitable for transplant.
As described above, the transplanted MSC can survive

in the cornea and secretes factors to improve the acute
conditions of traumatized cornea. However, how long
MSC can provide the regulatory effect is not known.
Once the MSC engages into the cornea and becomes the
resident cells of the tissue, it may lose the stem cell char-
acteristics and fail to provide further protection to the
host. In order to maintain sustainable expression of the
certain effectors, a genetic modification of MSC could
be a meaningful research direction. Several gene engin-
eering studies have demonstrated that MSC secreting
erythropoietin (EPO) [103] or brain-derived neurotrophic
factor [104, 105] provided persistent neural protective
effect in retina degeneration models. Since MSC can live
in the tissue for relatively long time, it can be an excellent
gene delivery system for treating congenital mutation of
metabolic enzymes to do the treatment.
Another issue is the safety of using MSC. It remains

uncertain whether MSC have long term adverse effects
on the immune system and whether there is a possibility
of inducing tumorigenesis. The future studies may need
to clarify these concerns.
Compared to systemic administration, local MSC trans-

plantation may have fewer side effects, especially for
corneal applications. The avascular nature of the cornea
makes it an immunologically privileged tissue [106] and
transplanted cells tend to have high survival rates and
reduced host versus graft disease. Moreover, the ocular
surface location eases the in vivo observation making the
cornea a very attractive model for studying the application
of MSC both in animal models and humans.
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