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Abstract
Necroptosis has been reported to be involved in cancer progression and associated with cancer prognosis. 
However, the prognostic values of necroptosis-related genes (NRGs) in hepatocellular carcinoma (HCC) remain 
largely unknown. This study aimed to build a signature on the basis of NRGs to evaluate the prognosis of HCC 
patients. In this study, using bioinformatic analyses of transcriptome sequencing data of HCC (n = 370) from The 
Cancer Genome Atlas (TCGA) database, 63 differentially expressed NRGs between HCC and adjacent normal tissues 
were determined. 24 differentially expressed NRGs were found to be related with overall survival (OS). Seven 
optimum NRGs, determined using Lasso regression and multivariate Cox regression analysis, were used to construct 
a new prognostic risk signature for predicting the prognosis of HCC patients. Then survival status scatter plots 
and survival curves demonstrated that the prognosis of patients with high-Riskscore was worse. The prognostic 
value of this 7-NRG signature was validated by the International Cancer Genome Consortium (ICGC) cohort and 
a local cohort (Wenzhou, China). Notably, Riskscore was defined as an independent risk factor for HCC prognosis 
using multivariate cox regression analysis. Immune infiltration analysis suggested that higher macrophage 
infiltration was found in patients in the high-risk group. Finally, enhanced 7 NRGs were found in HCC tissues by 
immunohistochemistry. In conclusion, a novel 7-NRG prognostic risk signature is generated, which contributes to 
the prediction in the prognosis of HCC patients for the clinicians.
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Introduction
Hepatocellular carcinoma (HCC) occurs as one of the 
most prevalent malignancies worldwide [1]. The symp-
toms of early HCC are insidious, and the available sur-
veillance tools and biomarkers fail to satisfy the clinical 
requirements for HCC diagnosis and prognosis predic-
tion [2]. Meanwhile, the lack of curative treatment and 
predictive strategies for advanced HCC results in an 
increase in its mortality rate by 2%~3% per year [3, 4]. 
Therefore, the identification of new biomarkers for HCC 
prognosis is urgent.

Necroptosis is an alternative programmed cell death 
pattern when the normal apoptotic pathway is inhibited. 
Necroptosis has mechanistic resemblance to apoptosis 
and morphological resemblance to necrosis, respectively 
[5]. Increasing evidence has shown that necroptosis, as a 
new promising therapeutic target, functions in the pro-
gression of a wide range of human cancers [6, 7]. In addi-
tion, necroptosis may induce a strong adaptive immune 
response that inhibits tumor development [8, 9]. Gener-
ally, the expressions of the necroptosis pathway-related 
regulators are dysregulated in cancer cells [10–12]. 
Unfortunately, the prognostic values of necroptosis-
related genes (NRGs) in HCC remain largely unclear.

Herein, a novel prognostic risk signature of 7 NRGs 
was generated using weighted gene co-expression net-
work analysis (WGCNA), Cox proportional risk regres-
sion analysis, and least absolute shrinkage and selection 
operator (Lasso) analysis in The Cancer Genome Atlas 

(TCGA) cohort. Subsequently, the prognostic value of 
this 7-NRG signature was validated in TCGA cohort and 
the International Cancer Genome Consortium (ICGC) 
cohort as well as a local cohort. Our results demon-
strated that this signature had a good predictive power in 
HCC prognosis.

Materials and methods
Data source
Transcriptome sequencing data, mutation data, and 
basic clinical information of 370 patients with HCC were 
obtained from TCGA database ( https://portal.gdc.can-
cer.gov ). NRGs were gained from the Kyoto Encyclope-
dia of Genes and Genomes (KEGG) database ( https://
www.genome.jp/kegg) [13–15]. The complete gene 
names are shown in Table S1. Transcriptome sequenc-
ing data of 231 donor patients with HCC from Japan and 
related basic clinical information were downloaded from 
the ICGC Data Portal database (https://dcc.icgc.org). We 
collected a total of 100 surgically resected HCC tissues 
from the First Hospital of Wenzhou Medical University 
(FAHWMU), and performed Quantitative Real-Time 
PCR (qRT-PCR) as the local cohort. Specific clinical 
parameters for TCGA cohort, ICGC cohort and the local 
cohort were shown in Table 1.

