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Abstract
Background  Zinc oxide nanoparticles (ZnONPs) have impressively shown their efficacy in targeting and therapy 
of cancer. The present research was designated to investigate the potential of ZnONP nanocomposites as a cancer 
chemotherapeutic-based drug delivery system and to assess the anti-tumor and anti-inflammatory effectiveness of 
ZnONP nanocomposites combination with systemic chemotherapeutic drugs doxorubicin (DOX) and folic acid (FA) in 
Ehrlich ascites carcinoma (EAC) tumor cell line both in vitro and in vivo.

Methods  Anti-tumor potential of ZnONP nanocomposites: ZnONPs, ZnONPs/FA, ZnONPs/DOX and ZnONPs/DOX/FA 
against EAC tumor cell line was evaluated in vitro by MTT assay. Anti-tumor and anti-inflammatory efficacy of ZnONP 
nanocomposites were analyzed in vivo by examination of the proliferation rate and apoptosis rate of EAC tumor cells 
by flow cytometry, splenocytes count, level of inflammatory markers interleukin 6 (IL-6) and tumor necrosis factor 
alpha (TNF-α), as well as liver and kidney function in EAC-challenged mice.

Results  In vitro results showed that ZnONP nanocomposites showed a high anti-proliferative potency against EAC 
tumor cells. Furthermore, the in vivo study revealed that the treatment EAC-challenged mice with ZnONPs, ZnONPs/
DOX, ZnONPs/FA and ZnONPs/DOX/FA hindered the proliferation rate of implanted EAC tumor cells through lowering 
their number and increasing their apoptosis rate. Moreover, the treatment of EAC-challenged mice with ZnONPs/
DOX/FA markedly decreased the level of IL-6 and TNF-α and remarkably ameliorated the liver and kidney damages 
that were elevated by implantation of EAC tumor cells, restoring the liver and kidney functions to be close to the 
naïve mice control.

Conclusion  ZnONP nanocomposites may be useful as a cancer chemotherapeutic-based drug delivery system. 
ZnONP nanocomposites: ZnONPs/DOX, ZnONPs/FA and ZnONPs/DOX/FA regimen may have anti-inflammatory 
approaches and a great potential to increase anti-tumor effect of conventional chemotherapy, overcoming resistance 
to cancer systemic chemotherapeutics and reducing their side effects, offering a promising regimen for cancer 
therapy.
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Introduction
Cancer is one of the most common health problems, 
causing the largest number of deaths worldwide [1–3]. 
Doxorubicin (DOX) is a widely cancer chemotherapeutic 
used against tumors of diverse origins particularly breast 
cancer [4, 5]. A key mechanism by which DOX induces 
apoptosis in cancer cells involves its ability to intercalate 
within DNA base pairs, causing DNA strand breaks and 
inhibiting DNA and RNA synthesis, along with the inhi-
bition of topoisomerase II [6]. It also induces the genera-
tion of reactive oxygen species (ROS) causing damage to 
cellular membranes, DNA and proteins [7]. Drug resis-
tance and tumor growth are the most severe side effects 
for DOX, resulting in poor patient survival rates and poor 
prognosis [8, 9]. Its use is associated with severe adverse 
effects which impose a narrow therapeutic dose limiting 
DOX effectiveness [10, 11]. Despite significant progress 
regarding cancer treatments, therapeutic resistance and 
toxicity of conventional chemotherapeutics to normal 
tissues remain major concerns. Over 90% of patients with 
metastatic cancer fail their treatment because of chemo-
resistance to chemotherapy drugs. In this regard, it is 
necessary to reduce DOX doses and modify its biodis-
tribution in order to reduce its side effects and improve 
its concentration in tumors [12]. Among the various new 
ways to fight cancer, nanomedicine has attracted a lot of 
attention as it plays an important role in developing alter-
native and effective therapies for cancer treatment [13].

Nanoparticles (NPs)-based drug delivery system had 
been widely investigated for reducing the chemothera-
peutic agents’ diverse side effects and improving their 
anti-tumor activity by specifically targeting the cancer 
cells [13–16]. NPs-based drug delivery system can take 
advantage of the unique disorganized vasculature of can-
cer cells with many pores and compromised lymphatic 
drainage to increase permeability and retention, which 
increases the accumulation of chemotherapeutic drugs 
in tumors and decrease their consumption by healthy tis-
sues [17, 18].

Zinc oxide nanoparticles (ZnONPs) are among the 
most useful metal oxide nanoparticles in the treatment 
of cancer due to their excellent biocompatibility, low 
toxicity and capacity to specifically target and destroy 
cancer cells by selectively inducing ROS causing cancer 
cells apoptosis. ZnONPs are useful as a cancer chemo-
therapeutic NPs-based drug delivery system and have 
the capacity to target tumors specifically, giving them 
a potential alternative to traditional cancer treatments 
[16–19].

In addition to being able to cross the therapeutic indi-
ces like the other chemotherapeutic medicines ZnONPs 

may display strong cancer cell selectivity, retention, and 
controlled release of ligated as well as loaded therapies 
[20, 21]. ROS may provide a possible explanation for the 
selective cytotoxic response of ZnONPs towards prolif-
erating cells. It has been observed that ROS generation is 
relatively greater in cancer cells than in normal cells after 
ZnONPs treatment. ROS and various signaling molecules 
are generally found in greater amount in rapidly prolif-
erating cells such as cancer cells, owing to their faster 
metabolism rate compared with normal cells [22–24].

Numerous studies have demonstrated the selective 
cytotoxicity of ZnONPs towards cancer cells. How-
ever, the precise mechanism underlying this selectivity 
remains unclear. ROS may offer a reasonable explanation 
for the selective cytotoxic response of ZnONPs towards 
proliferating cells. It has been observed that cancer cells 
exhibit a relatively greater generation of ROS than nor-
mal cells following ZnONPs treatment [25–27]. Rapidly 
proliferating cells, such as cancer cells, typically contain 
higher levels of ROS and various signaling molecules due 
to their faster metabolism rate compared to normal cells 
[26]. Upon treatment with ZnONPs, the nanoparticles, 
being a redox reaction system in themselves, may react 
with the increased amount of chemical species and sig-
naling molecules surrounding them, leading to the pro-
duction of even more ROS. This results in significant 
oxidative stress in the cell, ultimately leading to cell death. 
While ZnONPs treatment also generates ROS in normal 
cells, the generation is relatively low compared to can-
cer cells, as initially they contain fewer ROS and signal-
ing molecules that can be converted into more reactive 
species. Consequently, the oxidative stress produced may 
not be sufficient to induce cell death, resulting in a rela-
tively lower cytotoxic response. Therefore, this could be 
the underlying mechanism for ZnONPs’ selective cyto-
toxicity in proliferating cells, such as cancer cells [28]. A 
collaborative approach could result in the development 
of intelligent NPs that are highly selective and toxic to 
cancer cells while not harming normal cells. In fact, this 
is a feasible goal, considering the promising properties 
of ZnONPs and their inherent selectivity and toxicity to 
cancer cells, which make them an essential tool for next 
generation cancer therapy [28].