Construction of 7-NRG signature
Firstly, differentially expressed necroptosis-related genes 
(DENRGs) between HCC and adjacent normal tis-
sues were screened out (|log2FC| >1). DENRGs were 
divided into different modules via WGCNA. Prognos-
tic NRGs were screened by univariate cox regression 
analysis. The Lasso algorithm was applied to prognostic 
NRGs to exclude overfitting genes. Finally, multivari-
ate cox analysis was used to construct 7-NRG signature. 
The necroptosis Riskscore was calculated as Riskscore = ∑N

i=1 (Exp (i) • coe (i)) . Exp(i) is the transcriptional value 
of the genes, and coe(i) is the biased regression coef-
ficient of the genes derived from the multivariate cox 
analysis.

Independent prognostic factor analysis, nomogram, and 
calibration plots
Using the univariate and multivariate cox regression 
analyses, the independent prognostic factors for HCC 
were identified. R package “rms” was used to develop 
nomogram. “rms” and “survival” packages were applied 
to plot calibration curves of the nomogram.

Enrichment analysis
Gene Set Enrichment Analysis (GSEA) [16] was per-
formed to analyze all TCGA patients through “c5.
go.v7.5.1.symbols.gmt” and “c2.cp.kegg.v7.5.1.symbols.
gmt” gene sets via “limma”, “org.Hs.eg.db”, “DOSE”, 

Table 1 Specific clinical parameters for the TCGA cohort, ICGC 
cohort and local cohort
Clinical 
parameters

Variable TCGA 
cohort 
(n = 370)

ICGC cohort 
(n = 231)

local 
cohort 
(n = 100)

age <=60 177(47.84%) 49(21.21%) 24(24%)
> 60 193(52.16%) 182(78.79%) 76(76%)

gender FEMALE 121(32.7%) 61(26.41%) 32(32%)
MALE 249(67.3%) 170(73.59%) 68(68%)

stage Stage I 171(46.22%) 36(15.58%) 13(13%)
Stage II 85(22.97%) 105(45.45%) 25(25%)
Stage III 85(22.97%) 71(30.74%) 41(41%)
Stage IV 5(1.35%) 19(8.23%) 15(15%)
unknown 24(6.49%) 0(0%) 6(6%)

grade G1 55(14.86%) unknown 17(17%)
G2 177(47.84%) 29(29%)
G3 121(32.7%) 36(36%)
G4 12(3.24%) 14(14%)
unknow 5(1.35%) 4(4%)

Recurrent Primary unknown unknown 85(85%)
Recurrent 15(15%)

Vascular 
invasion

Invasion unknown unknown 45(45%)
No Invasion 55(55%)

HBV Infection Infection unknown unknown 70(70%)
No Infection 30(30%)

https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
https://www.genome.jp/kegg
https://www.genome.jp/kegg
https://dcc.icgc.org
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“clusterProfiler” and “enrichplot” packages. R pack-
ages “clusterProfiler”, “org.Hs.eg.db”, “enrichplot” and 
“ggplot2” were used for Gene Ontology (GO) enrichment 
analysis [17].

Immune infiltration analyses
Single-sample gene set enrichment analysis (ssG-
SEA) [18] was utilized to estimate the relative infiltra-
tion characteristics of 16 immune cells and 13 immune 
related functions in the TCGA cohort. The ssGSEA was 
performed via “GSVA” package. R packages “limma”, 
“reshape2” and “ggpubr” were used to analyze the differ-
ence of immune-infiltrating cells between the high- and 
low-risk subgroups.

Tumor mutational burden (TMB) analysis
Upstream analysis of whole-genome sequencing and 
whole-exome sequencing data was conducted using 
“mattool” R package. Somatic mutation analysis was used 
to perform a systematic analysis of TMB for individual 
HCC patients in TCGA cohort. The “getsamplsummary” 
and “getgenesumprice” functions were used to retrieve 
patient information and genetic information, respec-
tively. Package “maftools” was used to analyze TMB dif-
ferences between the high- and low-Riskscore subgroups.

Immunohistochemistry
Immunohistochemistry was performed as previously 
described [19]. Briefly, the tissues were immersed in 4% 
formalin for fixation, and then the formalin-fixed tis-
sue was degreased and rehydrated. Next, the sections, 
blocked in 10% BSA, were in the incubation with primary 
antibody at 4 °C for at least 12 h. Then, the sections were 
incubated with a horseradish secondary antibody for 
30 min.

Cell culture
The cell line Huh7 and HL-7702    were purchased from 
ATCC. Huh7 was cultured in DMEM medium with 10% 
fetal bovine serum (FBS) and 1% antibiotics. HL-7702 
was cultured in RPMI-1640 medium with 10% FBS and 
1% antibiotics. Cells were maintained in a 37℃ incubator 
with 5% CO2 [20].

Cell transfection
Huh7 and HL-7702 cells were cultured in a 6-well plate 
with 8 × 104 cells per well. When the cell density was 
near to 80%, si-NC, si-USP21, si-NRF1 packaged byLi-
pofectamine™ 2000 ( Invitrogen)  were transfected into 
cells at 37℃ for 6  h. Then fresh medium was replaced 
and cells were collected for subsequent experiments after 
48 h of transfection [20].

qRT-PCR analysis
Total RNA was isolated from Huh7 cells and HCC tis-
sues as well as adjacent normal tissues using the Tian-
gen RNA extraction reagent kit. Each sample was 
reversely transcribed into complementary DNA (cDNA) 
using a reverse-transcription (RT) reagent kit (Takara 
Biotechnology Co., Ltd., Dalian, China). Then, Real-
time PCR was performed using SYBR Premix ExTaq 
(Takara). GAPDH was used as endogenous controls 
for mRNAs [20]. HSP90AA1 forward, 5’- AGGAG-
GTTGAGACGTTCGC − 3’; HSP90AA1 reverse, 
5’- AGAGTTCGATCTTGTTTGTTCGG − 3’. PPIA for-
ward, 5’- CCCACCGTGTTCTTCGACATT − 3’; PPIA 
reverse, 5’- GGACCCGTATGCTTTAGGATGA − 3’. 
SQSTM1 forward, 5’- GCACCCCAATGTGATCTGC 
− 3’; SQSTM1 reverse, 5’- CGCTACACAAGTCG-
TAGTCTGG − 3’. HSP90AB1 forward, 5’- AGAAATT-
GCCCAACTCATGTCC − 3’; HSP90AB1 reverse, 
5’- ATCAACTCCCGAAGGAAAATCTC − 3’. FAF1 
forward, 5’- GAGATGATCCTGGCGGATTTTC 
− 3’; FAF1 reverse, 5’- AGGTCCTGGTATG-
GTCTCACC − 3’. PGAM5 forward, 5’- TCGTC-
CATTCGTCTATGACGC − 3’; PGAM5 reverse, 
5’- GGCTTCCAATGAGACACGG − 3’. USP21 forward, 
5’-GAATCCTCGTGCTCCATCTGA − 3’; USP21 reverse, 
5’-CAGCTGGTATACAGGACTTCCG-3’. GAPDH for-
ward, 5’- AAAGCCTGCCGGTGACTAAC − 3’; GAPDH 
reverse, 5’- GCCCAATACGACCAAATCAGA − 3’. The 
full information of primer used for qRT-PCR were listed 
in Table S2.

Western blot analysis
The proteins from Huh7 cells were extracted using RIPA 
extraction buffer. The protein samples of interested were 
separated by 10% SDS-PAGE electrophoresis, and then 
transferred to PVDF membranes. The primary anti-
USP21 (Invitrogen, PA5-11055) and anti-GAPDH (CST, 
#2118) were added in PVDF membranes and incubated 
overnight at 4  °C. Then, the second antibody was added 
and incubated at room temperature for 1 h [19].