For targeted drug delivery, folic acid (FA) molecules 
are conjugated to ZnONPs to target folate receptors, 
which are reported to be overexpressed on many cancer 
cells [29]. This tumor-targeting compound, FA, allows 
endocytosis of cancer cells and aggregates ZnONPs by 
recognizing its homolog, which is commonly expressed 
on the surface of many cancer cells [30, 31]. There-
fore, labeling FA with ZnONPs may be a better medical 
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strategy to target cancer cells as it offers high solubil-
ity, long-term diffusion and high biocompatibility in the 
produced nanomaterial [32, 33]. FA has a natural affinity 
towards folate receptor protein, which is over expressed 
by a number of tumor cells [34]. In addition to its tar-
geted chemo-photothermal therapy synergistic effect, 
ZnONPs/DOX/FA transported heat and drug conspicu-
ously to cancer cells. Consequently, the ZnONPs/DOX/
FA system enhances targeted chemo-photothermal ther-
apy and regulated drug release in a single system [29, 35].

ZnONP nanocomposites: ZnONPs/DOX, ZnONPs/
FA and ZnONPs/DOX/FA were more effective in inhibit-
ing the proliferation rate of EAC tumor cells compared to 
ZnONPs alone or DOX alone and could act as an effec-
tive drug delivery system for delivering DOX into EAC 
tumor cells and improving its chemotherapy effective-
ness. The most rationale reason for this improved effec-
tiveness of ZnONPs/DOX and ZnONPs/DOX/FA may 
be due to high drug loading efficacy that could markedly 
increase the intracellular penetration and hence concen-
tration of DOX, thus improving the suppression growth 
of cancer cells. ZnONPs/DOX nanocomposite has an 
effective cytotoxic potential against breast cancer MCF-7 
cells and colon cancer HT-29 cells comparing to ZnONPs 
alone or DOX alone [36]. The mechanism here may be 
due to that these ZnONP nanocomposites caused signifi-
cant ROS generation, decreased mitochondrial potential 
and increased caspase-3 activation resulting in induction 
of mitochondria-mediated apoptosis in tumor cells [37]. 
In view of the above mentioned considerations, the cur-
rent study was designated to investigate the potential of 
ZnONP nanocomposites as a cancer chemotherapeutic-
based drug delivery system and to assess the anti-tumor 
and anti-inflammatory effectiveness of ZnONP nano-
composites in combination with systemic chemothera-
peutic drug DOX and FA in Ehrlich ascites carcinoma 
(EAC) tumor cell line both in vitro and in vivo.

Materials and methods
Reagents
ZnONP nanocomposites were prepared in Nanotech lab 
(Inc., Cairo, Egypt). DOX was dissolved in phosphate buf-
fer saline, PBS (Lonza, Bio Whittaker, USA) and frozen 
at -80 °C until use. FA used in this study was purchased 
from Sigma-Aldrich, USA. Roswell Park Memorial Insti-
tute medium 1640 (RPMI 1640) supplemented with heat-
inactivated fetal bovine serum (FBS) (10% v/v), 2-mM 
L-glutamine and penicillin-streptomycin mixture (100 
IU/ml), 1-mM sodium pyruvate, and non-essential amino 
acids (Invitrogen, USA). Ammonium chloride potassium 
(ACK), lysis buffer was purchased from Lonza (Bio Whit-
taker, USA). Tetrazolium MTT (3-(4, 5- dimethylthiazo-
lyl-2)-2, 5-diphenyltetrazolium bromide) (ThermoFisher 
Scientific, USA) dissolved in 10% Dimethyl sulfoxide 

(DMSO) (Sigma, St. Louis, MO). Monoclonal antibodies: 
annexin V and PI were purchased from Pharmingen, San 
Diego, CA, USA.

Synthesis of ZnONP nanocomposites
ZnONPs has been prepared according to the methods of 
Pacholski et al. [38], Beek et al. [39] and Seow et al. [40] 
through the hydrolysis and condensation of zinc acetate 
dihydrate by potassium hydroxide in alcoholic medium 
at low temperature condition. ZnONPs precipitated at 
the bottom. The excess mother liquor was removed and 
the precipitate was washed with methanol. The precipi-
tate was then dispersed in a methanol mixture and chlo-
roform. DOX-ZnONPs were prepared by coating DOX 
onto the outer surface of ZnONPs. ZnO nano powder 
dispersion (5 mg/mL) in distilled water (DW) and a DOX 
solution (5  mg/ml) in DW were mixed at a 1:1 volume 
ratio and incubated for 1  h at room temperature (RT). 
After centrifugation (8000 rpm, 15 min) the supernatant 
was removed and the NPs pellet was resuspended in DW. 
Finally, it freeze-dried for further uses. Amount of 0.2 g 
of reduced folate zinc oxide (rZnO/FA) was suspended in 
100 ml of PBS (pH 7.4) then sonicated in ultrasonic water 
bath for1h at RT. 10  ml of DOX(50  mg/25  ml), (with 
observed UV spectrum at 480 nm, 2.822 cm-1) was added 
to rZnO/FA and stirred at dark condition overnight then 
centrifuged at 1500 rpm for 10 min at RT, After loading, 
UV spectrum of supernatant was observed at 480 nm was 
0.460  cm-1. Synthesized ZnONP nanocomposites have 
been characterized by UV-Vis spectroscopy followed by 
transmission electron microscopy (TEM) to investigate 
the shape and size of prepared nanoparticles conjugates.

In vitro anti-tumor activity assay of ZnONP 
nanocomposites
In vitro anti-tumor activity of ZnONP nanocomposites 
on EAC tumor cells was done using MTT assay. EAC 
tumor cell lines cultures were collected, washed three 
times and resuspended in PBS. Viable cells were counted 
using Trypan blue dye exclusion assay. EAC cells intro-
duced to the RPMI-1640 medium at a concentration of 
2 × 104 cell/well in Corning® 96-well tissue culture plates, 
which were then incubated for 24 h. The tested ZONP-
nanocomposites were subsequently added to wells along 
with a reference drug DOX at concentrations of 10 µg/ml, 
50 µg/ml and 100 µg/ml. Untreated controls with media 
or 0.5% DMSO were run for each 96 well plate as a con-
trol. After incubating for 72 h, the numbers of viable cells 
were determined by the MTT assay. Briefly, the media 
was withdrawn from each well and replaced with 100 µl 
of fresh culture media then 10  µl of the 12 mM MTT 
stock solution (5 mg of MTT in 1 mL of PBS) was added 
to each well. The 96 well plates were then incubated at 
37 °C and 5% CO2 for 4 h. 50 µl of DMSO was added to 
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each well and mixed thoroughly with pipetting. Then the 
plate was incubated at 37 °C for 10 min. The optical den-
sity was measured at 570 nm with the microplate reader 
(Bio-Rad microplate reader, Japan) to determine the cell 
viability and proliferative rate.

The percentage of viability was calculated according to 
the following equation:

	 %viability = (AT−AB) / (AC−AB) × 100

Where, AT is the absorbance of treated cells (drug), AB 
is the absorbance of blank (only media) and AC is the 
absorbance of control (untreated).