Cell proliferation assays
Cell Counting Kit-8 (CCK8) (Dojindo, Japan) was used 
for the assessment of cell proliferation. Cells were seeded 
into 96-well plate at a density of 2 × 103/100 µl per well to 
incubate for 48 h. Then, 10 µl CCK8 solution were added 
to each well and maintained in a 37 °C incubator for 1 h. 
Finally, the absorbance of each well was measured at 
450 nm [20].

Cell migration assays
Migration assays were performed in a Transwell che-
motaxis 24-well chamber with 8.0 μm pore polycarbon-
ate membrane insert (CORNING, 3422). Briefly, 3 × 104 
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cells were plated in the upper chamber with a non-coated 
membrane. After 24  h of incubation at 37  °C, migrat-
ing cells were fixed and stained with 20% methanol and 
0.1% crystal violet dye. Migrated cells were counted and 
imaged with an inverted microscope.

Statistical analysis
At the present study, R software (version 4.1.0) was uti-
lized for statistical analysis. Data were presented as 
mean ± SD of at least three independent experiments, 
and differences between two groups were compared 
using student’s t-test. Rank correlations were assessed 
by the performance of spearman’s correlation coefficient 
test among different variables. The R package “survival” 
was used for survival analysis, and Kaplan-Meier (K-M) 
survival curves were used to display survival differences 
between different groups. Statistical p-values were sub-
jected to two tailed tests, and p < 0.05 was considered as 
significance.

Results
Screening prognostic NRGs and constructing 7-NRG 
signature
The general workflow of this study was shown in Fig. 1. 
Firstly, the expressions of 130 NRGs were extracted from 
TCGA transcriptome sequencing data. Then DENRGs 
were identified between HCC tissues and adjacent nor-
mal tissues. Among DENRGs, 5 down-regulated and 58 
up-regulated NRGs were found in HCC tissues (Fig. 2A). 
63 DENRGs were divided into different modules via 
WGCNA (Fig.  2B and D). MEbrown and MEturquoise 
modules-related genes, which were the most signifi-
cant differentially expressed between HCC and adja-
cent normal tissues, were included in the next analysis. 
Subsequently, 24 DENRGs were identified as prognosis-
related genes (Fig. 2E). 16 overfitted genes were excluded 
by Lasso algorithm (Fig.  2F). Multivariate cox regres-
sion analysis was utilized to construct 7-NRG signature 
(Fig. 2G). The Riskscore was calculated by the formula:

Riskscore = (HSP90AB1exp * -0.252) + (PPIA exp 
* 0.394) + (PGAM5 exp * 0.336) + (FAF1 exp * 0.393) 

Fig. 1 The general workflow of this study
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Fig. 2 Screening prognostic NRGs and seven NRGs signature construction: (A) Heatmap of DENRGs between HCC tissues samples and adjacent 
normal samples. (B) Topology soft-thresholding analysis of network. (C) Clustering dendrogram of DENRGs. (D) Module-trait relationships. (E) Univariate 
cox regression analysis identified 24 prognostic DENRGs. (F) LASSO analysis for 24DENRGs. (G) Forest plot for multivariate cox regression analysis
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+ (USP21 exp * 0.334) + (SQSTM1 exp * 0.222) + 
(HSP90AA1 exp * 0.424).

Validation of 7-NRG signature
Patients in the TCGA cohort, the ICGC cohort, and the 
local cohort were divided into the high- and low-risk 
subgroups according to optimal Riskscore, respectively 
(Fig.  3A and B and Fig.S1A). Survival status scatterplot 

and K-M survival analyses suggested that patients with 
high-Riskscore had poorer survival than those with low-
Riskscore (Fig. 3C and D and 3G, 3H, and Fig.S1B, S1D). 
The results of the principal component analysis (PCA) 
showed that the above dichotomous classification had 
a good performance (Fig. 3E and F and Fig.S1C). In the 
TCGA cohort, enhanced 7 NRGs were found in HCC tis-
sues (Fig.S1F and Fig.S1G). Taken together, these results 