The 50% inhibitory concentration (IC50) values for 
the EAC tumor cell line after 72 h were estimated using 
graphpad prism software (San Diego, CA, USA) at 
6.5 µg/ml, 10.8 µg/ml, 20.6 µg/ml, 8.3 µg/ml and 38.8 µg/
ml for DOX, ZnONPs, ZnONPs/DOX, ZnONPs/FA 
and ZnONPs/DOX/FA, respectively (Table  1). In vivo 
50% lethal dose (LD50) values, calculated from the IC50 
values according to the formula: log (LD50) = 0.372 × 
log (IC50) + 2.024 [44], estimated at 212  mg/kg (5.3  mg/
mouse), 256 mg/kg (6.4 mg/mouse), 326 mg/kg (8.2 mg/
mouse), 232  mg/kg (5.8  mg/mouse), and 412  mg/kg 
(10.3  mg/mouse) for DOX, ZnONPs, ZnONPs/DOX, 
ZnONPs/FA, and ZnONPs/DOX/FA, respectively. the 
sublethal doses of 1/13 of LD50 value of each ZnONPs 
nanocomposite were chosen for in vivo intraperitoneal 
(IP) treatment at 0.4 mg/mouse, 0.5 mg/mouse, 0.6 mg/
mouse, 0.4  mg/mouse, and 0.8  mg/mouse for DOX, 
ZnONPs, ZnONPs/DOX, ZnONPs/FA, and ZnONPs/
DOX/FA, respectively.

Mice
Seventy female Swiss albino mice (6–8 weeks old, weigh-
ing 25 ± 2  g) were purchased from National Research 
Centre Animal House (Dokki, Giza, Egypt). Mice were 
distributed into 7 groups (n = 10) and given a standard 
pellet diet and tap water ad libitum. The experimental 
protocol was carried out following the guidelines for the 
Institutional Animal Care and Use Committee (IACUC) 
set forth by Faculty of Science, Tanta University, Tanta, 

Egypt (Approval Number: IACUC-SCI-TU-0062) regard-
ing animal care, housing, and procedures minimize the 
suffering and distress of animals. There was strict adher-
ence to the ARRIVE guidelines throughout all of the pro-
cedures carried out during the research to ensure that the 
animals were receiving the best possible care during the 
process. Moreover, all procedures are conducted ethically 
and humanely at all times.

Tumor cell line and Tumor model preparation
EAC tumor cell line (Pharmacology and Experimental 
Oncology Unit, National Cancer Institute, Cairo Univer-
sity, Cairo, Egypt) was maintained in ascitic form in naïve 
female Swiss albino mice by weekly IP inoculation of 
1 × 106 cells/mouse as described in Gothoskar and Ranad-
ive [42] and Abdel Salam et al. [43] The ascitic fluid, con-
taining EAC cells, was gathered and resuspended in PBS, 
and the EAC cells were counted using Trypan Blue dye 
exclusion assay in a Neubauer hemocytometer. To pre-
pare the tumor model, 2.5 × 105 EAC cells were implanted 
through IP injection into naïve female Swiss albino mice.

Tumor challenge and in vivo study design
Sixty female Swiss albino mice were IP injected with 
2.5 × 105 EAC cells/mouse then they divided randomly 
into 6 groups (n = 10). On day 7 post EAC challenged, 
group 1 (EAC group) was IP administered with PBS, 
group 2 (DOX group) was IP injected with DOX (0.4 mg/
mouse), group 3 (ZnONPs group) IP received ZnONPs 
(0.5  mg/mouse), group 4 (ZnONPs/DOX group) was 
IP inoculated with ZnONPs/DOX (0.7  mg/mouse), 
group 5 (ZnONPs/FA group) was IP administrated with 
ZnONPs/FA (0.5  mg/mouse), and group 6 (ZnONPs/
DOX/FA group) was IP administrated with ZnONPs/
DOX/FA (0.8  mg/mouse) once/day for seven days. In 
addition to naïve mice group (naïve group), with ten 
mice, was IP administrated PBS. On day 15 post EAC 
inoculations, all groups of mice were anesthetized using 
Isoflurane, sacrificed, EAC tumor cells and spleen were 
harvested, sera were collected for biochemical analysis 
and the anti-tumor and the anti-inflammatory efficacy 
were assessed.

Tumor cells harvesting and counting
Ascitic EAC tumor cells were collected individually from 
EAC-treated and -EAC-nontreated mice after being sac-
rificed by cervical dislocation. The EAC cells were resus-
pended in PBS and washed twice. Erythrocytes were 
lysed with ACK. EAC cells suspensions were centrifuged 
(3000 rpm, 5 min, 4 °C). The EAC cell pellets washed and 
resuspended in PBS. EAC cells count and viability were 
investigated by a Trypan blue dye exclusion assay.

Table 1  In vitro growth inhibition concentration (IC50) (µg/ml) 
and In vivo estimated LD50 (mg/kg) of ZnONP nanocomposites 
on EAC tumor cell line
Nanocomposites In vitro IC50 (µg/ml) In vivo 

LD50 
(mg/kg)

DOX 6.5 212

ZnONPs 10.8 256

ZnONPs/DOX 20.6 326

ZnONPs/FA 8.3 232

ZnONPs/DOX/FA 38.8 412
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Splenocytes harvesting and counting
Splenocytes single-cell suspension of spleen were pre-
pared as described previously by Nassef [44] and Gomaa 
[45]. Briefly, mice were sacrificed and spleens were asep-
tically removed and placed individually in a 60  mm × 
15 mm petri dish with PBS. Splenocytes were isolated by 
dissociating spleen on 60 μm mesh sieves screens (Sigma, 
St. Louis, MO) and lysing of RBC was carried out with 
ACK buffer. Splenocytes were washed, counted and 
diluted in RPMI 1640 provided with 5% fetal calf serum 
(FCS) for further investigations.

Assessment of apoptosis by flow cytometry
Ascitic EAC cells, collected from treated and untreated 
EAC-challenged were washed by ice-cold PBS, the cell 
density was calculated, and the EAC cells were resus-
pended in 1X annexin-binding buffer to obtain a final 
density of 1 × 106 cells/ml. 100 µL of the cell suspension 
was placed into 1.5-ml eppendorf tubes and 5-µL annexin 
V-fluoresceinisothiocyanate (FITC), and 1 µL PI (100 µg/
ml) working solution was added. After incubating stained 
EAC cells at room temperature for 15 min, 400 µL of 1X 
annexin-binding buffer was added, gently mixed, and the 
samples were then stored on ice. The cells were subse-
quently subjected to a flow cytometric analysis.

Assay of inflammatory cytokines
The assessment of serum levels of inflammatory cyto-
kines IL-6 and TNF-α was assessed by the enzyme-linked 
immunosorbent assay (ELISA) method with a commer-
cially available kit (Rockford, Ill; Fisher Thermo Scien-
tific Co, USA), in accordance with the manufacturer’s 
instructions. Briefly, one day prior to running the assay, 
96-well plates were coated with the capture antibody. Fol-
lowing 18  h incubation at 4  °C, the plates were washed 
with PBS containing 0.05% Tween-20 (Sigma-Aldrich, 
St. Louis, MO, USA) and then incubated for 1 h at room 
temperature (RT) with a diluent buffer to block nonspe-
cific binding. Following a wash, 100 µl of sample (100 g) 
was added to each well, and they were left to incubate 
for 2 h at room temperature. After washing of the plates, 
100 µl biotinylated detection antibody was transferred to 
each well following by plates’ incubation for 1 h. Follow-
ing this, 100 µl avidin-horseradish peroxidase (HRP) was 
added to each well followed by incubation for 30 min at 
room temperature. After further washing, 3,3′,5,5′-tet-
ramethylbenzidine (TMB) substrate solution was added 
and the plates were incubated in the dark for 15  min. 
100 ml of 2 N sulfuric acid was added to stop the reaction 
and the absorbance at 450 and 570 nm was measured.

Analysis of liver and kidney functions
The levels of serum aspartate aminotransferase (AST) 
(U/l), alanine aminotransferase (ALT) (U/l)), creatinine 

(mg/dl) and urea (mg/dl) were colorimetrically evaluated 
by a fully-automatic biochemical analyzer (Vita lab Selec-
tra E, German) using the standard available commercial 
kit (BIOLABO SAS, Les Hautes Rives, 02160, Maizy, 
France). The manufacturer’s manuals were precisely fol-
lowed throughout the experiment.

Statistical analysis
Data were represented as mean ± standard deviation 
(SD). Results were analyzed by one-way analysis of vari-
ance (ANOVA) followed by post hoc Tukey HSD’s test 
and Dennett’s test. P < 0.05 was considered significant.

Results
Characterization of ZnONP nanocomposites
The size and the shape of ZnONP nanocomposites were 
analyzed using TEM. The total ZnONPs size in the cur-
rent study was approximately 20  nm expressing irregu-
lar arranged semispherical particles and agglomerated 
morphology (Fig.  1A). The morphology and size of the 
ZnONPs loaded with DOX (ZnONPs/DOX) appeared 
spherical structure with approximate size of 19–23  nm 
(Fig.  1B). However, ZnONPs loaded with DOX and FA 
(ZnONPs/DOX/FA) appeared spherical structure with 
approximate size of 22–41  nm (Fig.  1C). Further, UV-
Visible characterization of free ZnONPs, ZnONPs/
DOX and ZnONPs/DOX/FA were analyzed via UV–vis 
Spectrophotometer (Shimadzu, UV-2450). Synthesized 
ZnONPs absorption spectra formed in the reaction mix-
ture were detected at 276 and 369  nm corresponded 
to the nanosized ZnO (Fig.  1AA). By loading DOX to 
the synthesized ZnONPs, the shifted peak appeared at 
281 and 360  nm, which was related to loading of DOX 
onto ZnONPs (Fig.  1BB). Additionally, loading of FA 
onto ZnONPs/DOX composite showed peak at 360 and 
499 nm (Fig. 1CC).

In vitro anti-tumor activity assay
The results of the in vitro anti-tumor activity assay of 
ZnONP nanocomposites indicated that the treatment of 
EAC tumor cells with ZnONPs, ZnONPs/FA, ZnONPs/
DOX and ZnONPs/DOX/FA increased the growth inhi-
bition rate of EAC cells in dose dependent manners 
comparing to that in DOX-treated EAC cells (Fig. 2A-E). 
The estimated in vitro IC50 values of ZnONP nanocom-
posites on the EAC tumor cell line at 72 h post- ZnONP 
nanocomposites treatment were estimated at 6.5  µg/
ml, 10.8  µg/ml, 20.6  µg/ml, 8.3  µg/ml and 38.8  µg/ml 
for DOX, ZnONPs, ZnONPs/DOX, ZnONPs/FA and 
ZnONPs/DOX/FA, respectively (Fig. 2A-E; Table 1). The 
in vivo LD50 values were estimated from the in vitro IC50 
values at 212 mg/kg (5.3 mg/mouse), 256 mg/kg (6.4 mg/
mouse), 326 mg/kg (8.2 mg/mouse), 232 mg/kg (5.8 mg/
mouse), and 412  mg/kg (10.3  mg/mouse) for DOX, 
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ZnONPs, ZnONPs/FA, ZnONPs/DOX and ZnONPs/
DOX/FA, respectively (Table  1). The sublethal doses of 
1/13 of LD50 value of each ZnONP nanocomposite were 
chosen for in vivo IP treatment at 0.4 mg/mouse, 0.5 mg/
mouse, 0.6 mg/mouse, 0.4 mg/mouse, and 0.8 mg/mouse 
for DOX, ZnONPs, ZnONPs/DOX, ZnONPs/FA, and 
ZnONPs/DOX/FA, respectively.

In vivo anti-tumor activity of ZnONP nanocomposites
Our findings demonstrated that the administration 
of DOX, ZnONPs, ZnONPs/DOX, ZnONPs/FA, and 
ZnONPs/DOX/FA to EAC-challenged mice resulted 
in a significant reduction in the number of EAC tumor 
cells (81.26 × 106, 138.26 × 106, 48.40 × 106, 74.66 × 106, 
43.60 × 106, respectively) compared to those mice that 
received only PBS (208.00 × 106) (Fig.  3). Furthermore, 
treatment with ZnONPs led to a significant increase in 
the total number of tumor cells (138.26 × 106), while 
treatment with ZnONPs/DOX, ZnONPs/FA, and 
ZnONPs/DOX/FA resulted in an insignificant decrease 
in the count of tumor cells (48.40 × 106, 74.66 × 106, 
43.60 × 106, respectively) compared to those mice that 
received DOX (81.26 × 106) (Fig. 3).

Splenocytes harvesting and counting
Additionally, our findings demonstrate that the admin-
istration of various nanocomposites, including DOX, 
ZnONPs, ZnONPs/DOX, ZnONPs/FA, or ZnONPs/

DOX/FA, to EAC-challenged mice resulted in a signifi-
cant decrease in the total count of splenocytes (1.06 × 106, 
14.05 × 106, 7.30 × 106, 10.03 × 106, and 9.12 × 106, 
respectively) compared to naïve mice that received 
PBS (33.26 × 106) (Fig.  4). Interestingly, treatment with 
ZnONPs or ZnONPs/DOX/FA significantly increased 
the count of splenocytes (14.05 × 106 and 9.12 × 106, 
respectively), while DOX treatment significantly reduced 
the total number of splenocytes (1.06 × 106) compared 
to EAC-challenged mice who received PBS (4.86 × 106) 
(Fig. 4). Furthermore, treatment with ZnONPs, ZnONPs/
DOX, ZnONPs/FA, or ZnONPs/DOX/FA resulted 
in a significant increase in the count of splenocytes 
(14.05 × 106, 7.30 × 106, 10.03 × 106, and 9.12 × 106, 
respectively) comparing to that in EAC-challenged mice 
received DOX (1.06 × 106) (Fig. 4).