Fig. 3 Accuracy validation of seven NRGs signature (A) Riskscores in TCGA cohort. (B) Riskscores in ICGC cohort. (C) Survival status scatterplot of pa-
tients in TCGA cohort. (D) Survival status scatterplot of patients in ICGC cohort. (E) Analysis of PCA for TCGA cohort. (F) Analysis of PCA for ICGC cohort. (G) 
Survival curves of patients in TCGA cohort. (H) Survival curves of patients in ICGC cohort. (I) ROC curve analysis for the value of prognosis in the signature 
for TCGA cohort. (J) ROC curve analysis for the value of prognosis in the signature for ICGC cohort
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suggest that necroptosis functions in the development 
of HCC. The time-independent receiver operating char-
acteristic curve (ROC) curve further demonstrated the 
prognostic value of this 7-NRG signature. As shown 
in Fig.  3I, the AUC value of the TCGA cohort reached 
0.753 in the 1st year, 0.715 in the 2nd year, and 0.687 in 
the 3rd year, respectively. The AUC values of the ICGC 
cohort and the local cohort also demonstrated the accu-
racy of the 7-NRG signature in predicting HCC progno-
sis (Fig. 3J and Fig.S1E).

Independent prognostic analysis, nomogram construction 
and calibration curves
To determine whether the Riskscore could serve as an 
independent risk factor for HCC, both univariate Cox 
analysis and multi-variate Cox analysis were performed. 
Univariate Cox analysis indicated that stage, T and Risks-
core were prognostic factors for HCC (Fig. 4A). Further 
studies confirmed that only Riskscore was an indepen-
dent prognostic factor for HCC via multivariate cox 
analysis (Fig.  4B). A novel clinical nomogram was con-
structed to precisely predict prognosis for HCC (Fig. 4C). 
The calibration curves demonstrated the excellent pre-
dictive performance of this nomogram (Fig. 4D-4F).

Advanced HCC was associated with high Riskscore
Correlation analysis revealed that patients with high 
grade or stage was associated with high Riskscore 
(Fig.  5A and 5B). However, Riskscore was not corre-
lated with age and gender (Fig.S2A and Fig.S2B). The 
survival curves suggested that high Riskscore was cor-
related with poor prognosis (Fig.  5C-5F). The correla-
tion between Riskscore and the 7 NRGs expressions was 
subsequently explored. Except SQSTM1, the expressions 
of other 6 NRGs were correlated with grade (Fig.  5G,  
5I, 5K, 5 M, 5 N and Fig.S2C). Stage was correlated with 
the expression of 3 NRGs including FAF1, HSP90AB1 
and PPIA (Fig. 5H, 5J, 5 L). To conclude, advanced HCC 
may be associated with higher Riskscore. K-M survival 
analysis revealed that patients with upregulated FAF1, 
HSP90AA1, PPIA, PGAM5, USP21 and SQSTM1 genes 
may have shorter survival (Fig.S2D-S2I).

Riskscore was correlated with immune cell infiltration
The correlation between Riskscore and immune cell infil-
tration was also analyzed. GSEA revealed that upregu-
lated genes in the high-risk subgroup were mainly 
enriched in adaptive immunity response and cell activa-
tion biological processes (Fig.  6A). Moreover, upregu-
lated genes in the low-risk subgroup were enriched in 
α-amino acid catabolism, fatty acid β-oxidation, fatty acid 
catabolism and lipid oxidation (Fig. 6B).

GO enrichment analysis uncovered that 7 NRGs 
were mainly involved in protein ubiquitination and 

deubiquitination (Fig. 6C). The relative infiltration char-
acteristics of 16 immune cells and 13 immune related 
functions were analyzed in TCGA cohort. Higher mac-
rophage infiltration was found in the high-risk subgroup 
than that in the low-risk subgroup (Fig. 6D). In addition, 
the scores of aDCs, APC_co_stimilation, Cytolytic_activ-
ity, Mast_cells, MHC_class_I, NK_cells, Th2_cells and 
Type_II_IFN_Reponse were obviously different between 
the high- and low-risk subgroups. Furthermore, K-M 
survival analysis revealed that the patients with high 
macrophage infiltration were correlated with worse prog-
nosis (Fig.  6E). Furthermore, the infiltration scores of 
M0, M1 and M2 were evaluated between the high- and 
low-risk subgroups in the TCGA cohort. It was observed 
that patients in the high-risk subgroup had a higher M2 
infiltration score (Fig.  6F). Compared with the low-risk 
subgroup, the high-risk subgroup had higher levels of 
PD1 and CTLA4 (Fig. 6G). The results of TMB analysis 
revealed that patients in the high-risk subgroup exhibit a 
higher frequency of TP53 mutation (Fig. 6H). These data 
suggest that high-risk patients may be more suitable can-
didates for immunotherapy.