Apoptosis assessment by flow cytometry
The current results showed that the administration of 
EAC-challenged mice with DOX, ZnONPs, ZnONPs/
DOX, ZnONPs/FA or ZnONPs/DOX/FA nanocom-
posites resulted in increase in the percentage of necro-
sis (22.6%, 42.3%, 16.3%, 38.9% and 38.7%, respectively) 
comparing to that in EAC-challenged mice received 
PBS alone (0.3%) (Fig.  5). Additionally, administration 
of EAC-challenged mice with DOX, ZnONPs, ZnONPs/
DOX and ZnONPs/FA ZnONPs/DOX/FA led to 
decrease in the early apoptosis rate of EAC tumor cells 

Fig. 1  Characterization of ZnONP nanocomposites by transmission electron microscopy (TEM) (panel 1) and UV-Vis characterization spectra of ZnONP 
nanocomposites (panel 2). (A) ZnONPs, (B) ZnONPs loaded with DOX (ZnONPs/DOX), (C) ZnONPs loaded with DOX and FA (ZnONPs/DOX/FA), (AA) 
ZnONPs, (BB) ZnONPs loaded with DOX (ZnONPs/DOX) and (CC) ZnONPs loaded with DOX and FA (ZnONPs/DOX/FA)
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Fig. 3  In vivo anti-tumor activity of ZnONP nanocomposites on EAC-challenged mice. EAC-challenged mice IP inoculated with PBS, DOX (0.4  mg), 
ZnONPs (0.5 mg), ZnONPs/DOX (0.7 mg), ZnONPs/FA (0.5 mg) or ZnONPs /DOX/FA (0.8 mg). Mice were sacrificed on day 11 post tumor challenge and 
Ascitic EAC tumor cells were harvested to determine their viability using trypan blue viability test. Data were represented as mean ± SD (n = 10). Difference 
between groups was considered statistically significant at P < 0.05. Note: a,b Statistically significant difference as compared to the corresponding means of 
the EAC group (a), the DOX group (b) within each column

 

Fig. 2  Effects of ZnONP nanocomposites on growth inhibition rate of EAC tumor cell line after 72 h of In vitro treatment using MTT assay. (A) DOX, (B) 
ZnONPs, (C) ZnONPs loaded with DOX (ZnONPs/DOX). (D) ZnONPs loaded with FA (ZnONPs/FA). (E) ZnONPs loaded with DOX and FA (ZnONPs/DOX/FA)
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(0.5%, 0.3%, 1.4%, 1.3%, and 1.1%, respectively) compar-
ing to that in EAC-challenged mice received PBS alone 
(3.4%) (Fig.  5). Furthermore, the injection of EAC-chal-
lenged mice with DOX, ZnONPs/DOX or ZnONPs/FA 
increased the late apoptosis percentage of EAC tumor 
cells (16.2%, 19.8%, 8.7%, respectively), however EAC-
challenged mice treated with ZnONPs or ZnONPs/
DOX/FA showed slight increase in the late apoptosis per-
centage of EAC tumor cells (5.3% and 4%, respectively) 
comparing to that in EAC-challenged mice received PBS 
alone (2.8%) (Fig. 5).

The findings here indicated that the necrosis % of 
ascitic EAC tumor cells significantly increased in EAC-
challenged mice received DOX, ZnONPs, ZnONPs/
DOX, ZnONPs/FA or ZnONPs/DOX/FA comparing 
to that in EAC-challenged mice received PBS (39.70%, 
19.10%, 17.05%, 37.552% and 36.75%, respectively versus 
0.30%). EAC-challenged mice IP injected with ZnONPs, 
ZnONPs/DOX, ZnONPs/FA or ZnONPs/DOX/FA 
recorded a significant decrease in the necrosis percent-
age of ascitic EAC tumor cells comparing to that in EAC-
challenged mice received DOX (19.10%, 17.05%, 37.552% 
and 36.75%, respectively versus 39.70%) (Fig.  6A). The 
treatment of EAC-challenged mice with DOX, ZnONPs, 
ZnONPs/DOX, ZnONPs/FA and ZnONPs/DOX/FA 
significantly diminished the early apoptosis percent-
age of EAC tumor cells (0.50%, 0.45%, 1.30%, 1.15% 
and 1.40%, respectively) comparing to EAC-challenged 
mice received PBS alone (2.90%) (Fig.  6B). Additionally, 
the treatment of EAC-challenged mice with ZnONPs, 
ZnONPs/DOX, ZnONPs/FA and ZnONPs/DOX/FA sig-
nificantly decreased the early apoptosis % of EAC tumor 

cells comparing to that in EAC-challenged mice received 
DOX (0.45%, 1.30%, 1.15% and 1.40%, respectively ver-
sus 0.50%) (Fig.  6B). The results in Fig.  6C show that 
the administration of EAC-challenged mice with DOX, 
ZnONPs/DOX or ZnONPs/FA nanocomposites resulted 
in a significant increase in the late apoptosis percentage 
comparing to that in EAC-challenged mice received PBS 
alone (14.60%, 5.3510%, 18.00%, 8.30% and 3.85%, cor-
respondingly versus 3.55%). Interestingly, IP inoculation 
of EAC-challenged mice with ZnONPs/DOX signifi-
cantly increased the late apoptosis % of EAC tumor cells, 
while their inoculation with ZnONPs/FA significantly 
decreased the late apoptosis % of EAC tumor cells com-
paring to that in EAC-challenged mice received DOX 
(14.60% and 18.00%, correspondingly versus 14.60%) 
(Fig. 6C).

Inflammatory cytokines assay
The data here indicated that the level of IL-6 in the 
serum significantly increased in EAC-challenged mice 
received PBS, DOX, ZnONPs, ZnONPs/FA or ZnONPs/
DOX/FA comparing to that in naïve mice (161 pg/ml, 
212 pg/ml, 59 pg/ml, 247 pg/ml and 128 pg/ml, respec-
tively versus 5 pg/ml) (Fig. 7A). EAC-challenged mice IP 
inoculated with DOX or ZnONPs/FA showed significant 
increase in IL-6 level (212 pg/ml and 247 pg/ml, respec-
tively) and contrarily EAC-challenged mice IP injected 
with ZnONPs and ZnONPs/DOX/FA showed a sig-
nificant decrease in IL-6 level (59 pg/ml and 128 pg/ml, 
respectively) comparing to that in EAC-challenged mice 
received PBS alone (161 pg/ml) (Fig. 7A). The treatment 
of EAC-challenged mice with ZnONPs or ZnONPs/

Fig. 4  Potentials of ZnONPs conjugates on the total number of splenocytes in EAC-bearing mice. EAC-bearing mice IP inoculated with EAC-challenged 
mice IP inoculated with PBS, DOX (0.4 mg), ZnONPs (0.5 mg), ZnONPs/DOX (0.7 mg), ZnONPs/FA (0.5 mg) or ZnONPs /DOX/FA (0.8 mg). Mice were sacri-
ficed on day 11 post tumor implantation and splenocytes were harvested to determine their viability and their total number using trypan blue viability 
test. Data were represented as mean ± SD (n = 10). Difference between groups was considered statistically significant at P < 0.05. Note: a,b,c Statistically 
significant difference as compared to the corresponding means of the naive group (a), the EAC group (b), the DOX group (c) within each column
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DOX/FA significantly decreased the serum IL-6 level (59 
pg/ml and 128 pg/ml, correspondingly), while their treat-
ment with ZnONPs/FA significantly increased the IL-6 
level in the serum (247 pg/ml) comparing to that in EAC-
challenged mice received DOX (212 pg/ml) (Fig.  7A). 
Furthermore, our data revealed that TNF-α level sig-
nificantly increased in EAC-challenged mice received 
PBS, DOX, ZnONPs/FA or ZnONPs/DOX/FA compar-
ing to naïve mice (75 pg/ml, 81 pg/ml, 77 pg/ml and 55 
pg/ml, respectively versus 12 pg/ml). EAC-challenged 
mice IP inoculated with ZnONPs and ZnONPs/DOX/
FA revealed significant decrease in TNF-α level (25 pg/
ml and 55 pg/ml, respectively) comparing to that in EAC-
challenged mice received PBS alone (75 pg/ml) (Fig. 7B). 
Comparing to EAC-challenged mice injected with DOX, 
treatment of EAC-challenged mice with ZnONPs or 
ZnONPs/DOX/FA significantly decreased the serum 
level of TNF-α (81 pg/ml versus 25 pg/ml and 55 pg/ml, 
respectively) (Fig. 7B).

Analysis of liver and kidney functions
Our experiments revealed that the serum level of ALT 
significantly increased in EAC-challenged mice received 
PBS, DOX, ZnONPs, ZnONPs/DOX, ZnONPs/FA or 
ZnONPs/DOX/FA comparing to that in naïve mice (78 
U/L, 80 U/L, 47 U/L, 62 U/L, 59 U/L and 60 U/L, respec-
tively versus 30 U/L) (Table 2). EAC-challenged mice IP 
injected with DOX, ZnONPs, ZnONPs/DOX, ZnONPs/
FA or ZnONPs/DOX/FA revealed significant decrease in 
ALT level (80 U/L, 47 U/L, 62 U/L and 59 U/L and 60 
U/L, respectively versus 78 U/L) (Table  2). The treat-
ment of EAC-challenged mice with ZnONPs, ZnONPs/
DOX, ZnONPs/FA or ZnONPs/DOX/FA significantly 
decreased the serum level of serum ALT (47 U/L, 62 
U/L and 59 U/L and 60 U/L, respectively) compar-
ing to that in EAC-challenged mice received DOX (80 
U/L) (Table  2). Additionally, the data in Table  2 show 
that serum level of AST significantly increased in EAC-
challenged mice received PBS, DOX, ZnONPs/DOX, 
ZnONPs/FA and ZnONPs/DOX/FA comparing to that 

Fig. 5  Phenotypic analysis of EAC tumor cells in EAC-challenged mice treated with ZnONP nanocompostes. EAC-challenged mice IP inoculated with 
PBS, DOX (0.4 mg), ZnONPs (0.5 mg), ZnONPs/DOX (0.7 mg), ZnONPs/FA (0.5 mg) or ZnONPs /DOX/FA (0.8 mg). Ascitic EAC cells were harvested from 
peritoneal cavity and washed twice with PBS. Cells were stained with Propidium Iodide (PI) and annexin V then analyzed by flow cytometry for the marker 
indicated on the representative histograms
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in naïve mice (215 U/L, 240 ± U/L, 347 U/L, 244 U/L and 
237 U/L, respectively versus 95 U/L). EAC-challenged 
mice IP treated with DOX or ZnONPs/DOX recorded a 
significant increase in serum AST level (240 U/L and 347 
U/L, respectively) comparing to that in EAC-challenged 
mice received PBS alone (215 U/L) (Table 2). Comparing 
to EAC-challenged mice received DOX, IP injection of 
EAC-challenged mice with ZnONPs/DOX significantly 
increased the serum level of AST (240 U/L versus 347 
U/L) (Table 2).

Furthermore, IP inoculation of EAC-challenged mice 
with ZnONPs/DOX resulted in a significant increase in 
serum urea level comparing to that in naïve mouse, EAC-
challenged mice received PBS and EAC-challenged mice 
received DOX (245 mg/dl versus 47 mg/dl, 54 mg/dl and 

60 mg/dl, respectively) (Table 3). The data in Table 3 indi-
cated that IP inoculation of EAC-challenged mice with 
ZnONPs, ZnONPs/FA or ZnONPs/DOX/FA has suc-
cessfully decreased the serum urea level and restored 
its level to be very close to the naïve mice control 
(66  mg/dl, 50  mg/dl, and 68  mg/dl) (Table  3). Unfortu-
nately, IP treatment of EAC-challenged mice with DOX, 
ZnONPs, ZnONPs/DOX, ZnONPs/FA or ZnONPs/
DOX/FA resulted in a significant increase in serum cre-
atinine level comparing to that in naïve mice received 
PBS alone (0.78 mg/dl, 0.79 mg/dl, 0.90 mg/dl, 0.48 mg/
dl and 66  mg/dl versus 0.28  mg/dl) (Table  3). IP injec-
tion of EAC-challenged mice with ZnONPs/DOX led to 
a significant increase in the creatinine level (0.90 mg/dl), 
while their injection with ZnONPs/DOX/FA resulted in 

Fig. 6  Potentials of of ZnONPs nanocomposites treatment on EAC cells in EAC-challenged mice treated with ZnONPs nanocomposites. EAC-challenged 
mice IP inoculated with PBS, DOX (0.4 mg), ZnONPs (0.5 mg), ZnONPs/DOX (0.7 mg), ZnONPs/FA (0.5 mg) or ZnONPs /DOX/FA (0.8 mg). Ascitic EAC cells 
were harvested from peritoneal cavity and washed twice with PBS. Data were represented as mean ± SD (n = 10). Difference between groups was con-
sidered statistically significant at P < 0.05. Note: a,b Statistically significant difference as compared to the corresponding means of EAC group (b), the DOX 
group (c) within each column
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Table 2  Potentials of ZnONP nanocomposites on the liver 
function of EAC-challenged mice
Conjugates ALT (U/L) AST (U/L)
Naive 30.33 ± 5.50 95.67 ± 5.13

EAC 77.98 ± 0.57a 215.26 ± 9.39a

DOX 80.11 ± 5.55a 240.43 ± 8.97a,b

ZnONPs 47.47 ± 2.99a,b,c 298.13 ± 24.49

ZnONPs/DOX 62.26 ± 5.78a,b,c 347.60 ± 30.36a,b,c

ZnONPs/FA 58.94 ± 6.98a,b,c 244.76 ± 25.05a

ZnONPs/DOX/FA 60.20 ± 6.75a,b,c 237.87 ± 28.33a

Data were represented as mean ± SD (n = 10). Difference between groups was 
considered statistically significant at P < 0.05. Note: a,b,c Statistically significant 
difference as compared to the corresponding means of naive group (a), EAC 
group (b), the DOX group (c)

Table 3  Potentials of ZnONP nanocomposites on the kidney 
function of EAC-challenged mice
Conjugates Urea (mg/dl) Creatinine 

(mg/dl)
Naive 47.67 ± 1.52 0.28 ± 0.04

EAC 54.85 ± 0.63 0.74 ± .05a

DOX 60.46 ± 2.04 0.78 ± 0.04a

ZnONPs 66.90 ± 6.14 0.79 ± 0.09a

ZnONPs/DOX 245.84 ± 21.29a,b,c 0.91 ± 0.06a,b

ZnONPs/FA 50.90 ± 1.05 0.77 ± 0.3a

ZnONPs/DOX/FA 68.15 ± 1.61 0.48 ± 0.03a,b,c

Data were represented as mean ± SD (n = 10). Difference between groups was 
considered statistically significant at P < 0.05. Note: a,b,c Statistically significant 
difference as compared to the corresponding means of the naive group (a), the 
EAC group (b), the DOX group (c)

Fig. 7  Potentials of ZnONP nanocomposites on the serum level of pro-inflammatory cytokines IL-6 (A) and TNF-α (B) in EAC-challenged mice. EAC-
challenged mice IP inoculated with PBS, DOX (0.4 mg), ZnONPs (0.5 mg), ZnONPs/DOX (0.7 mg), ZnONPs/FA (0.5 mg) or ZnONPs /DOX/FA (0.8 mg). Mice 
were sacrificed on day 11 post tumor challenge and the sera samples were collected. Data were represented as mean ± SD (n = 10). Difference between 
groups was considered statistically significant at P < 0.05. Note: a,b,c Statistically significant difference as compared to the corresponding means of the 
naive group (a), the EAC group (b), the DOX group (c) within each column
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a significant decrease in serum creatinine level (0.48 mg/
dl) comparing to that in EAC-challenged mice received 
PBS alone (0.74  mg/dl) (Table  3). Furthermore, EAC-
challenged mice injected with ZnONPs/DOX/FA showed 
a significant decrease in the level of serum creatinine 
comparing to that in EAC-challenged mice received 
DOX (0.48 mg/dl versus 0.78 mg/dl) (Table 3).