7 NRGs were upregulated in HCC tissues
Immunohistochemistry analysis was performed to deter-
mine the protein expressions of 7 NRGs in 20 pairs of 
HCC and adjacent tumor tissue samples from the FAH-
WMU. Our data showed the upregulation of 7 NRGs 
in HCC tissues compared with adjacent normal tissues 
(Fig. 7), suggesting the possible oncogene roles of 7 NRGs 
in HCC. In addition, immunohistochemistry staining of 
PD-1 and PD-L1 was performed in the tumor samples 
from the FAHWMU. Clearly, patients with high-risk had 
enhanced levels of PD-1 and PD-L1 (Fig.S3).

Transcriptional regulatory factor (TF) network construction
Next, we explored the potential upstream regulation 
mechanisms of 7 NRGs via constructing TF network. 
Differential analysis of 318 cancer-related TFs was per-
formed between HCC and adjacent normal tissues in the 
TCGA cohort (Fig. 8A and 8B). 117 eligible TFs (|log2FC| 
> 1, p < 0.05) were included in the construction of the 
TF network (Fig.  8C). Among the 7 NRGs, USP21 had 
the most TFs in the TF network. NRF1, which was the 
most correlated with USP21, was selected for the fur-
ther analysis. It was found that the correlation coefficient 
between NRF1 and USP21 expression was 0.81 (Fig. 8D). 
In the TCGA cohort, both NRF1 and USP21 expressions 
were significantly upregulated in HCC tissues (Fig.  8E 
and F). Single-gene survival analysis showed no cor-
relation between NRF1 expression and the OS of HCC 
patients (Fig.  8G). The prognosis of patients with high 
USP21 expression was worse than those with low USP21 
(Fig. 8H). In the ICGC cohort, the correlation coefficient 
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Fig. 4 Independent prognostic analysis, nomogram construction and calibration curves (A) Univariate cox regression analyses. (B) Multivariate cox 
regression analyses. (C) Nomogram based on prognostic factors. (D-F) Calibration curve of the nomogram for the 1st, 2nd and 3rd year
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Fig. 5 Correlation analyses between Riskscore and clinical features (A) Association between Riskscore and grade. (B) Association between Riskscore 
and stage. (C) Kaplan-Meier survival curves of G1-2 patients. (D) Kaplan-Meier survival curves of G3-4 patients. (E) Kaplan-Meier survival curves of patients 
with stage I-II. (F) Kaplan-Meier survival curves of patients with III-IV. (G) Correlation between grade and FAF1 expression. (H) Correlation between stage 
and FAF1 expression. (I) Correlation between grade and HSP90AB1expression. (J) Correlation between stage and HSP90AB1expression. (K) Correlation 
between grade and PPIA expression. (L) Association between stage and PPIA expression. (M) Correlation between grade and HSP90AA1 expression. (N) 
Correlation between grade and PGAM5 expression
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Fig. 6 Immune infiltration analysis (A) GSEA enrichment analyses of high-Riskscore group. (B) GSEA enrichment analyses of low-Riskscore group. (C) 
The barplot of signature gene GO enrichment analysis. (D) Differential analyses of immune-related functions. Adjusted P values were demonstrated as: 
ns, namely, not significant; *P < 0.05; **P < 0.01; ***P < 0.001. (E) Survival curves of patients with different macrophages scores. (F) Relative infiltration of 
M0, M1 and M2 macrophages between high- and low-risk subgroups in TCGA cohort. (G) Relative levels of PD-1, PD-L1 and CTLA4 between high- and 
low-risk subgroups in TCGA cohort. (H) Tumor mutation burden between high- and low-risk subgroups in TCGA cohort
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between NRF1 level and USP21 expression was 0.66 
(Fig.S4A). In both the ICGC cohort and local cohort, 
the expression of NRF1 in HCC tissues was higher than 
that in adjacent normal tissues (Fig.S4B and Fig.S4D). 
Although there was no significant difference in survival 
rates between the high- and low-NRF1 group in both 
ICGC cohort and local cohort, data from the GEPIA2 
database indicated that patients with high-NRF1 had 
shorter disease-free survival (Fig.S4C, S4E and S4F).