Discussion
The resistance of patient to the traditional anti-cancer 
drugs is a major obstacle in cancer chemotherapy and 
accounts for its failure. As a result of drug non-speci-
ficity, multidrug resistance (MDR), and cancer hetero-
geneity, chemotherapy has a seriously unsatisfactory 
therapeutic potential against cancer, therefore, there is 
a consistent need to establish new, efficient, innovative 
and affordable anti-cancer therapies [3, 46–48]. A nan-
otechnology-based chemotherapy has become a stan-
dard approach in clinical research nowadays, resulting 
in enhanced therapeutic effectiveness for cancerous tis-
sues and minimal side effects for healthy tissue by target-
ing cancer cells selectively [15, 36, 49, 50]. ZnONPs had 
more than 30 times selective cytotoxicity towards cancer 
cells compared to healthy cells and they could kill can-
cer cells selectively in vitro and in vivo via inferring the 
selective localization [15, 19, 21, 49]. The small size and 
surface properties of ZnONPs enabled them to readily 
penetrate the blood vessels towards the tumor cells, and 
to be localized inside these cells specifically, and hence 
act on them [16, 18, 20].

The main goal of the current search was to investi-
gate the potential of ZnONP nanocomposites as a can-
cer chemotherapeutic-based drug delivery system and 
to assess their anti-tumor and anti-inflammatory effec-
tiveness in combination with systemic chemotherapeu-
tic drugs DOX and FA in EAC tumor model both in 
vitro and in vivo. Overall, our results showed that DOX, 
ZnONPs, ZnONPs/DOX, ZnONPs/FA and ZnONPs/
DOX/FA suppressed the proliferation rate and increased 
the growth inhibition rate of EAC tumor cells. These 
results agreed with the findings of Sundraraman [51] who 
reported that the treatment with ZnONP nanocompos-
ites suppressed the human breast carcinoma proliferation 
cells and they didn’t show any adverse effect on normal 
human embryonic kidney cell up to the concentration of 
100  µg/ml. Synthesized NPs could arrest the metastasis 
of breast cancer cell with efficient reduction in tumor 
volume, lengthening the lifetime of tumor-bearing mice 
[52].

ZnONP nanocomposites induce apoptosis, cytotoxic-
ity, pro-inflammatory mediator’s production and oxi-
dative stress on human colon carcinoma (LoVo cells) 
and human hepatocellular adenocarcinoma (HepG2) as 
they decreased mitochondrial activity, loss of normal 

cell morphology and disturbances in cell cycle distribu-
tion [22, 53–56]. Besides, DOX-loaded colloidal NP con-
ferred less cytotoxicity compared to direct treatment 
with DOX [57]. ZnONP nanocomposites have specific 
toxicity against cancerous cells by generation of ROS 
and destruction of mitochondrial membrane potential 
leading to the activation of caspase cascades followed by 
apoptosis of cancerous cells [58].

In addition to intercalating base pairs into DNA, DOX 
inhibits replication, transcription, and topoisomerase 
II (TOP2) resulting in synthesis inhibition of DNA and 
RNA. Further, generation of ROS is another mechanism 
of DOX activity that induces oxidative damage resulting 
in cleavage or degradation of cancerous cells’ DNA [59, 
60]. Apoptosis is one of the most popular ways for anti-
cancer medications to generate cancerous cells cytotoxic-
ity [61–63]. Mitochondria, the largest generator of ROS, 
are considered to be an active molecule in cell death 
pathways and cause DNA damage [64]. The apoptotic 
pathway of mitochondria also mediates the genotoxic and 
cytotoxic potentials of ZnONP nanocomposites, whereas 
ROS reduced the mitochondrial membrane potential and 
enhanced the Bax/Bcl2 ratio [65, 66].

Data presented here further demonstrated that com-
binations of the effective penetration properties of 
ZnONPs, ZnONPs/DOX, ZnONPs/FA and ZnONPs/
DOX/FA resulted in a potent ability to suppress the 
growth rate of EAC tumor cells in EAC-challenged mice 
with low cytotoxicity on healthy cells such as splenocytes 
compared to naïve EAC-challenged mice, possibly due 
to improved their uptake. This combination significantly 
augmented cytotoxic and anti-proliferative potentials 
against EAC tumor cells in EAC-challenged mice increas-
ing the necrosis percentage and apoptosis of EAC tumor 
cells. Interestingly, ZnONPs alone induced the necro-
sis and apoptosis rates of EAC tumor cells compared to 
naïve EAC-challenged mice. These data are in line with 
the findings of Akhtar et al. [20] and Bai et al. [67] who 
demonstrated that ZnONP nanocomposites selectively 
cause significant apoptosis, cytotoxicity and autophagy 
in cancer cells such as human ovarian cells and gingival 
cancer cells, which is likely to be mediated by ROS and 
oxidative stress assembly via p53 pathway and superoxide 
formation via the mitochondrial intrinsic pathway [68]. 
Anti-proliferative capability of ZnONP nanocomposites 
to cancerous cells may be due to the apoptosis induction 
and destruction of mitochondrial membrane potential 
leading to the activation of caspase cascades followed by 
apoptosis of cancerous cells [69].

Our results indicated that the combinational therapy of 
FA with ZnONPs (ZnONPs/FA) and with ZnONPs/DOX 
(ZnONPs/DOX/FA) into EAC-challenged mice resulted 
in increasing the apoptosis rate in EAC tumor cells. FA 
has a natural affinity towards folate receptor protein, 



Page 13 of 16Gomaa et al. BMC Cancer           (2024) 24:34 

which is over expressed by a number of tumor cells [34]. 
In addition to its targeted chemo-photothermal therapy 
synergistic effect, ZnONPs/DOX/FA transported heat 
and drug conspicuously to cancer cells. Consequently, 
the ZnONPs/DOX/FA system enhances targeted chemo-
photothermal therapy and regulated drug release in a sin-
gle system [29]. For targeted drug delivery, FA molecules 
are conjugated to ZnONPs to target folate receptors, 
which are reported to be overexpressed on many cancer 
cells [29]. This tumor-targeting compound, FA, allows 
endocytosis of cancer cells and aggregates ZnONPs by 
recognizing its homolog, which is commonly expressed 
on the surface of many cancer cells [30, 33]. Therefore, 
labeling FA with ZnONPs may be a better medical strat-
egy to target cancer cells as it offers high solubility, long-
term diffusion and high biocompatibility in the produced 
nanomaterial [32, 35].