NRF1 may enhances HCC proliferation and migration 
through upregulating USP21 expression
To determine whether NRF1 regulates USP21 expres-
sion in HCC cells, NRF1 siRNA was transfected into 
Huh7 cells. The mRNA and protein levels of USP21 were 
reduced in cells with NRF1 knockdown (Fig.  9A-9C), 
indicating the regulation of NRF1 in mediating USP21 
expression. In addition, knockdown of NRF1 inhibited 
cell proliferation in Huh7 cells (Fig.  9D). Interestingly, 
it was observed that USP21 knockdown also inhibited 

Fig. 7 Immunohistochemistry of 7 NRGs in HCC patients 7 NRGs were enhanced in HCC tissues (n = 20) compared with adjacent tumor tissue 
samples (n = 20)
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Fig. 8 TF network construction (A) Heatmap of differentially expressed TFs. (B) Volcano plot of differentially expressed TFs. (C) TF network. Circular 
nodes represent NRGs, triangular nodes represent TFs. The line between nodes indicates a regulatory relationship between two nodes. (D) Co-expression 
relationship between NRF1 and USP21. (E) NRF1 expression. (F) USP21 expression. (G) Survival curves of patients with high- and low-NRF1. (H) Survival 
curves of patients with high- and low-USP21
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Fig. 9 NRF1 enhances Huh7 proliferation and migration through upregulating USP21 expression (A) NRF1 mRNA expression in Huh7 cells after 
si-NRF1 transfection. (B) USP21 mRNA expression in Huh7 cells after si-NRF1 transfection. (C) USP21 protein level. (D) Effect of NRF1 knockdown on cell 
proliferation. (E) USP21 mRNA expression in Huh7 cells after si-USP21 transfection. (F) Effect of USP21 knockdown on cell proliferation. (G) Transwell 
assay, magnification: ×200. (H) Levels of MMP2, MMP9, CDH1, VIM and CCL2 in Huh7 cells after si-USP21 transfection. (I) Drug sensitivity test. ***p < 0.001, 
****p < 0.0001, ns. no signification
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HCC proliferation (Fig. 9E and 9F). Knockdown of NRF1 
or USP21 did not affect HL-7702 cells proliferation (Fig.
S4G-S4J). Transwell migration assay demonstrated that 
USP21 knockdown inhibited HCC migration (Fig.  9G). 
Moreover, knockdown of USP21 reduced the levels of 
MMP9, VIM and CCL2 (Fig. 9H). Collectively, our data 
suggest that NRF1 may promote the proliferation and 
migration of HCC cell by upregulating USP21 expression. 
Due to the reason that USP21 expression may be corre-
lated with the OS of HCC patients, then, drug sensitiv-
ity test between USP21 and six common molecular drugs 
(Sorafenib, Axitinib, Dasatinib, Erlotinib, Imatinib and 
Nilotinib) were performed (Fig.  9I). Our results suggest 
that patients with low USP21 expression are sensitive to 
Sorafenib, Axitinib, Dasatinib, Erlotinib and Nilotinib.