In the current search, the cytotoxic approach of DOX, 
ZnONPs, ZnONPs/DOX, ZnONPs/FA and ZnONPs/
DOX/FA was experimented against EAC tumor cells, 
and the results indicated that ZnONPs/DOX, ZnONPs/
FA and ZnONPs/DOX/FA were more effective in inhibit-
ing the proliferation rate of EAC tumor cells compared 
to DOX and ZnONPs and could act as an effective drug 
delivery system for delivering DOX into EAC tumor 
cells and improving its chemotherapy effectiveness. The 
most rationale reason for this improved effectiveness of 
ZnONPs/DOX and ZnONPs/DOX/FA may be due to 
high drug loading efficacy, it could markedly increase 
the intracellular penetration and hence concentration of 
DOX, thus improving the suppression growth of cancer 
cells. ZnONPs/DOX revealed effective cytotoxic poten-
tial against breast cancer MCF-7 cells and colon cancer 
HT-29 cells comparing with ZnONPs and DOX alone 
[36]. The mechanism here may be due to that ZnONPs/
DOX, ZnONPs/FA and ZnONPs/DOX/FA caused signif-
icant ROS generation, decreased mitochondrial potential 
and increased caspase-3 activation resulting in induction 
of mitochondria-mediated apoptosis in tumor cells [36, 
37].

Furthermore, the ZnONPs/DOX, ZnONPs/FA and 
ZnONPs/DOX/FA nanocomposites system enables con-
trolling and targeting drug DOX release in a single system 
by carrying heat and drug expressly to cancerous cells 
that increases its uptake and cytotoxicity against can-
cer cells [22]. The potential of ZnONPs/DOX, ZnONPs/
FA, and ZnONPs/DOX/FA in colon carcinoma (HT-29) 
and breast cancer (MCF-7) cells was reported, confirm-
ing their effectiveness in drug delivery to cancerous cells 
with high therapeutic efficacy and minimum toxicity to 
healthy cells [26, 70].

Our data revealed that treatment of EAC-challenged 
mice with ZnONPs, ZnONPs/DOX, ZnONPs/FA and 
ZnONPs/DOX/FA showed a significant reduction in the 

levels of pro-inflammatory cytokines IL-6 and TNF-α. A 
similar effect was reported by Nagajyothi et al. [71], Tha-
toi et al. [72] and Özcan et al. [73] who reported that NP 
nanocomposites can influence pro-inflammatory cyto-
kines TNF-α and IL-6 levels by targeting their source 
cells, modulating their production patterns and interfer-
ing with inflammation-related molecules directly through 
direct interactions with them, such as neutralizing 
effects, absorption and anergy [74–76]. ZnONP nano-
composites were also shown to induce tumor cells killing 
capacities of peripheral blood lymphocytes increasing 
the production of anti-tumor cytokines IFN-γ, IL-2 and 
TNF-α which further led to the killing of tumor cells and 
inhibition of tumor growth and enhanced the expression 
of CD3, CD8, and CD56 [77–80].

Mechanism of ZnONP nanocomposites (ZnONPs, 
ZnONPs/DOX, ZnONPs/FA or ZnONPs/DOX/FA) as 
an anti-inflammatory agents may be attributed to their 
ability to induce the generation of reactive nitrogen spe-
cies (RNS), suppressing nitric oxide (NO) production, 
inhibition of expression of inducible nitric oxide synthase 
(iNOS) enzyme, inhibition of cyclooxygenase-2 (COX-2), 
inhibition of prostaglandin E2, inhibition of the nuclear 
factor kappa B (NF-κB) signaling pathway, inhibition of 
the mast cell degranulation, inhibition of myeloperoxi-
dase and inhibition of the release of pro-inflammatory 
cytokines IL-6, IFN-γ, TNF-α, IL-17, regulatory cytokine 
IL-10 and mitogen-activated protein kinases (MAPKS) 
which were found to be inhibited after blocking inter-
nalization of ZnONP nanocomposites through caveolae 
receptor pathway [71, 81–83].The decrease in the overall 
level of serum cytokines in ZnONP nanocomposites-
treated mice as compared with naïve and naïve EAC-
challenged mice may be due to nonspecific immune 
suppression or even an inequality between the pro-
inflammatory and the anti-inflammatory cytokine net-
works [84].

The findings of the current study demonstrated that 
treatment of EAC-challenged mice with ZnONPs, 
ZnONPs/DOX, ZnONPs/FA or ZnONPs/DOX/FA 
caused marked improvement in the elevated serum lev-
els of ALT, AST, urea and creatinine in EAC-challenged 
mice that were induced as a result of implantation of 
EAC cells. This finding is broadly in agreement with 
Radwan et al. [85] who found that the administration of 
ZnONP nanocomposites ameliorates the toxicity caused 
by systemic therapeutic DOX as well as enhances the 
anti-oxidant defense system in the kidney and liver tis-
sues and exerted a significant decrease in the liver and 
kidney functions that elevated due to tumor inoculation 
and systemic therapeutic DOX administration. This is 
also supported by Nabeel [86] who revealed that ZnONP 
nanocomposites treatment decreased liver and kidney 
functions functions enzymes near the normal control. 
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Moreover, ZnONP nanocomposites (ZnONPs, ZnONPs/
DOX, ZnONPs/FA and ZnONPs/DOX/FA) exerted 
cytoprotective effects against ischemic liver injury and 
kidney injury this renoprotective and hepatoprotec-
tive effects might be due to the oxidative stress inhibi-
tion, enhancement of cell proliferation, up-regulation of 
anti-oxidant genes and down-regulation of inflammatory 
cytokine TNF-α and apoptotic genes caspase-3 and Bax 
[87]. More studies are required to connect the biological 
application of the treatment regimen of ZnONP nano-
composites (ZnONPs, ZnONPs/DOX, ZnONPs/FA and 
ZnONPs/DOX/FA) to therapeutic and diagnostic tech-
niques, however this approach may present a potential 
regimen for cancer therapy. Our research findings have 
shown that ZnONPs have an impact on the functioning 
of the liver and kidney, causing minimal damage to these 
organs. Although ZnONPs treatment also leads to the 
generation of ROS in normal cells like hepatic and renal 
cells, the level of generation is relatively low compared to 
cancer cells. This is because normal cells initially contain 
fewer ROS and signaling molecules that can be converted 
into more reactive species [28]. As a result, the oxidative 
stress produced may not be enough to cause cell death, 
leading to a lower cytotoxic response. This could explain 
the selective cytotoxicity of ZnONPs in proliferating 
cells, such as cancer cells. By adopting a collaborative 
approach, it is possible to develop intelligent NPs that 
specifically target and harm cancer cells without affect-
ing normal cells. This is a realistic goal considering the 
promising properties of ZnONPs, their inherent selec-
tivity, and their toxicity towards cancer cells. Therefore, 
ZnONPs can be considered as a valuable tool for the 
advancement of cancer therapy in the future [28].

Conclusions
ZnONP nanocomposites may be useful as a cancer 
chemotherapeutic-based drug delivery system. ZnONP 
nanocomposites: ZnONPs/DOX, ZnONPs/FA and 
ZnONPs/DOX/FA regimen may have anti-inflammatory 
approaches and a great potential to increase anti-tumor 
effect of conventional chemotherapy, overcoming resis-
tance to cancer systemic chemotherapeutics and reduc-
ing their side effects, offering a promising regimen for 
cancer therapy.
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