Discussion
It is known that HCC imposes significant economic 
and medical burdens on societies worldwide. Effective 
biomarkers for monitoring HCC progression as well 
as treatment guidance are urgently needed [21–23]. 
In recent years, scholars have dedicated substantial 
efforts to exploring prognostic and therapeutic molecu-
lar markers for HCC. In addition, increasing studies 
have demonstrated the involvement of necroptosis in 
HCC progression [24–27]. In this study, we developed 
a 7-NRG prognostic signature and assigned Riskscores 
to HCC patients based on the prognostic signature 
computation formula via cox regression analysis. HCC 
patients were divided into the high- and low-risk sub-
groups according to the median of Riskscore. K-M sur-
vival analysis revealed that patients in high-risk subgroup 
had a shorter OS in comparison with those in low-risk 
subgroup (p < 0.05). It was observed that patients with 
advanced tumor grades and stages exhibited elevated 
Riskscores (p < 0.05). In addition, univariate and mul-
tivariate cox regression analysis identified Riskscore as 
an independent prognostic factor for HCC (p < 0.001). 
The differences in immune cell infiltration scores, PD-1 
and PD-L1 expression levels, as well as tumor mutation 
burden between the high-risk and low-risk subgroups 
suggested that high-risk patients may be more suitable 
candidates for immunotherapy. Additionally, USP21, one 
of the 7-NRGs, was demonstrated to play a promotional 
role in HCC cell proliferation and migration. Drug sen-
sitivity analysis revealed that patients with low USP21 
expression were more sensitive to sorafenib compared to 
those with high USP21 expression. In summary, our sig-
nature may potentially improve HCC prognosis predic-
tion and guidance in immunotherapy and drug treatment 
strategies tailored to different patients.

The immune system plays a pivotal role in eliminat-
ing tumor cells and distinct immune cells exert varying 
functions during this process. In this study, we found 

that patients with low Riskscores exhibited higher NK 
cell infiltration and better prognosis, which was consis-
tent with the fact that higher levels of NK cell infiltration 
contribute to anti-tumor immunity [28, 29]. Conversely, 
patients with high-risk showed higher M2 macrophage 
infiltration, which has been reported to promote tumor 
growth, invasion, and metastasis by secreting vari-
ous active substances [30]. In line with it, we found that 
patients with high M2 macrophage infiltration had a 
shorter OS. In addition, high-risk patients expressed 
higher levels of immune checkpoint PD-1 and CTLA4, 
suggesting that high-risk patients may benefit from 
immunotherapy targeting PD-1 or CTLA4 checkpoint 
inhibitors. However, it should be noted that our analy-
sis results were derived from the TCGA cohort, which 
requires validation in more datasets and samples to 
ensure consistency.

This prognostic signature comprises 7 NRGs, namely 
HSP90AA1, HSP90AB1, PPIA, PGAM5, FAF1, USP21, 
and SQSTM1. Previous studies have demonstrated that 
HSP90A, PPIA, PGAM5, USP21, and SQSTM1 are 
involved in regulating HCC progression through distinct 
mechanisms [31–37], which supports the relevance of 
our prognostic signature to HCC progression. Given that 
USP21 exhibits the highest correlation with NRF1 (a TF), 
the preliminary verification of the regulatory relationship 
between NRF1 and USP21 was performed in HCC. We 
found that silencing NRF1 suppressed USP21 expres-
sion in HCC cells. Knockdown of NRF1 or USP21 inhib-
ited HCC cell proliferation, whereas it had no impact on 
normal human liver cell (HL-7702) proliferation. Knock-
down of USP21 was observed to suppress cell migration 
and reduce the mRNA expressions of MMP9, VIM, and 
CCL2 in Huh7 cells. Our findings suggest that NRF1 may 
influence HCC progression by regulating USP21. How-
ever, further validation are needed in more cell lines and 
animal experiments.

Previously, the prognostic value of necroptosis in can-
cers has been explored. For instance, Zhao et al. ana-
lyzed the prognostic values of necroptosis-associated 
lncRNA in stomach cancer [38]. Ren et al. constructed 
a 13-NRG signature for predicting HCC prognosis using 
univariate cox and lasso cox regression analyses [39]. 
However, these prognostic signatures were established 
only through analysis of public databases and lacked 
validation in clinical cohorts. Notably, our signature was 
not only validated in the TCGA and ICGC databases 
but also in the local cohort. Moreover, we validated the 
high expression of this 7-NRG signature in HCC tissues 
through immunohistochemical experiments.
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Conclusion
In conclusion, we developed a novel 7-NRG prognos-
tic signature that could contribute to predict the HCC 
prognosis.
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